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Abstract

Protein structure refinement refers to the process of improving the qualities of protein structures during structure modeling
processes to bring them closer to their native states. Structure refinement has been drawing increasing attention in the
community-wide Critical Assessment of techniques for Protein Structure prediction (CASP) experiments since its addition in
8th CASP experiment. During the 9th and recently concluded 10th CASP experiments, a consistent growth in number of
refinement targets and participating groups has been witnessed. Yet, protein structure refinement still remains a largely
unsolved problem with majority of participating groups in CASP refinement category failed to consistently improve the
quality of structures issued for refinement. In order to alleviate this need, we developed a completely automated and
computationally efficient protein 3D structure refinement method, i3Drefine, based on an iterative and highly convergent
energy minimization algorithm with a powerful all-atom composite physics and knowledge-based force fields and hydrogen
bonding (HB) network optimization technique. In the recent community-wide blind experiment, CASP10, i3Drefine (as
‘MULTICOM-CONSTRUCT’) was ranked as the best method in the server section as per the official assessment of CASP10
experiment. Here we provide the community with free access to i3Drefine software and systematically analyse the
performance of i3Drefine in strict blind mode on the refinement targets issued in CASP10 refinement category and compare
with other state-of-the-art refinement methods participating in CASP10. Our analysis demonstrates that i3Drefine is only
fully-automated server participating in CASP10 exhibiting consistent improvement over the initial structures in both global
and local structural quality metrics. Executable version of i3Drefine is freely available at http://protein.rnet.missouri.edu/
i3drefine/.
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Introduction

The biennial community-wide Critical Assessment of protein

Structure Prediction (CASP) experiment aims to evaluate the

progress and challenges in the state-of-the-art of protein structure

modeling techniques, one of the fundamental problems in

computational biology- prediction of the tertiary structure of

protein from its sequence information. During the recent CASP

experiments, encouraging and consistent progress have witnessed

in template-based modeling (TBM) [1–4] or ab-initio (free-

modeling; FM) [5–8] folding of protein structures. The refinement

category has been a recent addition to the CASP framework since

CASP8, which aims to evaluate whether further improvement is

possible to the best predictions made by contemporary structure

prediction techniques. In the blind refinement experiment,

predictors are given a starting structure evaluated by the

organizers as the best submitted model during the structure

prediction phase (TS category) along with the sequence informa-

tion. Occasionally, some hints are also provided to aid the

refinement like the focus regions during refinement or the

accuracy of the starting structure.

Since its inclusion during CASP8, refinement category has been

drawing increasing attention by the community. During recently

concluded CASP10 refinement experiment, a 92% increase in the

number of refinement targets and 39% increase in the number of

participating groups have been observed compared to CASP9.

This is not unexpected because a consistent and efficient

refinement protocol can serve as a natural end step in almost all

the contemporary structure prediction pipelines adding value to

the already predicted structures through simultaneous improve-

ment in backbone geometry and correction of local errors like

irregular hydrogen bonding, steric clashes, unphysical bond

length, unrealistic bond angles, torsion angles and side-chain x
angles. However, structure refinement has proven to extremely

challenging as revealed in the assessment of refinement experi-

ments during CASP8 and CASP9 [9,10] with only a few

participating groups were able to improve the model quality

consistently. It should be noted, however, that CASP refinement

category differs in a slight but significant way from refinement in

the context of TBM [11–19] where the objective is to refine the

best identified template structure(s) to produce better quality

prediction. In CASP, on the other hand, the starting models issued

for refinement have already been refined by other structure
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prediction pipelines and judged to be the best among all the

submitted models. Thus, attempts to improve qualities of these

models would naturally impose more challenges and often the risk

of degrading the model quality instead of improving it.

In view of the major difficulties in the field, we developed a

consistent and computationally efficient refinement algorithm,

called 3Drefine [20] by optimizing the hydrogen bonding network

and atomic level energy minimization using a composite physics

and knowledge-based force field. We participated in CASP10

refinement category with an iterative version of 3Drefine protocol,

i3Drefine. As per the official CASP10 results released during

CASP10 meeting in the form of assessors’ presentation (http://

predictioncenter.org/casp10/docs.cgi?view = presentations),

i3Drefine was ranked as the single best refinement server method

capable of consistent improvement in qualities of starting

structures. The contribution of this article are two-fold: (1)

Providing the community with access to a fast, accurate and

freely downloadable executable version of refinement software

which could be used to improve the qualities of the models coming

from variety of protein structure prediction methods, or to act as

the end-game strategy in a TBM pipeline and (2) evaluation of its

performance in CASP10 refinement experiment to analyse the

effectiveness of this method in a strict blind mode. Although

CASP10 refinement category includes both human and server

predictors, since i3Drefine is a fully automated server, this article

will be mainly focused on the assessment of refinement in the

context of automated server predictions.

Materials and Methods

i3Drefine Algorithm
i3Drefine is an iterative implementation of the energy minimi-

zation technique, 3Drefine for protein structure refinement. The

details of 3Drefine protocol has been described in [20]. Here, we

present a brief overview of 3Drefine algorithm.

3Drefine refinement protocol involves a two-step process: (1)

Optimizing hydrogen bonding network and (2) atomic-level

energy minimization using a combination of physics and

knowledge based force fields; implemented using the molecular

modeling package MESHI [21]. Given a starting structure for

refinement, a combination of local geometry restraint and a

conformational search is first performed in order to optimize the

hydrogen bonding network. The optimized structure is called

extended atomic model. Subsequently, 200,000 steps of energy

Table 1. Summary of CASP10 refinement targets.

