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Abstract

In second language acquisition research, the critical period hypothesis (CPH) holds that the function between learners’ age
and their susceptibility to second language input is non-linear. This paper revisits the indistinctness found in the literature
with regard to this hypothesis’s scope and predictions. Even when its scope is clearly delineated and its predictions are spelt
out, however, empirical studies–with few exceptions–use analytical (statistical) tools that are irrelevant with respect to the
predictions made. This paper discusses statistical fallacies common in CPH research and illustrates an alternative analytical
method (piecewise regression) by means of a reanalysis of two datasets from a 2010 paper purporting to have found cross-
linguistic evidence in favour of the CPH. This reanalysis reveals that the specific age patterns predicted by the CPH are not
cross-linguistically robust. Applying the principle of parsimony, it is concluded that age patterns in second language
acquisition are not governed by a critical period. To conclude, this paper highlights the role of confirmation bias in the
scientific enterprise and appeals to second language acquisition researchers to reanalyse their old datasets using the
methods discussed in this paper. The data and R commands that were used for the reanalysis are provided as
supplementary materials.
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Introduction

In the long term and in immersion contexts, second-language

(L2) learners starting acquisition early in life – and staying exposed

to input and thus learning over several years or decades –

undisputedly tend to outperform later learners. Apart from being

misinterpreted as an argument in favour of early foreign language

instruction, which takes place in wholly different circumstances,

this general age effect is also sometimes taken as evidence for a so-

called ‘critical period’ (CP) for second-language acquisition (SLA).

Derived from biology, the CP concept was famously introduced

into the field of language acquisition by Penfield and Roberts in

1959 [1] and was refined by Lenneberg eight years later [2].

Lenneberg argued that language acquisition needed to take place

between age two and puberty – a period which he believed to

coincide with the lateralisation process of the brain. (More recent

neurological research suggests that different time frames exist for

the lateralisation process of different language functions. Most,

however, close before puberty [3].) However, Lenneberg mostly

drew on findings pertaining to first language development in deaf

children, feral children or children with serious cognitive

impairments in order to back up his claims. For him, the critical

period concept was concerned with the implicit ‘‘automatic

acquisition’’ [2, p. 176] in immersion contexts and does not

preclude the possibility of learning a foreign language after

puberty, albeit with much conscious effort and typically less

success.

SLA research adopted the critical period hypothesis (CPH) and

applied it to second and foreign language learning, resulting in a

host of studies. In its most general version, the CPH for SLA states

that the ‘susceptibility’ or ‘sensitivity’ to language input varies as a

function of age, with adult L2 learners being less susceptible to

input than child L2 learners. Importantly, the age–susceptibility

function is hypothesised to be non-linear. Moving beyond this

general version, we find that the CPH is conceptualised in a

multitude of ways [4]. This state of affairs requires scholars to

make explicit their theoretical stance and assumptions [5], but has

the obvious downside that critical findings risk being mitigated as

posing a problem to only one aspect of one particular

conceptualisation of the CPH, whereas other conceptualisations

remain unscathed. This overall vagueness concerns two areas in

particular, viz. the delineation of the CPH’s scope and the

formulation of testable predictions. Delineating the scope and

formulating falsifiable predictions are, needless to say, fundamen-

tal stages in the scientific evaluation of any hypothesis or theory,

but the lack of scholarly consensus on these points seems to be

particularly pronounced in the case of the CPH. This article

therefore first presents a brief overview of differing views on these

two stages. Then, once the scope of their CPH version has been

duly identified and empirical data have been collected using solid

methods, it is essential that researchers analyse the data patterns

soundly in order to assess the predictions made and that they draw

justifiable conclusions from the results. As I will argue in great

detail, however, the statistical analysis of data patterns as well as

their interpretation in CPH research – and this includes both critical

and supportive studies and overviews – leaves a great deal to be

desired. Reanalysing data from a recent CPH-supportive study, I
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illustrate some common statistical fallacies in CPH research and

demonstrate how one particular CPH prediction can be evaluated.

Delineating the scope of the critical period hypothesis
First, the age span for a putative critical period for language

acquisition has been delimited in different ways in the literature

[4]. Lenneberg’s critical period stretched from two years of age to

puberty (which he posits at about 14 years of age) [2], whereas

other scholars have drawn the cutoff point at 12, 15, 16 or

18 years of age [6]. Unlike Lenneberg, most researchers today do

not define a starting age for the critical period for language

learning. Some, however, consider the possibility of the critical

period (or a critical period for a specific language area, e.g.

phonology) ending much earlier than puberty (e.g. age 9 years [1],

or as early as 12 months in the case of phonology [7]).

