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Abstract

Brain-derived neurotrophic factor (BDNF) modulates the pruning of synaptically silent axonal arbors. The Met allele of the
BDNF gene is associated with a reduction in the neurotrophin’s activity-dependent release. We used diffusion-weighted
imaging to construct structural brain networks for 36 healthy subjects with known BDNF genotypes. Through permutation
testing we discovered clear differences in connection strength between subjects carrying the Met allele and those
homozygotic for the Val allele. We trained a Gaussian process classifier capable of identifying the subjects’ allelic group with
86% accuracy and high predictive value. In Met carriers structural connectivity was greatly increased throughout the
forebrain, particularly in connections corresponding to the anterior and superior corona radiata as well as corticothalamic
and corticospinal projections from the sensorimotor, premotor, and prefrontal portions of the internal capsule.
Interhemispheric connectivity was also increased via the corpus callosum and anterior commissure, and extremely high
connectivity values were found between inferior medial frontal polar regions via the anterior forceps. We propose that the
decreased availability of BDNF leads to deficits in axonal maintenance in carriers of the Met allele, and that this produces
mesoscale changes in white matter architecture.
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Introduction

Secretion of brain-derived neurotrophic factor is essential for

synaptic plasticity in the central nervous system during neuro-

development [1], as well as in mature brains, in which it

promotes long-term potentiation and the formation of long-term

memory [2,3]. A common human non-synonymous single-

nucleotide polymorphism in the BDNF gene (Val66Met,

rs6265) decreases activity-dependent BDNF release in neurons

transfected with the human A allele (Met-BDNF) [4]. It is also

associated with variation in human memory [5,6], and with

several neurological and psychiatric disorders [7]. We reasoned

that the persistent differential activity-dependent BDNF release

implied by this polymorphism should also be associated with

differences in adult brain structure. Accordingly, the polymor-

phism affects the anatomy of the hippocampus and prefrontal

cortex [8]. In this study we examine structural connectivity in the

brains of normal human participants stratified according to

BDNF genotypic group.

Indeed, for any equivalent set of connections, there is substantial

variability in the density of cortical fibers between individuals of

the same species [9]. This variability is in part genetically

determined. Functional MRI in monozygotic and dizygotic twins

has shown that 60% or more of the inter-subject variance in

transmission efficiency of cortical networks can be attributed to

genetic effects [10]. However, the mechanisms by which this

genetic influence impacts human brain connectivity are not yet

determined. Comparison of groups by BDNF genotype may be

useful for assessing the impact of activity-dependent processes on

brain connectivity.

Here, we originally hypothesized that there would be decreased

structural connectivity in Met carriers corresponding to the

reduced availability of the neurotrophin. We examined a healthy

young population with diffusion-weighted MR imaging, recon-

structed their white matter tracts with probabilistic tractography,

and examined the effect of carrying the BDNF Met allele at the

connectome level. Contrary to our hypothesis, we found a marked

increase in connectivity strength as well as altered track topology

for Met carriers.

Results

Population
In our cohort (n = 134), the studied non-synonymous coding

single-nucleotide polymorphism (rs6265) was in Hardy-Weinberg

equilibrium (x2 = 3.25, p = 0.07) with genotypic frequency of 0.6

(G/G), 0.31 (G/A) and 0.09 (A/A). The final study population

comprised 36 healthy subjects aged 18–25. Fifteen (9 male) were

identified as carrying the Met allele. The remaining 21 (9 male)

were homozygotes for the Val allele and were referred to as the

Val/Val group. The groups did not vary significantly in IQ or age,
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nor did their scores differ for a battery of psychological tests

(Table S1 in File S1).

Network-based statistics
In our networks, with 1015 nodes and an average of 66,456

edges, we identified 387 connections in which the number of

connecting tracks was significantly greater in carriers of the Met

allele than in the Val homozygotes (p = 0.0122, permutation

testing). The relative connection strengths for these edges are

shown in Fig. 1a.