# Target Residues Method GDT-TS RMSD (Å) GDC-SC MPa SGb CAD-AA Focusc

1 TR644 141 X-ray 0.8422 2.712 0.4346 2.49 0.7518 0.69 –

2 TR655 175 NMR 0.6871 4.654 0.2853 3.83 0.5143 0.58 6–20; 51–64

3 TR661 185 X-ray 0.800 2.743 0.375 1.11 0.7135 0.67 –

4 TR662 75 NMR 0.8267 2.031 0.3364 2.42 0.7600 0.67 –

5 TR663 152 X-ray 0.6908 3.372 0.2626 4.05 0.7697 0.67 53–78; 141–181

6 TR671 88 X-ray 0.5568 7.716 0.1158 3.68 0.4432 0.59 –

7 TR674 132 X-ray 0.8523 3.444 0.4417 2.99 0.7424 0.69 –

8 TR679 199 X-ray 0.7186 3.949 0.3076 1.15 0.5226 0.6 25–45; 146–156; 187–197

9 TR681 191 X-ray 0.7827 2.273 0.3274 2.89 0.6387 0.64 –

10 TR688 185 X-ray 0.7838 2.524 0.4249 1.77 0.7730 0.67 –

11 TR689 214 X-ray 0.8773 1.660 0.4202 3.18 0.8738 0.72 –

12 TR696 100 X-ray 0.7075 3.519 0.2631 2.97 0.5000 0.58 –

13 TR698 119 X-ray 0.6471 4.653 0.2568 2.73 0.6555 0.63 17–35; 90–100

14 TR699 225 X-ray 0.8411 2.211 0.3361 2.77 0.7733 0.66 –

15 TR704 235 X-ray 0.6989 2.78 0.2325 2.89 0.7319 0.64 –

16 TR705 96 X-ray 0.6458 4.709 0.2211 3.63 0.3750 0.52 –

17 TR708 196 X-ray 0.8648 4.630 0.4551 2.65 0.8214 0.71 –

18 TR710 194 X-ray 0.7487 2.440 0.3628 0.50 0.7732 0.72 –

19 TR712 186 X-ray 0.9261 1.992 0.5515 2.69 0.8817 0.77 80–89; 116–129; 141–155

20 TR720 198 X-ray 0.5783 8.515 0.2558 1.33 0.4697 0.58 –

21 TR722 127 X-ray 0.5709 4.422 0.1614 0.88 0.8976 0.72 –

22 TR723 131 X-ray 0.8511 2.232 0.3772 2.21 0.8473 0.68 –

23 TR738 249 X-ray 0.9006 1.396 0.5036 2.38 0.9398 0.75 17–35; 90–100

24 TR747 90 X-ray 0.825 1.956 0.3796 1.95 0.6778 0.63 –

25 TR750 182 X-ray 0.7679 2.125 0.348 2.49 0.7967 0.67 –

26 TR752 148 X-ray 0.9037 1.495 0.4305 1.52 0.7973 0.71 41–50; 100–110; 125–128

27 TR754 68 NMR 0.7794 2.410 0.1997 2.56 0.8235 0.65 –

aMolProbity scores of the starting structures.
bSphereGrinder scores of the starting structures.
cThe numbers indicate the range of focus residues as suggested by CASP10 organizers.
doi:10.1371/journal.pone.0069648.t001
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minimization is employed on the extended atomic model using

highly convergent limited memory Broyden–Fletcher–Goldfarb–

Shannon (L-BFGS) [22] algorithm or until convergence to

machine precision using a customized all-atom force field. The

force field consists of a combination of physics based and

knowledge based terms. The energetic contributions of the bonded

interactions described in ENCAD potential [23] (bond length,

bond angle, and torsion angle) along with tethering term of the Ca

and Cb atoms [20] constitute the physics-based part while atomic

pairwise potential of mean force [24] and explicit hydrogen

bonding potential [25] account for the knowledge-based terms. A

detailed analysis of the relative importance of these energy terms

has been presented in the published work of 3Drefine [20]. The

energy-minimized model is the refined model.

In i3Drefine, we use an iterative version of 3Drefine method. In

order to escape from the local minima and move closer to the

native structure, the starting model is minimized using 3Drefine

protocol and the resulting refined model is again processed by the

same method. This iteration is done five times to generate five

refined models for the starting structure. Because 3Drefine invokes

restrained backbone flexibility during energy minimization due to

the inclusion of the knowledge-based terms in the all-atom force

field, such an iterative scheme is effective. Furthermore, because of

the computationally inexpensive nature of 3Drefine protocol, this

iterative strategy does not provide significant computational

overhead in i3Drefine pipeline consuming only a few minutes

(typically less than 15 minutes) to generate five refined structures at

a 2.4 GHz CPU.

Programming Language, Platform and External Programs
The core of i3Drefine is developed in Java (http://www.java.

com/en/) on top of MESHI [21] software package and the

command-line interface to perform the refinement is developed in

Perl programming language (http://www.perl.org/). For a

seamless installation and usage of i3Drefine, a Java version 6.0

or above and Perl version 5.8.8 or above is recommended. Also,

since some of the energy terms in the customized force fields

require the secondary structure assignment of the starting structure

for accurate calculations, DSSP program [26] needs to be used in

conjunction with i3Drefine. The detailed installation instructions

along with typical example of using i3Drefine have been provided

in the user manual file supplied with the software. i3Drefine has

been tested on 64-bit Linux based platform. However, because of

the platform independent nature of Java and versatile platform

support of Perl, it can be fairly easily modified to run for Windows

or Mac OSX platforms.

Metrics used for Evaluation
We evaluate the quality of the structural refinement using both

global and local measures. We focus on GDT-TS [27] and RMSD

[28] score to measure of the global positioning of Ca atoms. Global

distance cutoff sidechain (GDC-SC) [2] has been used as a global

quality metric for sidechain positioning. To assess the local

qualities of the models, we use MolProbity score [29] as a local

measure of physical correctness of a structure and SphereGrinder

[10] as a local all-atom measure of structural similarity. Finally we

use a recently introduced contact area difference (CAD) score [30]

which quantifies the differences between physical contacts in the

models before and after refinement with respect to their native

structures.