Second, some vagueness remains as to the setting that is relevant

to the CPH. Does the critical period constrain implicit learning

processes only, i.e. only the untutored language acquisition in

immersion contexts or does it also apply to (at least partly)

instructed learning? Most researchers agree on the former [8], but

much research has included subjects who have had at least some

instruction in the L2.

Third, there is no consensus on what the scope of the CP is as far

as the areas of language that are concerned. Most researchers

agree that a CP is most likely to constrain the acquisition of

pronunciation and grammar and, consequently, these are the

areas primarily looked into in studies on the CPH [9]. Some

researchers have also tried to define distinguishable CPs for the

different language areas of phonetics, morphology and syntax and

even for lexis (see [10] for an overview).

Fourth and last, research into the CPH has focused on ‘ultimate

attainment’ (UA) or the ‘final’ state of L2 proficiency rather than on

the rate of learning. From research into the rate of acquisition (e.g.

[11–13]), it has become clear that the CPH cannot hold for the rate

variable. In fact, it has been observed that adult learners proceed

faster than child learners at the beginning stages of L2 acquisition.

Though theoretical reasons for excluding the rate can be posited

(the initial faster rate of learning in adults may be the result of

more conscious cognitive strategies rather than to less conscious

implicit learning, for instance), rate of learning might from a

different perspective also be considered an indicator of ‘suscepti-

bility’ or ‘sensitivity’ to language input. Nevertheless, contempo-

rary SLA scholars generally seem to concur that UA and not rate of

learning is the dependent variable of primary interest in CPH

research. These and further scope delineation problems relevant to

CPH research are discussed in more detail by, among others,

Birdsong [9], DeKeyser and Larson-Hall [14], Long [10] and

Muñoz and Singleton [6].

Formulating testable hypotheses
Once the relevant CPH’s scope has satisfactorily been identified,

clear and testable predictions need to be drawn from it. At this

stage, the lack of consensus on what the consequences or the actual

observable outcome of a CP would have to look like becomes

evident. As touched upon earlier, CPH research is interested in the

end state or ‘ultimate attainment’ (UA) in L2 acquisition because

this ‘‘determines the upper limits of L2 attainment’’ [9, p. 10]. The

range of possible ultimate attainment states thus helps researchers

to explore the potential maximum outcome of L2 proficiency

before and after the putative critical period.

One strong prediction made by some CPH exponents holds that

post-CP learners cannot reach native-like L2 competences.

Identifying a single native-like post-CP L2 learner would then

suffice to falsify all CPH s making this prediction. Assessing this

prediction is difficult, however, since it is not clear what exactly

constitutes sufficient nativelikeness, as illustrated by the discussion

on the actual nativelikeness of highly accomplished L2 speakers

[15,16]. Indeed, there exists a real danger that, in a quest to

vindicate the CPH, scholars set the bar for L2 learners to match

monolinguals increasingly higher – up to Swiftian extremes.

Furthermore, the usefulness of comparing the linguistic perfor-

mance in mono- and bilinguals has been called into question

[6,17,18]. Put simply, the linguistic repertoires of mono- and

bilinguals differ by definition and differences in the behavioural

outcome will necessarily be found, if only one digs deep enough.

A second strong prediction made by CPH proponents is that the

function linking age of acquisition and ultimate attainment will not

be linear throughout the whole lifespan. Before discussing how this

function would have to look like in order for it to constitute CPH-

consistent evidence, I point out that the ultimate attainment

variable can essentially be considered a cumulative measure

dependent on the actual variable of interest in CPH research, i.e.

susceptibility to language input, as well as on such other factors like

duration and intensity of learning (within and outside a putative

CP) and possibly a number of other influencing factors. To

elaborate, the behavioural outcome, i.e. ultimate attainment, can

be assumed to be integrative to the susceptibility function, as

Newport [19] correctly points out. Other things being equal,

ultimate attainment will therefore decrease as susceptibility

decreases. However, decreasing ultimate attainment levels in and

by themselves represent no compelling evidence in favour of a CPH.

The form of the integrative curve must therefore be predicted

clearly from the susceptibility function. Additionally, the age of

acquisition–ultimate attainment function can take just about any

form when other things are not equal, e.g. duration of learning

(Does learning last up until time of testing or only for a more or

less constant number of years or is it dependent on age itself?) or

intensity of learning (Do learners always learn at their maximum

Figure 1. Three possible critical period effects. The graphs are based on based on Figure 2 in [9].
doi:10.1371/journal.pone.0069172.g001
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PLOS ONE | www.plosone.org 2 July 2013 | Volume 8 | Issue 7 | e69172



susceptibility level or does this intensity vary as a function of age,

duration, present attainment and motivation?). The integral of the

susceptibility function could therefore be of virtually unlimited

complexity and its parameters could be adjusted to fit any age of

acquisition–ultimate attainment pattern. It seems therefore aston-

ishing that the distinction between level of sensitivity to language

input and level of ultimate attainment is rarely made in the

literature. Implicitly or explicitly [20], the two are more or less

equated and the same mathematical functions are expected to

describe the two variables if observed across a range of starting

ages of acquisition.