For Met carriers the strength at these edges was found to range

between 1.75 and 48 times their strength in Val/Val. Of these

edges, 41 (11%) were found to have between 75% and 200% more

tracks in Met carriers than in Val homozygotes. Met carriers had

200% to 400% more tracks in 123 (32%) of the edges, 400% to

900% more tracks in 104 edges (27%), and even greater factors in

the remaining 23 edges (6%). The affected edges were largely

central connections and were not short or uncommon fiber pathways.

Roughly one quarter (96) of the edges that were identified were

not present in any of the Val/Val subjects (i.e. the mean value in

Met carriers was significantly greater than the value of zero, found

in Val homozygotes). Fig. 1b shows the mean number of tracks

for the 96 edges that were only present in the Met carriers. The

connections unique to Met carriers appeared consistently across

the group. We did not find any edges with significantly lower

strength in Met carriers. The identified connectivity changes are

unlikely to represent false positives because of the stringent non-

parametric statistical method [11]. Moreover, the reported

differences were specific to the BDNF polymorphism; subjects

were also divided by gender (18 F, 18M), and by their adenosine

deaminase (ADA) genotype (17 GA, 19 GG), and no significant

results were obtained.

Global network metrics (graph density, number of connected

components, transitivity) showed no variation between groups.

Local nodal metrics (degree, clustering coefficient, number of

triangles, [closeness, betweenness, degree] centrality, highest k-

core number) were averaged for each participant and also did not

vary. Wiring cost and network efficiency, compared both for the

whole network as well as for only corticocortical connections, were

unaffected by BDNF genotype. The total number of tracks per

connectome, out of the generated 300,000 per subject, did not

differ. The lack of significant variation in any of the network

metrics is understandable because the total number of altered

edges (387) is less than 1% of the mean number of edges (66,456)

per network.

Classifier performance
The classifier was able to discriminate between Val homozy-

gotes and Met carriers with 86.1% global accuracy. The predictive

value for the Val/Val and Met carrier groups were 94.4%
(p = 0.001) and 77.8% (p = 0.003), respectively. In Figure 2 the

weights obtained by the classifier are visualized as edges in the

brain network. For the classifier trained to identify gender, the

global accuracy reached 63.9% (n.s.). Identifying the subjects’

adenosine deaminase (ADA) genotype was only possible with an

accuracy of 58.3% (n.s.).

Tractographic basis
Structural connectivity in Met allele carriers was found to be

higher throughout the forebrain (Figure 3). Large increases were

Figure 1. Significantly increased regional connectivity and topological changes in Met carriers. (a) Track count increase for each
connected edge in Met carriers (n = 15) versus Val/Val subjects (n = 21). (b) Region-to-region track pathways that are present only in the Met carriers.
doi:10.1371/journal.pone.0069290.g001
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found in connections corresponding to the anterior and superior

corona radiata, including the corticothalamic and corticospinal

projections from the sensorimotor, premotor, and prefrontal

portions of the internal capsule. General interhemispheric

connectivity was increased via the corpus callosum and anterior

commissure. Extremely high connectivity values were found

between inferior medial frontal polar regions via the anterior

forceps. The Met carriers also presented novel connections within

the cingulum, corpus callosum, and anterior forceps, which were

not found in the Val homozygotes.

Discussion

Using high-resolution connectome mapping, we observe

significant differences in structural brain connectivity between

samples of normal young healthy human volunteers recruited

based on the Met allele of the BDNF gene. These differences

appear to involve specific fiber tracts; although widespread, they

do not modify connectome parameters computed over the whole

brain. They also appear specific to this allele; no such difference

could be found for the polymorphism in the adenosine

deaminase gene, or even for gender. We further demonstrate

that this structural information can be used, with a reasonably

high accuracy, to identify the BDNF genotype of an individual

from his structural brain wiring.

In many regions the number of connecting tracks in Met

carriers is increased by a factor of 3 or more. These are substantial

changes at a mesoscopic anatomical level that are in line with

previous findings by other groups. One large study examined

fractional anisotropy (FA) – a measure of the restrictedness of

random motion in water molecules – in 455 subjects and reported

higher values, in some areas by up to 15%, in Met carriers [12]. A

larger number of fibers oriented in the same direction would

necessarily increase local anisotropy. Our findings confirm and

extend their findings by specifying the nature and topology of these

differences. It is not white matter integrity that is altered between

Met carriers and Val homozygotes, but rather the strength and

architecture of their white matter tracts. The connections with

increased strength in Met carriers predominantly involve the

thalamus and brainstem, the sensorimotor areas of parietal and

frontal cortex, and the ventral medial prefrontal cortex. The

occipital, posterior parietal, and temporal areas also appear to

differ between allelic groups to a lesser extent.