GDT-TS
GDT-TS [27] is a global quality measure of the correct

positioning of backbone based on multiple superpositions of the

predicted and experimental structure. It counts the average

percentage of residues with Ca atom distance from the native

structure residues below 1, 2, 4, and 8 Å, respectively, after

optimal structure superposition. GDT-TS ranges from [0, 1] with

higher value indicating better accuracy.

RMSD
Similar to GDT-TS, RMSD [28] is a global measure of the

correct positioning of the Ca atoms. However, RMSD is based on

a single superposition lacking any kind of distance cutoffs. Hence,

RMSD and GDT-TS is weekly correlated. Furthermore, unlike

GDT-TS, a lower RMSD value indicates that the predicted

structure is close to its native state.

Table 2. List of server groups participating in CASP10 refinement category.

# Group # Group Namea Targets attempted Total submitted models First submitted modelb

1 006 MUFOLD-QA 22 110 22

2 028 YASARA 18 18 18

3 103 PconsM 2 10 2

4 108 PMS 27 135 27

5 124 PconsD 2 10 2

6 175 FRESS_server 27 135 27

7 179 Lenserver 2 10 2

8 198 chuo-fams-server 27 27 27

9 222 MULTICOM-CONSTRUCTc 27 135 27

10 238 chuo-repack-server 26 26 26

11 286 Mufold-MD 1 5 1

12 292 Pcons-net 2 10 2

13 424 MULTICOM-NOVEL 27 135 27

aGroup name in bold indicates the group has attempted more than 50% of refinement targets.
bModels submitted with a Model ID of one.
cCASP10 group name for i3Drefine.
doi:10.1371/journal.pone.0069648.t002
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GDC-SC
GDC-SC [2] has been used as a global quality metric for

sidechain positioning. Unlike GDT-TS, which is focused on Ca

atoms, GDC-SC use a single characteristic atom near the end of

each sidechain. Also, 10 different superpositions with different

weighting schemes are employed to calculate GDC-SC.

MolProbity
In order to evaluate the physical realism and the local errors, we

use MolProbity [29] – a single and composite score to measure

local model quality. The MolProbity score denotes the expected

resolution of the protein model with respect to standard

experimental structures and therefore, lower MolProbity score

indicates more physically realistic model.

SphereGrinder
We use SphereGrinder to measures the local environment

around each residue which was used in the refinement assessment

of CASP9 [10]. SphereGrinder is based on an all-atom RMSD fit

between the experimental and predicted structures using a sphere

constructed by considering the set of atoms within 6 Å of the Ca

atoms for each residue in experimental structure.

CAD-AA
CAD score [30] is a newly introduced quality metric which is

based on contact area difference between predicted and experi-

mental structure, thereby directly reflecting interactions within the

protein structure. The contact area is calculated based on a

protein structure tessellation approach [31] and normalized

between [0, 1] with higher value indicating better structure. We

use the all-atom version of the CAD score, namely, CAD-AA.

Normalizing and Overall Quality Score
Higher value of GDT-TS, GDC-SC, SphereGrinder and CAD-

AA scores indicate better models while lower values RMSD and

MolProbity scores represent better models. In order to effectively

compare the degree of refinement between different groups or

targets, a single overall quality score is essential. We use a robust

version of Z-score based on median absolute difference (MAD) of

the changes in quality of the models induced through refinement.

This is a slightly modified approach used in refinement assessment

during CASP9 [10].

The difference in the model quality is first calculated to get the

delta quality score for a given quality metric (e.g. GDT-TS).

dQ(r)~Q(r){Q(s) ð1Þ

where Q(r) and Q(s) denote the quality score for refined and

starting structures respectively corresponding to quality measure

Q.

For a given target, we calculate the MAD using:

MADdQ
~median(DdQ(r){median(dQ)D) ð2Þ

where median(dQ) denotes the median of the delta score for the

corresponding quality metric and |.| is the absolute value. The

robust Z-score is then calculated as:

Figure 1. Distribution of i3Drefine refinement for all submitted
structures. Distributions of change in quality scores after i3Drefine
refinement are shown for these metrics: (A) GDT-TS, (B) RMSD, (C) GDC-

SC, (D) MolProbity, (E) SphereGrinder and (F) CAD-AA. Regions shaded
in black indicate improvement over the starting model. The numeric
values are the percentage of times the structures were made better or
worse for each metric.
doi:10.1371/journal.pone.0069648.g001
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Zr,Q~
dQ(r){median(dQ)

1:486|MADdQ

ð3Þ

The factor 1.486 scales the MAD to be same as standard deviation

of a normal distribution.

Finally, a weighted average of Z-score is taken for all different

quality metrics to combine the results of all six scores into a single

score, called Q-score.

Qoverall,r~

5|Zr,GDT{TS{Zr,RMSDzZr,GDC{SCzZr,MPzZr,SpGrzZr,CAD{AA

10

ð4Þ

In this scoring scheme, GDT-TS is given a weight of 5, which

makes half of the overall score and other five metrics makes the

other half. Although this procedure is arbitrary, it emphasizes the

improvement in backbone positioning as judged by GDT-TS

score, a widely used metric by CASP assessors, compared to other

measures.