But even when the susceptibility and ultimate attainment

variables are equated, there remains controversy as to what

function linking age of onset of acquisition and ultimate

attainment would actually constitute evidence for a critical period.

Most scholars agree that not any kind of age effect constitutes such

evidence. More specifically, the age of acquisition–ultimate

attainment function would need to be different before and after

the end of the CP [9]. According to Birdsong [9], three basic

possible patterns proposed in the literature meet this condition.

These patterns are presented in Figure 1. The first pattern

describes a steep decline of the age of onset of acquisition (AOA)–

ultimate attainment (UA) function up to the end of the CP and a

practically non-existent age effect thereafter. Pattern 2 is an

‘‘unconventional, although often implicitly invoked’’ [9, p. 17]

Figure 2. Illustration of the difference between correlation coefficients and slopes. Relationships on the same row were generated by the
same underlying function (ŷy~15zx and ŷy~15z5x, respectively) but are characterised by different correlation coefficients (r~0:94 and r~0:59,
respectively). The inverse is true for relationships in the same column.
doi:10.1371/journal.pone.0069172.g002

Table 1. Descriptive statistics for the extracted data for the
North America and Israel studies.

Range Mean SD

North America AOA 5–71 32.54 18.01

GJT 104–198 150.76 27.32

Israel AOA 4–65 30.55 16.95

GJT 101–196 149.58 26.33

doi:10.1371/journal.pone.0069172.t001

Table 2. Correlation coefficients for the relationship between
AOA and GJT based on the extracted data for the North
America and Israel studies.

Overall Young Middle Old

North America 20.80 (76) 2069 (20) 20.45 (26) 20.27 (30)

Israel 20.79 (62) 20.46 (17) 20.37 (32) 20.54 (13)

Correlation coefficients are reported for the whole age range (‘Overall’) as well
as for AOA-defined subgroups (as defined by DK et al.). Figures between
brackets represent the number of participants in each cell.
doi:10.1371/journal.pone.0069172.t002
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notion of the CP function which contains a period of peak

attainment (or performance at ceiling), i.e. performance does not

vary as a function of age, which is often referred to as a ‘window of

opportunity’. This time span is followed by an unbounded decline

in UA depending on AOA. Pattern 3 includes characteristics of

patterns 1 and 2. At the beginning of the AOA range, performance

is at ceiling. The next segment is a downward slope in the age

function which ends when performance reaches its floor. Birdsong

points out that all of these patterns have been reported in the

literature. On closer inspection, however, he concludes that the

most convincing function describing these age effects is a simple

linear one. Hakuta et al. [21] sketch further theoretically possible

predictions of the CPH in which the mean performance drops

drastically and/or the slope of the AOA–UA proficiency function

changes at a certain point.

Although several patterns have been proposed in the literature,

it bears pointing out that the most common explicit prediction

corresponds to Birdsong’s first pattern, as exemplified by the

following crystal-clear statement by DeKeyser, one of the foremost

CPH proponents:

[A] strong negative correlation between age of acquisition and

ultimate attainment throughout the lifespan (or even from birth

Figure 3. Scatterplot of the AOA–GJT relationship in the North America study. The trend line is a non-parametric scatterplot smoother. The
scatterplot itself is a near-perfect replication of DK et al.’s Fig. 1.
doi:10.1371/journal.pone.0069172.g003

Figure 4. Scatterplot of the AOA–GJT relationship in the Israel study. The trend line is a non-parametric scatterplot smoother. The
scatterplot itself is a near-perfect replication of DK et al.’s Fig. 5.
doi:10.1371/journal.pone.0069172.g004

CPH in SLA: Statistical Critique and Reanalysis
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through middle age), the only age effect documented in many

earlier studies, is not evidence for a critical period…[T]he critical

period concept implies a break in the AoA–proficiency function,

i.e., an age (somewhat variable from individual to individual, of

course, and therefore an age range in the aggregate) after which

the decline of success rate in one or more areas of language is

much less pronounced and/or clearly due to different reasons. [22,

p. 445].