It must be stated that the results obtained here are dependent on

the regional parcellation of the structural brain images. Previous

studies have shown that the choice of region size and number

greatly impacts the resulting network metrics [13,14]. In this work

we chose to use a previously published and open-source

parcellation scheme that depends on automated atlas-based

segmentation [14–17].

Intriguingly, these anatomical changes do not translate into

improved performance in either of our populations. Indeed, by

design, our samples were matched for various demographic

variables including IQ, age, and education level. One possible

explanation for this phenomenon is that the increased connection

strengths are due to redundant connections that are not essential

to sustain the speed or efficiency of information processing.

The mechanisms causing these alterations cannot be derived

from the current data. However, in addition to its involvement in

long-term potentiation and synaptic plasticity [2], BDNF has also

been implicated in axonal pruning and maintenance. BDNF is

released from stimulated ‘‘winning’’ neurites and binds to the

p75NTR receptor on nearby ‘‘losing’’ terminals, triggering the

elimination of synaptically silent axonal terminal arbors [18,19]. It

is tempting to suggest that the reduction in activity-dependent

BDNF secretion accounts for the observed changes in white matter

architecture. If indeed silent axons are relatively less likely to be

pruned due to reduced BDNF secretion in Met carriers, brain

connectivity might eventually be less profoundly shaped by

experience than in homozygous Val individuals, without any

conspicuous behavioral consequences.

In keeping with this hypothesis, brain maturation from

childhood to adolescence is a nonlinear regionally selective

process [20]. Gray matter loss is abundant, as is axonal

myelination, and both continue until early adulthood. Consistent

with our findings, grey matter volume in adults was shown to be

lower in Met carriers in both the lateral frontal cortices and

hippocampi [8]. Moreover, these differences were deemed

independent of age (18 to 60) and gender, which suggests that

the morphological changes are occurring prior to adulthood. It is

possible that the increase we identify in connecting tracks is a

result of deficits in axonal maintenance during adolescence, a key

period of synaptic revision. When tested at age 11, children in a

longitudinal study showed no differences in verbal reasoning that

could be associated with their BDNF genotype. When the same

cohort was tested again, the elderly Met homozygotes outper-

formed heterozygotes as well as their homozygous Val counter-

parts in both verbal and non-verbal reasoning [21]. It has also

been reported that Met carriers show enhanced task-switching

abilities during old age [22]. These convergent findings support

the idea that the Met allele protects against age-related

detriments in brain function, possibly by providing redundant

or degenerate connectivity.

Finally, although we matched our population samples with great

care and conducted conservative statistical analyses, our study is

not immune from random sampling biases. The absence of

significant results concerning ADA polymorphism and gender

indicate that the reported effects are specific to BDNF polymor-

phism. However, contradictory results have been reported about

the effect of BDNF polymorphism on cognitive performance and

disease susceptibility [23], potentially caused by genetic interac-

Figure 2. Classifier weight distribution. The weights obtained by
the classifier have been plotted as network edges in order to show their
spatial distribution. The thresholding procedure removed 99.75% of the
edges for clarity. The remaining connections represent 21.69% of the
absolute weight.
doi:10.1371/journal.pone.0069290.g002
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tions and global haplotypic diversity [24]. It is important to note

that the Val66Met polymorphism has a wide variation in

prevalence worldwide. Its frequency ranges from 0.55% in Sub-

Saharan Africa, to 19.9% in Europe, and 43.6% in Asia [24].

Studies including subjects from different populations should take

care to consider their genetic backgrounds.

Future research should confirm these findings in healthy popu-

lations of both young and old subjects, as well as during the deve-

lopment period from childhood to adolescence. Longitudinal

neuroimaging data would clarify BDNF’s effect on brain develop-

ment and connectivity, and larger populations may help identify

whether these changes can be fully attributed to the Met allele. It also

remains to be seen if these alterations are more or less profound in

Met homozygotes or in subjects with the Val66Met polymorphism.