Results and Discussion

The fully automated i3Drefine software was first blindly tested

in CASP10 refinement experiment, 2012 with the group name

MULTICOM-CONSTRUCT (Server group 222). Since then, we

systematically evaluate its performance using global and local

quality metrics like GDT-TS, RMSD, GDC-SC, MolProbity,

SphereGrinder and CAD-score and perform comparative analysis

of i3Drefine against all the groups participating in CASP10

refinement category. Here, we first summarize the targets offered

for refinement during CASP10 refinement experiment along with

the measures of the initial quality. Secondly, we present the

automated server groups participating in CASP10 refinement

category and introduce a pseudo group called ‘‘Void’’ as a control.

Thirdly, we assess the overall degree of refinement produced by

i3Drefine in a strict blind mode. Fourthly, a comparison of

i3Drefine against the state-of-the-art refinement server methods

participating in CASP10 has been presented along with head-to-

head comparison of the scores and their statistical significance.

During CASP10, each predictor was asked to submit up to five

predictions while ranking submissions from best to worst. We,

therefore, perform one set of analysis using the first submitted

model, which is the best prediction as per the ranking from the

predictor. However, because predictors often fail to correctly rank

their submissions, we present a second set of analysis by selecting

the best prediction (as evaluated by our overall quality score) from

each group for each target. The comparison between the first and

the best predicted models by i3Drefine also reveals the advantages

of the iterative version of our refinement method (i3Drefine) over

the non-iterative version (3Drefine). Finally, we compare i3Drefine

with the top five non-server (human) methods and discuss the

added benefits of human predictors and the possibility of adopting

them in computational structure prediction pipelines.

Targets used for Refinement in CASP10
Table 1 summarizes the targets issued for refinement in

CASP10 and the measures of the initial quality of these targets.

The occasional ‘‘hints’’ provided by the organizers to focus on

certain segment(s) of the structures during refinement has also

been reported. These are the starting models for refinement and

were chosen from the top submissions during the structure

prediction category. These models, therefore, represent one of the

best predicted structures submitted by the community for each

target and intuitively, consistent refinement of these structures is a

nontrivial task.

Server Groups Participating in CASP10 Refinement
Category

A total of fifty groups participated in CASP10 refinement

experiment including both human and server predictors. Thirteen

groups took part as fully automated server predictors. The server

Figure 2. Distributions of score changes with respect to the quality of starting structures. Relationships between changes in quality
scores and the quality of the starting models are shown for these metrics: (A) GDT-TS, (B) RMSD, (C) GDC-SC, (D) MolProbity, (E) SphereGrinder and (F)
CAD-AA. The Black points indicate the actual data points while the contours are filled with colours that vary from blue for low density to red for high
density. The colour function has been scaled between 0 and 1 and the legends are shown on the right.
doi:10.1371/journal.pone.0069648.g002

Figure 3. Example of i3Drefine refinement for CASP10 target
TR705. (A) Structural superposition of initial model (grey) on native
structure (green). (B) Structural superposition of refined model using
i3Drefine (red) on native structure (green). The values of the quality
measures before and after refinement have been reported under the
models. The black dotted square highlights the region with prominent
structural improvements and a closer look of the change is shown in
the right.
doi:10.1371/journal.pone.0069648.g003
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predictors were given a three days deadline to submit the refined

structures to the prediction centre as opposed to a three weeks

deadline offered for the human predictors. In Table 2, we

summarize the server groups participating in CASP10 along with

the number of predictions submitted by each predictor. The

performance of fully automated i3Drefine method (group name

MULTICOM-CONSTRUCT) can be directly compared to these

methods on the CASP10 refinement targets. This would enable us

to assess the ability of i3Drefine protocol with state-of-the-art

automated refinement methods in a strict blind mode. Groups

attempting more that 50% of the targets have been highlighted in

bold in Table 2.

As a control, we created a pseudo group called ‘‘Void’’ group.

This group represents the starting model provided by the CASP

organizers for refinement. We judge the success and degree of

refinement with respect to the ‘Void’ group. Groups that perform

worse than Void group have on average degraded the quality of

starting structures rather than improving it.

Overall Performance of i3Drefine in CASP10 Blind
Refinement Experiment

Figure 1 shows the distribution of change in model quality

relative to the starting model as judged by the score difference in

six quality metrics for all submitted model by i3Drefine method for

all CASP10 refinement targets. Positive changes in GDT-TS,

GDC-SC, SphereGrinder and CAD-AA scores represent refine-

ment success whereas negative changes in RMSD and MolProbity

scores indicate a failure in refinement. In Figure 1, the regions

shaded in black indicate improvement in the corresponding

quality measure with the numbers above these regions represent-

ing the percentage of refinement successes while the regions

without shading indicate degradation in the model quality and the

numbers specify the percentage of failures in refinement. While for

most metrics, the number of improvements significantly outnum-

bered number of failures, the improvement is typically modest in

nature. For example, refinement successes outnumber failures by

more than a factor of three in global position of the backbone

atoms as judged by GDT-TS and RMSD scores and global quality

of sidechain positioning as measured by GDC-SC score. While

most of DGDT-TS, DRMSD and DGDC-SC scores lie within ,
64%, the distributions are skewed towards improvement. Highly

consistent improvement has also been observed in the local quality

measures like DSphereGrinder and DCAD-AA scores and the

distributions are highly skewed towards success with over 90%

success. However, for MolProbity score, there are more failures

than success and the distribution is marginally skewed towards

failure. The distributions in Figure 1 are multimodal, which

Figure 4. Distribution and degree of refinement for top server groups based on first submitted model. Distribution and degree of score
changes relative to starting models for the 8 groups based on the first submitted models. The X-axis shows changes in scores with respect to the
starting model. Regions shaded in black indicate improvement over the starting model. The numeric values are the percentage of times the
structures were made better or worse than the starting model for each metric. The groups are ordered by the sum of overall quality score. * CASP10
group name for i3Drefine is MULTICOM-CONSTRUCT.
doi:10.1371/journal.pone.0069648.g004