DeKeyser and before him among others Johnson and Newport

[23] thus conceptualise only one possible pattern which would

speak in favour of a critical period: a clear negative age effect

before the end of the critical period and a much weaker (if any)

negative correlation between age and ultimate attainment after it.

This ‘flattened slope’ prediction has the virtue of being much more

tangible than the ‘potential nativelikeness’ prediction: Testing it

does not necessarily require comparing the L2-learners to a native

control group and thus effectively comparing apples and oranges.

Rather, L2-learners with different AOAs can be compared amongst

themselves without the need to categorise them by means of a

native-speaker yardstick, the validity of which is inevitably going to

be controversial [15]. In what follows, I will concern myself solely

with the ‘flattened slope’ prediction, arguing that, despite its clarity

of formulation, CPH research has generally used analytical methods

that are irrelevant for the purposes of actually testing it.

Inferring non-linearities in critical period research: An
overview

In this section, I present a non-exhaustive overview of studies

that have either claimed to have found evidence relevant to the

‘flattened slope’ prediction or that have been cited by others in this

context. These studies can be split up in three broad and partially

overlapping categories. The first category consists of studies in

which statistical tools to compare means or proportions, e.g. t- and

x2-tests and ANOVAs, were used. Studies in which the correlation

coefficients of the AOA–UA relationship were compared between

younger and older arrivals make up the second category. Lastly,

studies in the third category used regression methods to address

the ‘flattened slope’ prediction. I will demonstrate that the analyses

used in the first two categories rest on statistical fallacies, rendering

them useless for the purposes of addressing the ‘flattened slope’

prediction. Regression models, I argue, present the only valid

alternative, provided they are fitted correctly and interpreted

judiciously.

Table 3. Linear regression models containing no breakpoints.

Intercept
± SE

Slope
± SE R2

F-test of
model fit

North
America

168.5062.42 21.2260.10 0.65 F(1.74) = 135.3,
P,0.001

Israel 164.0062.57 21.2360.12 0.63 F(1.60) = 100.4,
P,0.001

GJT is modelled as a function of AOA. For ease of comparison with the breakpoint
models, AOA was centred at 18 years.
doi:10.1371/journal.pone.0069172.t003

Table 4. Linear regression models containing breakpoints at AOA 18.

Intercept ± SE Slope ± SE (AOA #18) Slope ± SE (AOA .18) R2 F-test of model fit

North America 164.2463.35 22.4060.66 21.0760.13 0.66 F(2.73) = 71.4, P,0.001

Israel 165.0763.90 21.2160.62 21.2360.17 0.63 F(2.59) = 49.4, P,0.001

GJT is modelled as a function of AOA. Following Baayen [55, pp. 214–222], AOA was centred at 18 years.
doi:10.1371/journal.pone.0069172.t004

Figure 5. Regression lines for the North America data. Solid:
regression with breakpoint at AOA 18 (dashed lines represent its 95%
confidence interval); dot-dash: regression without breakpoint.
doi:10.1371/journal.pone.0069172.g005

Figure 6. Regression lines for the Israel data. Solid: regression
with breakpoint at AOA 18 (dashed lines represent its 95% confidence
interval); dot-dash (hardly visible due to near-complete overlap):
regression without breakpoint.
doi:10.1371/journal.pone.0069172.g006

CPH in SLA: Statistical Critique and Reanalysis
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Group mean or proportion comparisons. The first broad

category consists of studies in which the AOA continuum is

discretised into bins (e.g. AOA 3–7, 8–10, 11–15 and 17–39 years in

a study by Johnson and Newport [23]), whose UA scores or

nativelikeness ratings are subsequently compared together and

sometimes with those of native speakers using a series of t- or x2-

tests or an ANOVA. Inferences about discontinuities in the AOA–UA

function are then made on the basis of whether such comparisons

reach significance or not. (To prevent any misunderstandings, note

that the terms ‘discontinuity’ and ‘non-continuity’ are often used

in CPH research, even though the predicted patterns (see Figure 1)

do not contain discontinuities in the mathematical sense. In

mathematics, a discontinuity is a ‘jump’ in the function [24].) A

fairly recent paper by Abrahamsson and Hyltenstam [15] is a case

in point. The authors split up the AOA continuum into five bins

(AOA v1–5, 6–11, 12–17, 18–23 and 24–47 years), carried out an

ANOVA with pairwise post-hoc tests on nativelikeness ratings and

inferred the presence of a critical point in adolescence on the basis

thereof:

[T]he main differences can be found between the native group

and all other groups – including the earliest learner group – and

between the adolescence group and all other groups. However,

neither the difference between the two childhood groups nor the

one between the two adulthood groups reached significance,

which indicates that the major changes in eventual perceived

nativelikeness of L2 learners can be associated with adolescence.