The prevalence of the Met allele [24,25] suggests that it confers some

evolutionary advantages. It may be that these advantages, developed

during preadolescence, are only manifested in old age.

Methods

Ethics Statement
Volunteers were recruited through advertisement on the

University intranet. They gave their written informed consent

to participate in the study, which was approved by the Ethics

Committee of the Faculty of Medicine at the University of Liège.

Population
Participants were young (18–25 years old), healthy, and lean

(Body Mass Index v26). They were all right-handed, as

determined by the Edinburgh Inventory [26]. None complained

about sleep disturbances, and this was reflected by the Pittsburgh

Sleep Quality Index (PSQI score v6) [27]. Extreme chronotypes,

according to the Horne and Ostberg morningness-eveningness

questionnaire, were excluded (scores v31 or w69) [28]. Their

sleep midpoint on free days was required to be between 3 and 5.99

as indicated by the Munich Chronotype Questionnaire [29]. They

all scored in the normal range (0–9) on the Epworth Sleepiness

Scale [30]. The absence of medical, traumatic, psychiatric, and

sleep disorders was established through a semi-structured interview.

All participants had normal scores on the 21-item Beck Anxiety

Inventory (score v11) and the 21-item Beck Depression

Inventory-II (score v14) [31,32]. They were non-smokers and

moderate caffeine and alcohol consumers. None were on

medication other than oral contraceptives. No caffeine was

allowed during the experiment.

Volunteers complying with these criteria were invited to

perform Raven’s Progressive Matrices and a blood sample was

obtained for BDNF genotyping [33]. Participants were eventually

selected based on their BDNF genotype. Allelic groups were

formed with participants that were matched according to gender,

age, education level, chronotype, PSQI score and IQ (Table S1
in File S1). Subjects received financial compensation for their

blood test and participation in the study.

Genotyping
Genomic DNA was extracted from blood samples using a

MagNA Pure LC Instrument. The DNA sequence of interest was

amplified by Polymerase Chain Reaction in a final volume of

50 ml containing 0.6 mM of each primer (Thermo Scientific,

Germany), 0.5 ml Faststart Taq DNA Polymerase (Roche

Diagnostics, Germany), 0.8 mM of each deoxynucleotide tri-

phosphate (Roche Diagnostics Germany) and 20 ng of genomic

DNA. After 10 min of denaturation at 95uC, samples underwent

35 cycles consisting of denaturation (95uC, 30 sec), annealing

(60uC, 40 sec), and extension (72uC, 30 sec), followed by a final

extension of 7 min at 72uC. The amplified DNA product was

then subjected to pyrosequencing (Pyromark Q96 Vacuum

Workstation, PSQ 96MA, Pyromark Gold Q96 Reagents,

Qiagen, Germany). The sequences of the primers are available

upon request.

Data Acquisition
Data was acquired on a 3 T head-only scanner (Magnetom

Allegra, Siemens Medical Solutions, Erlangen, Germany) operated

with the standard transmit-receive quadrature head coil. A high-

resolution T1-weighted image was acquired for each subject (3D

modified driven equilibrium Fourier transform, repetition time

= 7.92 ms, echo time = 2.4 ms, inversion time = 910 ms, flip

angle = 15u, field of view = 25662246176 mm3, 1 mm isotropic

spatial resolution). Seven unweighted (b = 0) volumes were

acquired followed by a set of diffusion-weighted (b = 1000) images

using 61 non-collinear directional gradients.