Table 3. Cumulative improvement relative to starting model for the top server groups in CASP10 refinement experiment.*

Selection Group Name DGDT-TS DRMSD (Å) DGDC-SC DMPa DSGb DCAD-AA Q_overallc

First Model MULTICOM-CONSTRUCTd 0.036 20.165 0.120 3.93 0.096 0.120 12.69

Void 0.000 0.000 0.000 0.00 0.000 0.000 10.91

chuo-fams-server 0.003 0.074 20.191 5.05 20.803 20.060 5.71

YASARA 20.372 22.138 0.188 227.75 20.800 0.270 2.79

MULTICOM-NOVEL 20.490 27.479 20.294 11.72 20.253 20.090 20.97

PMS 20.534 9.606 0.097 9.73 20.624 20.010 25.97

chuo-repack-server 20.364 1.939 20.523 13.86 20.439 20.430 28.27

FRESS_server 21.574 10.155 21.102 32.79 21.512 20.930 239.53

MUFOLD-QA 22.194 140.087 21.604 20.37 23.121 21.340 2109.18

Best Model MULTICOM-CONSTRUCTd 0.068 20.224 0.151 4.25 0.124 0.140 13.96

PMS 20.162 22.091 0.382 8.29 20.025 0.170 13.72

Void 0.000 0.000 0.000 0.00 0.000 0.000 10.91

MULTICOM-NOVEL 20.220 14.010 20.105 9.79 20.059 0.010 7.49

chuo-fams-server 0.003 0.074 20.191 5.05 20.803 20.060 5.71

YASARA 20.372 22.138 0.188 227.75 20.800 0.270 2.79

chuo-repack-server 20.364 1.939 20.523 13.86 20.439 20.430 28.27

FRESS_server 20.926 4.787 20.648 30.10 20.865 20.520 221.75

MUFOLD-QA 21.968 31.832 21.289 13.17 22.436 20.980 262.30

*The values for all quality metrics represent the cumulative change relative to the starting structures for all targets.
aCumulative change in MolProbity score.
bCumulative change in SphereGrinder score.
cSum of overall quality score for all targets.
dCASP10 group name for i3Drefine.
doi:10.1371/journal.pone.0069648.t003
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indicate that not all targets are equally easy to refine and the

degree of refinement vary with the difficulty of targets.

In Fig. 2, we examine the relationship between the starting score

of any of the quality measures and the ability of i3Drefine to

improve the starting model. Although, it is difficult to infer a

conclusive correlation between them with only 27 targets, some

interesting trends can be observed. For example, most of the

starting structures have quite accurate backbone positioning with

only 7 out of 27 targets have RMSD score more than 4Å and

GDT-TS less than 0.7. For these moderate-accuracy targets,

i3Drefine always improves the backbone quality by increasing

GDT-TS score and reducing RMSD score. For the more accurate

starting structures with RMSD , 2Å, the RMSD distribution is

skewed towards improvement. However, there are approximately

as many improvements as failures in GDT-TS score for high-

accuracy targets (GDT-TS more than 0.8). The global quality of

sidechains, as measured by GDC-SC varies from 0.1 to 0.6

indicating that the starting structure set comprises a wide variety in

terms of accuracy of sidechain positioning, although most of the

targets are in the range of 0.3 to 0.5. Promisingly, i3Drefine

consistently improves the GDC-SC score irrespective of the quality

of starting structures. When the initial model has less accurate

local quality as measured by MolProbity (MolProbity score is more

than 2), we observe consistent improvement in MolProbity.

However, i3Drefine almost always increases MolProbity score

indicating degradation in local model quality when MolProbity

score is less than 2. For other local quality measures like

SphereGrinder and CAD-AA, we observe a modest but consistent

improvement in the model quality across all target difficulty. In

short, more consistent and simultaneous improvements both in

global and local quality measures have been observed for

moderately accurate targets than high-accuracy targets.

A representative example of refinement has been presented in

Fig. 3 for CASP10 refinement target TR705. i3Drefine refinement

results in GST-TS, GDC-SC, SphereGrinder and CAD-AA scores

to increase from 0.6458, 0.2211, 0.375 and 0.52 to 0.651, 0.2291,

0.3854 and 0.53 respectively. The RMSD and MolProbity score

decreases from 4.709 Å and 3.53 to 4.698 Å to 3.52 respectively.

Clearly, a modest yet consistent improvement in all quality

measures has been observed. More pronounced structural

improvement in terms of backbone positioning has been observed

around residue 58 where a disoriented strand region is rearranged

to a coil, thereby bringing the refined model closer to the native

state.

Comparison of i3Drefine with other Server Predictors
Participating in CASP10

We compare the performance of i3Drefine with the thirteen

server predictors participating in CASP10 refinement category

based on the first submitted model and the best submitted model

as judged by our overall quality score, Qoverall. It can be noticed

form Table 2 that some of the predictors attempted very few

Figure 5. Distribution and degree of refinement for top server groups based on best submitted model. Distribution and degree of score
changes relative to starting models for the 8 groups based on the best submitted models as judged by quality score for each target. The X-axis shows
changes in scores with respect to the starting model. Regions shaded in black indicate improvement over the starting model. The numeric values are
the percentage of times the structures were made better or worse than the starting model for each metric. The groups are ordered by the sum of
overall quality score. * CASP10 group name for i3Drefine is MULTICOM-CONSTRUCT.
doi:10.1371/journal.pone.0069648.g005