[15, p. 270].

Similar group comparisons aimed at investigating the effect of

AOA on UA have been carried out by both CPH advocates and

sceptics (among whom Bialystok and Miller [25, pp. 136–139],

Birdsong and Molis [26, p. 240], Flege [27, pp. 120–121], Flege

et al. [28, pp. 85–86], Johnson [29, p. 229], Johnson and Newport

[23, p. 78], McDonald [30, pp. 408–410] and Patowski [31, pp.

456–458]). To be clear, not all of these authors drew direct

conclusions about the AOA–UA function on the basis of these groups

comparisons, but their group comparisons have been cited as

indicative of a CPH-consistent non-continuous age effect, as

exemplified by the following quote by DeKeyser [22]:

Where group comparisons are made, younger learners always

do significantly better than the older learners. The behavioral

evidence, then, suggests a non-continuous age effect with a ‘‘bend’’

in the AoA–proficiency function somewhere between ages 12 and

16. [22, p. 448].

The first problem with group comparisons like these and

drawing inferences on the basis thereof is that they require that a

continuous variable, AOA, be split up into discrete bins. More often

than not, the boundaries between these bins are drawn in an

arbitrary fashion, but what is more troublesome is the loss of

information and statistical power that such discretisation entails

(see [32] for the extreme case of dichotomisation). If we want to

find out more about the relationship between AOA and UA, why

throw away most of the AOA information and effectively reduce the

UA data to group means and the variance in those groups?

Second, I strongly suspect that the underlying assumption when

using t- and x2-tests and ANOVAs to infer the shape of the

underlying AOA–UA function is one of the gravest fallacies in all of

inferential statistics: the belief that non-significant test results

indicate that the group means or proportions are essentially

identical. To quote Schmidt, this notion is ‘‘the most devastating of

all to the research enterprise’’ [33, p. 126]. Yet, judging by the

snippet quoted above, Abrahamsson and Hyltenstam’s reasoning

seemed to be that the lack of a statistical difference between the

childhood groups and between the adulthood groups indicates that

these groups perform at roughly the same level, whereas the

presence of a statistical difference between the adolescence group

and all other groups indicates a steep drop in perceived

nativelikeness. Such reasoning ignores the issue that when the

default null hypothesis of no difference is adopted as or integrated

Figure 7. Deviances for regression models assuming breakpoints as a function of the position of the breakpoints.
doi:10.1371/journal.pone.0069172.g007

Figure 8. Regression lines for the North America data. Solid:
regression with breakpoint at AOA 16 (dashed lines represent its 95%
confidence interval); dot-dash: regression without breakpoint.
doi:10.1371/journal.pone.0069172.g008

CPH in SLA: Statistical Critique and Reanalysis
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into the research hypothesis, the statistical power of the tests, i.e.

the probability of finding a statistically significant difference when

the actual population means differ by a prespecified minimum

effect size, should be substantially higher than what tends to be the

case in the social sciences [34].

In order to illustrate the gravity of this problem, I computed the

power that Abrahamsson and Hyltenstam would actually have had

to detect a significant difference between their two childhood

groups (n1~53, n2~54) if the underlying population effect size

had, in fact, been medium-sized (d~0:50, see [35]). These power

computations were carried out with the pwr.t2n.test() function in

the pwr package for R[36]. (R[37] is an open source program and

programming language for statistical computing and can be

downloaded freely from http://www.r-project.org/. All add-on

packages used for the analyses in this paper can be installed from

within R, see the ‘supporting information’ section. For a highly

accessible introductory text to power analysis, see Cohen’s Power

primer [35].) It turned out that Abrahamsson and Hyltenstam’s

power was about 0.73 assuming a two-tailed t-test with a fixed at

0.05. While this is better than what is typically found in social

science papers [34], it still means that in 27% of cases, even a

medium-sized effect would have gone undetected. Since Abra-

hamsson and Hyltenstam used post-hoc tests that corrected the

individual a-levels downwards to maintain the familywise Type I

error rate, their actual power was even lower [38,39]. To clarify, I

am not arguing against maintaining the familywise a level; the

point is merely that these power computations are generous. In the

case of Johnson and Newport’s oft-cited study, which claimed that

participants with AOAs between 3 and 7 years (n~7) did not

behave differently from native speakers (n~23) and on that basis

surmised the presence of a non-continuity, this lack of power is

even more pronounced at a mere 0.20, assuming a medium-sized

effect size and a two-tailed test with a fixed at 0.05. This means

that in a whopping 80% of cases a medium-sized effect would have

gone undetected. Note that Sedlmeier and Gigerenzer [34] suggest

that researchers have a power level of 0.95 before they accept null

hypotheses, which is equivalent to the typical requirement of

needing a p-value lower than 0.05 before rejecting the null

hypothesis in favour of a non-null research hypothesis, but which

would require about 105 participants per group (assuming

d~0:50).