Processing & Analysis
The processing workflow was developed in Python and

imports modules from the Nipype project [34]. The pipelines

used for both single subjects and groups have been detailed as

part of the online Nipype documentation in order to improve

transparency and promote reproducibility. Every piece of

software (CMTK, ConnectomeViewer, Dipy, Freesurfer, FSL,

Nipype, Nibabel, MRtrix) used to process data in this paper is

currently operating under an open-source license. The process

began by segmenting the structural MR images using the

automated labeling of Freesurfer [15]. Segmented structural

images were then further parcellated using the Lausanne2008

atlas for a total of 1015 regions of interest (ROIs) [14]. Diffusion-

weighted images were corrected for image distortions arising

from eddy currents using linear coregistration functions from the

FMRIB Software Library (FSL) [35]. Fractional anisotropy maps

were generated, and a small number of single-fiber (high FA)

voxels were used to estimate the spherical harmonic coefficients

of the response function from the diffusion-weighted images

[36,37]. Using non-negativity constrained spherical deconvolu-

tion, fiber orientation distribution (FOD) functions were obtained

at each voxel. For our dataset with 61 directions, we used the

maximum allowable harmonic order of 8 for both the response

estimation and spherical deconvolution steps. Probabilistic

tractography was performed throughout the whole brain using

seeds from subject-specific white-matter masks and a predefined

number of tracts. Fiber tracking settings were as follows: number

of tracks = 300,000, FA/FOD amplitude cutoff for terminating

tracks = 0.1, minimum track length = 10 mm, maximum track

length = 200 mm, minimum radius of curvature = 1 mm,

tracking algorithm step size = 0.2 mm. Using tools from Dipy

(Diffusion in Python, http://nipy.sourceforge.net/dipy/), the

tracks were affine-transformed into the subject’s structural space.

This procedure circumvents the common problem of having to

downsample ROI image files – defined in structural space – so

Figure 3. Connecting tracks in Met carriers. The average number of tracks connecting two regions (i.e. the edge weight) in Met carriers was
found to range from 1.75 to 48x the value found in the Val/Val group. The range was so broad that it had to be analyzed in separate stages. Fibers
shown are filtered from a single Met carrier.
doi:10.1371/journal.pone.0069290.g003
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that they can be used in diffusion space for connectivity

mapping, and therefore leads to more accurate connectomes.

Connectome mapping was performed by considering every

contact point between each tract and the outlined regions of

interest. Unlike in some past papers (e.g. [14,16]) which

considered only fiber start and endpoints, we incremented our

connectivity matrix every time a single fiber traversed between

any two regions. This leads to a far denser network than we have

seen before, presumably with more accurate network properties.

The number of tracked fibers which remained in each subject’s

connectome was also recorded.

This method of connection mapping may need further

optimisation, however, as it can potentially be linking gray matter

cortical regions through unreliably tracked fibers. This is something

that may be avoidable by placing limits on the propagation

parameters, or with anatomically or otherwise constrained tracto-

graphy approaches [38,39]. The benefits and drawbacks of different

mapping techniques should be explored by future studies.

Numerous network metrics were obtained for each connectome

and compared at the group level. At the nodal level we calculated

the degree, clustering coefficient, and number of triangles, as well

as three measures of centrality (closeness, betweenness, degree),

and the highest k (i.e. degree) value for each k-core the node is

encompassed by. For the network as a whole we computed the

average shortest path length (i.e. the inverse of efficiency), the

wiring cost (using Euclidean distance between nodes), the graph

density, the number of connected components, and the graph’s

transitivity [40]. For a complete description of all of these metrics,

the reader is referred to the Python package NetworkX [41]. Tract

and network visualization were performed in TrackVis (Ruopeng

Wang, Van J. Wedeen, TrackVis.org, Martinos Center for

Biomedical Imaging, Massachusetts General Hospital), MRtrix,

and ConnectomeViewer [42]. Figure S2 provides, for visualiza-

tion, the orientation distribution functions and generated fiber

tracts for a midbrain coronal slice of a single subject. In

Figure S3, the structural connectome and T1-weighted image

are shown for the same subject, and thresholded across two distinct

fiber-count ranges, so that both the core and the density of the

network can be seen.

Statistical Analysis
The Network-based Statistic (NBS) was used to identify

differences between BDNF allelic groups (Fig. S1a) [11]. For

each permutation the t-values at each edge were thresholded

above a value of 3. The supra-threshold components were then

compared against the generated null distribution. The null

distribution for each test was produced by permuting members

of each population 5000 times and estimating the maximal

component size.