Figure 6. Summary of the average score changes and their statistical significance for top server groups based on best submitted
model. Average score changes and their statistical significance relative to starting models for the 8 groups based on the best submitted models as
judged by quality score for each target. Each column shows one of the metrics we used to evaluate performance. The scales are marked at 6 Average
Changes relative to the ‘Void’ group. For GDT-TS, GDC-SC, SphereGrinder and CAD-AA scores, positive changes indicate the quality of the model has
been improved by refinement whereas for RMSD and MolProbity, negative changes represent improvement. Black points are statistically
distinguishable from the ‘Void’ group; gray points are indistinguishable (Wilcoxon signed-rank test, P = 0.05). A chevron indicates that the
corresponding score is off the scale.
doi:10.1371/journal.pone.0069648.g006
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Figure 7. Summary of the average score changes and their statistical significance for top server groups based on best submitted
model. Average score changes and their statistical significance relative to starting models for the 8 groups based on the best submitted models as
judged by quality score for each target. Each column shows one of the metrics we used to evaluate performance. The scales are marked at 6 Average
Changes relative to the ‘Void’ group. For GDT-TS, GDC-SC, SphereGrinder and CAD-AA scores, positive changes indicate the quality of the model has
been improved by refinement whereas for RMSD and MolProbity, negative changes represent improvement. Black points are statistically
distinguishable from the Null group; gray points are indistinguishable (Wilcoxon signed-rank test, P = 0.05). A chevron indicates that the
corresponding score is off the scale.
doi:10.1371/journal.pone.0069648.g007

Table 4. p-values of score changes (Wilcoxon signed-rank test) relative to starting model for the top server groups in CASP10
refinement experiment.*

Selection Group Name PGDT-TS PRMSD (Å) PGDC-SC PMP
a PSG

b PCAD-AA

First Model MULTICOM-CONSTRUCTc 0.206377 0.001270 0.000196 0.102297 0.035156 0.000977

chuo-fams-server 0.705321 0.002984 0.420913 0.557197 0.075062 1.000000

YASARA 0.001715 0.663197 0.338008 0.000232 0.029442 0.012940

MULTICOM-NOVEL 0.101554 0.800817 0.075386 0.107752 0.982396 0.629059

PMS 0.000590 0.046136 0.782327 0.062602 0.248658 0.930290

chuo-repack-server 0.000123 0.002466 0.000764 0.000526 0.006444 0.000011

FRESS_server 0.000024 0.005522 0.000618 6.64*1026 0.004414 0.000017

MUFOLD-QA 0.000021 0.000392 0.000447 0.001226 0.000214 0.000122

Best Model MULTICOM-CONSTRUCTc 0.011201 0.004240 0.000108 0.178480 0.004181 0.000488

PMS 0.312444 0.367622 0.121221 0.107443 0.763939 0.115318

MULTICOM-NOVEL 0.555264 0.009355 0.485959 0.033486 0.146779 0.803619

chuo-fams-server 0.705321 0.002984 0.420913 0.557197 0.075062 1.000000

YASARA 0.001715 0.663197 0.338008 0.000232 0.029442 0.012940

chuo-repack-server 0.000123 0.004268 0.000764 0.000526 0.006444 0.000011

FRESS_server 0.001396 0.085835 0.014257 7.44*1026 0.015651 0.000402

MUFOLD-QA 0.000112 0.004061 0.004277 0.027268 0.003859 0.001248

*Numbers in bold indicates statistically significant positive results at P = 0.05.
aP-values for change in MolProbity score.
bP-values for change in SphereGrinder score.
cCASP10 group name for i3Drefine.
doi:10.1371/journal.pone.0069648.t004
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Figure 8. Quartile plots of score changes with respect to the quality of starting structures for top human predictors and i3Drefine.
Quartile plots of score changes relative to starting models for 5 human predictors and i3Drefine are shown for these metrics: (A) GDT-TS, (B) RMSD, (C)
GDC-SC, (D) MolProbity, (E) SphereGrinder and (F) CAD-AA. The points outside the boxes indicate the outliers.
doi:10.1371/journal.pone.0069648.g008
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targets and only eight groups (including i3Drefine) submitted

prediction for more than 50% of targets (i.e. more than 13 targets).

Although we have taken into account all the submitted models by

every group while performing our analysis, we choose to focus on

these eight predictors for a fair comparison between them. To

compare predictors with a single score, we have computed the sum

of Qoverall for each predictor and ranked groups based on that.

Upper part of Table 3 summarizes cumulative change in all the

quality measures with respect to the starting structures (represent-

ed as ‘Void’ group) for eight server predictors. The groups have

been ordered based on the cumulative Qoverall score for all the

submitted targets. The results demonstrate except MolProbity

score, i3Drefine improves all the quality measures in terms of

cumulative change with respect to the starting structures. In

Figure 4, we present the distributions of changes in model quality

relative to the starting models for the eight server predictors as

measured by six quality metrics. Similar to Figure 1, the regions

shaded in black in Figure 4 correspond to refinement successes

while the regions without shading indicate failures in refinement.

We also report the percentage of successes and failures for each

quality measures. The distributions for each predictor are

multimodal due to variations in the quality of the starting models.

Also, the degree of change in the quality score varies between

predictors and type of quality metric. We, therefore, choose to

maximally cover the range of score changes for each predictor and

each quality measure. Some interesting variations between groups

can be observed and often a trade-off exists between the extent of

improvement and consistency. For example, groups like i3Drefine

and chuo-fams-server perform modest but consistent improvement

in almost all the scores. While the delta scores for these predictors

usually lie within , 64%, the distributions are skewed towards

improvement. On the other hand, there exist more adventurous

groups like YASARA and MULTICOM_NOVEL capable of

performing larger improvements at the cost of consistency. Also,

different server predictors excel at different aspects of refinement.