Thus, within an ‘orthodox’ frequentist framework, group mean

or proportion comparisons are fine for establishing that a

difference does likely exist between two groups (though subject to

a host of caveats, see [40–43] and many others), but using them to

infer that a difference does not exist is highly suspect. The only

reliable inference that they by themselves allow in CPH research is

that younger learners tend to outperform older learners in some

domains of language (e.g. pronunciation and syntax), which all

scholars implied in the debate essentially agree on. In sum,

inferring the precise shape of a bivariate relationship using t-tests,

ANOVAs or x2-tests is at the very least cumbersome and prone to

errors.

Comparison of correlation coefficients. The second

broad category, which is not mutually exclusive with the first

category, consists of studies that address the discontinuity

hypothesis by computing and comparing correlation coefficients

between AOA and UA for two or more AOA subgroups. In a sense,

this approach represents an improvement over group mean or

proportion comparisons as the AOA data are treated as a

continuous variable. Nevertheless, this approach, too, rests on a

fallacious assumption, namely that differences in correlation

coefficients are indicative of differences in slopes. We suspect that

the correlation-based approach dates back to Johnson and

Newport’s 1989 study [23], in which they split up their

participants into two AOA-defined groups and found that UA as

measured using a GJT correlated strongly and significantly in the

early arrivals (age 3–15, n~23, r~{0:87) but not in the older

arrivals (age 17–39, n~23, r~{0:16). Johnson and Newport took

this to suggest that ‘‘language learning ability slowly declines as the

human matures and plateaus at a low level after puberty’’ [23, p.

90].

Correlation-based inferences about slope discontinuities have

similarly explicitly been made by CPH advocates and skeptics alike,

e.g. Bialystok and Miller [25, pp. 136 and 140], DeKeyser and

colleagues [22,44] and Flege et al. [45, pp. 166 and 169]. Others

did not explicitly infer the presence or absence of slope differences

from the subset correlations they computed (among others

Birdsong and Molis [26], DeKeyser [8], Flege et al. [28] and

Johnson [29]), but their studies nevertheless featured in overviews

discussing discontinuities [14,22]. Indeed, the most recent

overview draws a strong conclusion about the validity of the CPH’s

‘flattened slope’ prediction on the basis of these subset correlations:

In those studies where the two groups are described separately,

the correlation is much higher for the younger than for the older

group, except in Birdsong and Molis (2001) [ = [26], JV], where

there was a ceiling effect for the younger group. This global

picture from more than a dozen studies provides support for the

non-continuity of the decline in the AoA–proficiency function,

which all researchers agree is a hallmark of a critical period

phenomenon. [22, p. 448].

Figure 9. Regression lines for the Israel data. Solid: regression
with breakpoint at AOA 6 (dashed lines represent its 95% confidence
interval); dot-dash (hardly visible due to near-complete overlap):
regression without breakpoint.
doi:10.1371/journal.pone.0069172.g009

Table 5. Regression model for the North America data
without a breakpoint at AOA 16.

Intercept ± SE Slope ± SE R2 F-test of model fit

170.9462.56 21.2260.10 0.65 F(1,74) = 135.3,
P,0.001

GJT is modelled as a function of AOA. AOA was centred at 16 years.
doi:10.1371/journal.pone.0069172.t005
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In Johnson and Newport’s specific case [23], their correlation-

based inference that UA levels off after puberty happened to be

largely correct: the GJT scores are more or less randomly

distributed around a near-horizontal trend line [26]. Ultimately,

however, it rests on the fallacy of confusing correlation coefficients

with slopes, which seriously calls into question conclusions such as

DeKeyser’s (cf. the quote above).

For clarity’s sake, let’s briefly review the difference between

correlation coefficients and slopes. The slope of a function is

defined as the increment with which and the direction in which the

value on the y-axis changes when the value on the x-axis is

increased by one increment. In a linear regression model of the

form ŷyi~azbxi, a is the value of ŷyi (i.e. the expected y-value

according to the model) when xi~0, i.e. the intercept. The

coefficient that x takes in this equation, b, represents the slope of

the regression function, i.e. it expresses how ŷy changes when x is

increased by one increment. In principle, b can take any value

between negative and positive infinity.