A table describing a representative subject’s connection matrix

and edge weights is given in Table S2 in File S1. Since the

networks in this study have a high number of regions, and we have

performed whole-brain connectome mapping with a relatively low

number of fibers, a large proportion of our network’s edges have

low fiber counts. This may be problematic for statistical testing

with the NBS because these small-integer populations do not

provide wide ranges for edge weights and can result in inaccurate

t-values. In future, it may be prudent to generate a larger number

of streamlines, reduce the number of nodes in the network, or

restrict analysis to specific parts of the brain. Practically, it can be

computationally intensive to deal with large streamline datasets

and networks with high numbers of nodes. The trade-off between

resolution and resources is something that must be decided by the

researcher with the focus of the study in mind.

In Fig. S1b we projected the observed NBS component onto

the tractography of a single subject. This projection is, in effect, a

type of reverse connectome-mapping. Given the connectivity

network, we filtered the set of tracts to show only those that

traverse between regions with edges in the network. Global graph

metrics, psychological metrics, and the total number of fibers per

connectome, were compared directly between allelic groups via

Student’s t-test. Nodal measures were averaged for each subject

and analyzed in the same manner. All distributions were plotted as

combined histogram/kernel-density maps to evaluate gaussianity

prior to statistical analysis. Apart from the results given by the

network-based statistic, no significant differences were identified

between the two genotypic groups for any of the graph-level

measures. No significant differences were observed between allelic

groups in any of the psychological metrics.

Classification
The multivariate statistical properties of our data were studied

with a linear Gaussian Process Classification method [43] as

interfaced by PRoNTo (Pattern Recognition for Neuroimaging

Toolbox, http://www.mlnl.cs.ucl.ac.uk/pronto) [44]. The classi-

fier was given the fiber-count connection matrices for each subject

and their true classes (e.g. Met carrier, Female). No network

metrics, topology, or spatial information was provided to the

classifier. The accuracy and generalisability of the classification

were assessed with a leave-one-out cross-validation procedure: one

subject is left out at a time, the classifier is trained on the

remaining data, and the true and predicted (by the trained

classifier) classes of the left-out subject are compared. With this

linear kernel method weights were also obtained indicating the

contribution to the classification output (in favor of either

genotypic group) of each edge in the network. The same method

was employed to discriminate features related to the subjects’

gender and genotype for the ADA gene. For the purposes of

visualization, we thresholded the edges in Figure 2. The removed

portion of the classification weights can be found in Fig. S4.

Example calculations for the percent classification weight

represented by the remaining edges can be found in the

Supplementary Information in File S1.

Supporting Information

Figure S1 Edge weights are stronger in Met carriers. (a)

In the structural component pictured each inter-regional connec-

tion has a significantly higher number of tracks for Met carriers.

(b) The tracks shown are produced by filtering a single subject’s

tracts using the connections from the network shown in (a).

(TIF)

Figure S2 Tracks and Orientation Distribution Func-
tions for a single subject. Combined figure for visualizing the

results of the spherical deconvolution and probabilistic fiber

tractography steps in the processing pipeline.

(TIF)

Figure S3 Structural connectome for a single subject.
Structural connectivity network built from the Lausanne 2008

regional atlas – with each region displayed as a node – and a set of

300,000 fiber tracks. Colored edge weights represent the number

of tracks that provide any connection between any pair of regions.

The figure is divided into ranges of edge weights for optimal

visualization of the (a) high-valued structural core and the (b) low-

valued associative connections.

(TIF)
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Figure S4 Detailed dissection of the classification
weights. (a) The complement of Figure 2 from the main text.

This network details the edges that were filtered in the main text

figure, and shows 99.75% of the edges, which represent only 78%
of the total weight. (b) A set of very low contribution edges

between genotypic groups. These very low-valued edges are

difficult to interpret. (c) The highest valued edges that were

thresholded out of Figure 2 in the main text. A pattern of posterior

parietal and medial frontal connectivity can be inferred in the Met

carriers, but the abundance of edges is still complex to visualize.

(TIF)

File S1 Table S1– Psychological questionnaire results.
Values reflect mean 6 standard deviation. Table S2– Con-
nectome edge weights. This table details a single random (Val)

subject’s network edges. The vast majority of the edges had

weights below a fiber count of 100.

(PDF)
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