For instance, i3Drefine improves GDT-TS and RMSD, GDC-SC,

SphereGrinder and CAD-AA scores more frequently than any

other groups. The ability of YASARA to improve the GDC-SC,

MolProbity and CAD-AA scores in terms of degree of change and

consistency is quite impressive. The most striking feature we

observe is the inability of predictors to improve the backbone

positioning as judged by GDT-TS and RMSD scores. i3Drefine is

the only server method able to perform consistent improvement in

backbone quality as measured by a simultaneous improvement in

DGDT-TS and DRMSD scores. Clearly, most of the predictors

are better at improving general physicality of the starting

structures than at improving the backbone positioning.

Because the predictors often face difficulty in correctly ranking

their submissions, the first models are often not the best submitted

one. To overcome this challenge, we have recalculated the results

by examining only the best structure for each group (as judged by

Qoverall) for each target. In case the groups (like YASARA, chuo-

fams-server and chuo-repack-server) submitted only one model as

prediction, we are left with the only choice to select that as best

prediction. When judged by their best model for each target, there

are two groups that perform better than the ‘Void’ pseudo group

as shown in the lower part of Table 3. Once again, i3Drefine

outperform all the server predictors with a consistent improvement

in all the quality measures except MolProbity as evaluated by

cumulative change in scores. The only other group that perform

better than ‘Void’ is PMS with an impressive ability to improve the

overall RMSD, GDC-SC and CAD-AA scores. We observe a

consistent improvement in cumulative scores changes for the

predictors submitting multiple predictions when the best models

are selected from each group. The distributions of changes in

model quality relative to the starting models are captured in

Figure 5 with the best submitted model for each predictor as

judged by six quality metrics. Once more, we see a clear trade-off

between consistency and degree of refinement and different

predictors performing well at different aspects of refinement. It can

be observed from Figure 5, that i3Drefine improves GDT-TS and

RMSD, GDC-SC, SphereGrinder and CAD-AA scores more

frequently than any other groups, indicating its ability for a

consistent improvement. The changes are, however, modest in

nature. Although the group PMS has an impressive cumulative

DRMSD score as shown in Table 3, Figure 5 reveals that changes

in RMSD score is not consistent for this predictors. The overall

RMSD is improved primarily due to large changes made in three

targets (TR671, TR720 and TR722) and not because of

consistency. When the best models are considered, MULTI-

COM-NOVEL has been seen to have notable ability to improve

backbone positioning as measured by GDT-TS and RMSD scores

by performing a consistent and often large improvement. Apart

from i3Drefine, MULTICOM-NOVEL is the only other predictor

able to achieve a consistent and simultaneous improvement in

DGDT-TS and DRMSD scores. YASARA group is shown to have

promising ability to consistently improve MolProbity score and

often with a large degree. In short, if we set aside the difficulty of

the predictors to correctly rank their submissions and instead focus

on the best structures from each group, we see more successes in

refinement.

Overall, i3Drefine method has shown promising ability for a

steady improvement in nearly all quality measures both in terms of

first or best submitted predictions. The ability of i3Drefine to

consistently improve GDT-TS and RMSD scores, which appear

to be the most difficult metrics to improve consistently, is also

encouraging.

Head-to-head Comparison of Server Predictors and their
Statistical Significance

Figure 6 shows the head-to-head comparison in the quality

metrics for eight server predictors considering the first model.

Upper part of Table 4 summarizes the p-values in Wilcoxon

signed-rank test with null hypothesis that the refined models are

same as the starting structures for eight server predictors. At 5%

confidence level, i3Drefine performs statistically significant

improvements in RMSD, GDC-SC, MolProbity and CAD-AA

scores. The only other group with a statistically significant positive

result in for at least one score is YASARA improving MolProbity

score significantly. The results remain largely unaffected when

judged by the best model for each target. In Figure 7, we present

the results for eight server groups considering the overall best

models for each target, whose p-values of Wilcoxon signed-rank

test have been shown in the lower part of Table 4. With the best

overall model, i3Drefine performs statistically significant positive

result in all quality measures except MolProbity at 5% confidence

level. Strikingly, the rest of the server predictors are either

indistinguishable from or worse than the ‘Void’ group although

the magnitude of average change in scores differs for each method.

Given the small number of targets, a group must perform very

consistent improvement to be statistically significant with respect

to ‘Void’ group and promisingly, i3Drefine is the only server

method participating in CASP10 refinement experiment capable

to achieve statistically distinguishable improvement in most of the

quality metrics.

Comparison between first model and the best model of

i3Drefine shows that effectiveness of the iterative version of the

protocol against the non-iterative version (3Drefine). Except
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MolProbity, the iterative version enhances all the quality measures

in terms of cumulative improvement relative to starting models as

shown in Table 3. Also, the p-values of Wilcoxon signed-rank test

are lower for the best model compared to the first model in GDT-

TS, RMSD, GDC-SC, MolProbity and CAD-AA scores as

reported in Table 4. In short, the degree of refinement as well

as their statistical significance in the iterative version is, therefore,

more pronounced than the non-iterative version of the protocol.

Comparison of i3Drefine with Top Five Human Predictors
Participating in CASP10

Figure 8 shows the quartile plots of change in model quality

relative to the starting model in six quality metrics for all submitted

model by top five human predictors as per the official CASP10

results released during CASP10 meeting and i3Drefine for all

CASP10 refinement targets. The most obvious added benefit of

human predictors is the ability to perform large improvement in

model quality. Groups like FEIG, Seok, Mufold and FLOUDAS

seem to perform large changes in starting structures. Although the

degree of refinement in these adventurous refinement strategies

are much more pronounced than i3Drefine, these methods often

lack the ability to perform consistent improvement. Encouraging-

ly, the ability of i3Drefine to perform steady and consistent

improvement is noticeable even when it is compared with non-

server methods participating in CASP10 refinement experiment.