The Pearson correlation coefficient, r, on the other hand,

expresses the strength of the linear relationship between two

variables. It is bound between {1 (perfect negative relationship)

and 1 (perfect positive relationship). If r equals {1 or 1, a straight

line captures all the data points; the closer r comes to zero, the

farther from such a linear line the data points are scattered. In

simple linear functions, b and r are linked to each other in that b is

r times the ratio of the sample standard deviations of the y- and x-

variables: b~r
sy

sx

. Crucially, however, the relationships between

two pairs of variables can be characterised by the same functional

regression form but still have radically different r coefficients, and

the other way around (see Figure 2).

What this boils down to is that a hypothesis concerning the slope

of a function must be addressed by comparing b coefficients

computed using regression techniques rather than by comparing

correlation coefficients. But then why are the AOA–UA correlations

typically weaker in the older arrivals than in the younger ones?

Assuming, for the sake of the argument, that the slope of the AOA–

UA function is identical in both groups (Eq. 1), we can substitute

the b coefficients for the correlation coefficients times the ratio of

the relevant sample standard deviations (Eq. 2).

bold~byoung ð1Þ

rold

sUA(old)

sAOA(old)
~ryoung

sUA(young)

sAOA(young)
ð2Þ

It can then straightforwardly be deduced that, other things

equal, the AOA–UA correlation in the older group decreases as the

UA variance in the older group increases relative to the UA variance

in the younger group (Eq. 3).

rold~ryoung
sUA(young)

sUA(old)

sAOA(old)

sAOA(young)
ð3Þ

Lower correlation coefficients in older AOA groups may

therefore be largely due to differences in UA variance, which have

been reported in several studies [23,26,28,29] (see [46] for

additional references). Greater variability in UA with increasing

age is likely due to factors other than age proper [47], such as the

concomitant greater variability in exposure to literacy, degree of

education, motivation and opportunity for language use, and by

itself represents evidence neither in favour of nor against the CPH.

Regression approaches. Having demonstrated that neither

group mean or proportion comparisons nor correlation coefficient

comparisons can directly address the ‘flattened slope’ prediction, I

now turn to the studies in which regression models were computed

with AOA as a predictor variable and UA as the outcome variable.

Once again, this category of studies is not mutually exclusive with

the two categories discussed above.

In a large-scale study using self-reports and approximate AOAs

derived from a sample of the 1990 U.S. Census, Stevens found

that the probability with which immigrants from various countries

stated that they spoke English ‘very well’ decreased curvilinearly as

a function of AOA [48]. She noted that this development is similar

to the pattern found by Johnson and Newport [23] but that it

contains no indication of an ‘‘abruptly defined ‘critical’ or sensitive

period in L2 learning’’ [48, p. 569]. However, she modelled the

self-ratings using an ordinal logistic regression model in which the

AOA variable was logarithmically transformed. Technically, this is

perfectly fine, but one should be careful not to read too much into

the non-linear curves found. In logistic models, the outcome

variable itself is modelled linearly as a function of the predictor

variables and is expressed in log-odds. In order to compute the

corresponding probabilities, these log-odds are transformed using

the logistic function. Consequently, even if the model is specified

linearly, the predicted probabilities will not lie on a perfectly

straight line when plotted as a function of any one continuous

predictor variable. Similarly, when the predictor variable is first

logarithmically transformed and then used to linearly predict an

outcome variable, the function linking the predicted outcome

variables and the untransformed predictor variable is necessarily

non-linear. Thus, non-linearities follow naturally from Stevens’s

model specifications. Moreover, CPH-consistent discontinuities in

Table 6. Regression model for the North America data with a breakpoint at AOA 16.

Intercept ± SE Slope ± SE (AOA #16) Slope ± SE (AOA .16) R2 F-test of model fit

166.6963.27 22.866082 21.0860.12 0.67 F(2,73 = 72.5), P,0.001

GJT is modelled as a function of AOA. AOA was centred at 16 years.
doi:10.1371/journal.pone.0069172.t006

Table 7. Regression model for the Israel data without a
breakpoint at AOA 6.

Intercept
± SE

Slope
± SE R2

F-test of
model fit

179.7563.65 21.2360.12 0.63 F(1,60) = 100.4,
P,0 001

GJT is modelled as a function of AOA. AOA was centred at 6 years.
doi:10.1371/journal.pone.0069172.t007
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the AOA–UA function cannot be found using her model specifications

as they did not contain any parameters allowing for this.