Majority of the times, i3Drefine improves all the quality scores

except MolProbity. KnowMIN protocol seems to be more

conservative refinement approach than other top-performing

human groups. Except SphereGrinder, KnowMIN group im-

proves in the other quality metrics consistently. Among the top-

performing human predictors, FEIG group is particularly note-

worthy in its ability to improve the backbone positioning as

measured by GDT-TS score accompanied by enhancement in

local quality measures like MolProbity and CAD-AA. This is

possibly achieved through a broader sampling around the starting

model. It has to be noted, however, that the human predictors

were given three weeks deadline to submit the refined structures to

the prediction centre as opposed to three days deadline offered for

the server methods and there might be significant human

intervention involved in the non-server prediction primarily

because of the relaxed submission window. A server group like

MULTICOM-CONSTRUCT (i3Drefine), on the other hand, has

to be completely automated in order to meet the submission

deadline. It is, therefore, unfair to directly compare a server

method with human groups especially when the turnaround time

for a human predictor is not known. Nevertheless, the ability of

human predictors to perform larger improvement can advance the

field of protein structure refinement, thereby enhancing the

accuracy of contemporary computational protein structure pre-

diction methods provided these methods can be automated

providing the prediction within a reasonable amount of time. In

addition to being directly implemented in an automated server,

human predictors in the CASP experiments often generate

valuable insights and guidance for improving protein structure

refinement in general.

Conclusions
In this work, we present a computationally inexpensive and

reliable protocol for protein structure refinement, called i3Drefine

and systematically analyse its performance in a completely blind

mode on the targets issued for refinement category in recently

concluded CASP10 experiment based on a diverse set of quality

metrics. When compared with other state-of-the-art server

predictors participating in CASP10, i3Drefine is observed to

perform more consistently than other methods. Future directions

would be to explore the possibility of i3Drefine method to perform

larger improvement the quality measures by performing a broader

sampling around the starting model and possible amendments to

the composite force filed. The executable version of i3Drefine

software is freely available to the community providing open

access to an efficient refinement method. The low computational

cost and high accuracy of the i3Drefine protocol will allow this

consistent refinement method to be run on a genome scale or be

adopted as a final step in computational structure prediction

pipeline.
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10. MacCallum JL, Pérez A, Schnieders MJ, Hua L, Jacobson MP, et al. (2011)

Assessment of protein structure refinement in CASP9. Proteins: Structure,

Function, and Bioinformatics 79: 74–90.

11. Chen J, Brooks CL (2007) Can molecular dynamics simulations provide high-

resolution refinement of protein structure? Proteins: Structure, Function, and

Bioinformatics 67: 922–930.

12. Fan H, Mark AE (2009) Refinement of homology-based protein structures by

molecular dynamics simulation techniques. Protein Science 13: 211–220.

13. Ishitani R, Terada T, Shimizu K (2008) Refinement of comparative models of

protein structure by using multicanonical molecular dynamics simulations.

Molecular Simulation 34: 327–336.

14. Lee MR, Tsai J, Baker D, Kollman PA (2001) Molecular dynamics in the

endgame of protein structure prediction. Journal of molecular biology 313: 417–

430.

15. Misura K, Baker D (2005) Progress and challenges in high-resolution refinement

of protein structure models. Proteins: Structure, Function, and Bioinformatics

59: 15–29.

16. Sellers BD, Zhu K, Zhao S, Friesner RA, Jacobson MP (2008) Toward better

refinement of comparative models: predicting loops in inexact environments.

Proteins: Structure, Function, and Bioinformatics 72: 959–971.

Software for Protein Structure Refinement

PLOS ONE | www.plosone.org 14 July 2013 | Volume 8 | Issue 7 | e69648



17. Zhu J, Fan H, Periole X, Honig B, Mark AE (2008) Refining homology models

by combining replica-exchange molecular dynamics and statistical potentials.
Proteins: Structure, Function, and Bioinformatics 72: 1171–1188.

18. Jagielska A, Wroblewska L, Skolnick J (2008) Protein model refinement using an

optimized physics-based all-atom force field. Proceedings of the National
Academy of Sciences 105: 8268–8273.

19. Wroblewska L, Jagielska A, Skolnick J (2008) Development of a physics-based
force field for the scoring and refinement of protein models. Biophysical journal

94: 3227–3240.

20. Bhattacharya D, Cheng J (2012) 3Drefine: Consistent protein structure
refinement by optimizing hydrogen bonding network and atomic-level energy

minimization. Proteins: Structure, Function, and Bioinformatics.
21. Kalisman N, Levi A, Maximova T, Reshef D, Zafriri-Lynn S, et al. (2005)

MESHI: a new library of Java classes for molecular modeling. Bioinformatics 21:
3931–3932.

22. Liu DC, Nocedal J (1989) On the limited memory BFGS method for large scale

optimization. Mathematical programming 45: 503–528.
23. Levitt M, Hirshberg M, Sharon R, Daggett V (1995) Potential energy function

and parameters for simulations of the molecular dynamics of proteins and
nucleic acids in solution. Computer Physics Communications 91: 215–231.

24. Summa CM, Levitt M (2007) Near-native structure refinement using in vacuo

energy minimization. Proceedings of the National Academy of Sciences 104:
3177–3182.

25. Zhang J, Liang Y, Zhang Y (2011) Atomic-level protein structure refinement

using fragment-guided molecular dynamics conformation sampling. Structure

19: 1784–1795.

26. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern

recognition of hydrogen-bonded and geometrical features. Biopolymers 22:

2577–2637.

27. Zemla A (2003) LGA: a method for finding 3D similarities in protein structures.

Nucleic acids research 31: 3370–3374.

28. Kabsch W (1976) A solution for the best rotation to relate two sets of vectors.

Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and

General Crystallography 32: 922–923.

29. Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, et al. (2009)

MolProbity: all-atom structure validation for macromolecular crystallography.

Acta Crystallographica Section D: Biological Crystallography 66: 12–21.
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