Using data similar to Stevens’s, Bialystok and Hakuta found that

the link between the self-rated English competences of Chinese-

and Spanish-speaking immigrants and their AOA could be

described by a straight line [49]. In contrast to Stevens, Bialystok

and Hakuta used a regression-based method allowing for changes

in the function’s slope, viz. locally weighted scatterplot smoothing

(LOWESS). Informally, LOWESS is a non-parametrical method that

relies on an algorithm that fits the dependent variable for small

parts of the range of the independent variable whilst guaranteeing

that the overall curve does not contain sudden jumps (for technical

details, see [50]). Hakuta et al. used an even larger sample from

the same 1990 U.S. Census data on Chinese- and Spanish-

speaking immigrants (2.3 million observations) [21]. Fitting LOW-

ESS curves, no discontinuities in the AOA–UA slope could be

detected. Moreover, the authors found that piecewise linear

regression models, i.e. regression models containing a parameter

that allows a sudden drop in the curve or a change of its slope, did

not provide a better fit to the data than did an ordinary regression

model without such a parameter.

Summarising, Bialystok and Hakuta and Hakuta et al. found no

evidence supporting a CPH account for the AOA–self-ratings

relationship. The pertinence of these studies to the CPH has,

however, been questioned for a number of reasons. These concern

(1) the exclusion of immigrants who reported that they only spoke

English at home from the data set [51], (2) the possibility that the

immigrants believed that second-language competence decreases

monotonically as a function of age of learning and that the self-

ratings are shaped by this belief [14,52], (3) the coarseness of the

AOA variable retrieved from the census [51,52], and (4) the

assumption that the self-ratings could be considered a continuous

variable [51]. While I recognise the potential of all four points to

obscure a CP effect in the AOA–UA function, I fail to grasp another

point of Stevens’s criticism of Hakuta et al.’s study. This point

concerns the use of comparing simple linear regression fits to fits of

piecewise linear regressions. She argues that since the AOA–

proficiency relationship is negative when viewed over the whole

lifespan, there is hardly any variance left to be explained by the

breakpoints [51]. This is, of course, the whole point of the

enterprise: parsimony dictates that if the breakpoints do not add

sufficiently to the model fit, they should be left out! That said, the

necessity of including a breakpoint in the model can be assessed by

means other than the coefficient of determination (R2), e.g. relative

goodness-of-fit measures such as the Akaike Information Criterion

[53] or the Bayesian Information Criterion [54] or F -tests. Such

measures can in principle indicate better model fits even if the

increase in R2 is minimal.

To my knowledge, regression models capable of highlighting

non-linearities have only been modelled in two studies looking into

the relationship between AOA and UA variables extracted using

tasks rather than self-ratings. Flege et al. measured UA in English

for 240 Korean participants using foreign-accent ratings and a

grammaticality judgement task (GJT) [28]. They fitted both linear

and cubic functions to the AOA–UA data. The cubic function

explained somewhat more variance than did the linear function for

the foreign-accent ratings (increase in R2: 1.9%), but follow-up

analyses failed to find support for a non-linearity in puberty. A

cubic function likewise explained somewhat more variance

compared to a linear function for the GJT scores (increase in R2:

1.2%), but this time follow-up analyses revealed a change in slope

an AOA of about 12 years. In my opinion, however, Flege et al.’s

follow-up analyses are not quite ideal as they entail fitting models

on AOA-defined subsets and checking whether the cubic term still

contributed significantly to the model fit in those subsets; I refer

the reader to the original publication for details on this procedure.

(Moreover, pinpointing the location of a slope change in a cubic

function is mathematically speaking impossible: the function’s

slope changes continuously (expressed by the first derivative, which

itself is a continuous quadratic function) as does the rate by which

it changes (expressed by the second derivative, which is a

continuous linear function). One could pinpoint the AOA at which

the change in slope starts to slow down or speed up (i.e. the point

at which the sign of the second derivative changes), but one should

be aware that one is dealing with a continuous phenomenon.)

Instead, I prefer the analytical approach used by Birdsong and

Molis, who, like Hakuta et al., fitted piecewise linear regression

models and checked whether the breakpoint parameter contrib-

uted enough to the model to offset the resultant loss of parsimony

[26]. Birdsong and Molis’s study was a replication of Johnson and

Table 8. Regression model for the Israel data with a breakpoint at AOA 6.

Intercept ± SE slope ± SE (AOA ,6) Slope ± SE (AOA .6) R2 F-test of model fit

180.3763.87 2.6267.67 21.2560.13 0.63 F(2,59) = 49.7, p,0.001

GJT is modelled as a function of AOA. AOA was centred at 6 years.
doi:10.1371/journal.pone.0069172.t008

Table 9. Partial correlation coefficients for the relationship
between AOA and GJT with AAT controlled for.

Overall Young Middle Old

North
America

20.29 (76) 20.71 (20) 20.17 (26) 20.12 (30)

Israel 20.28 (62) 20.51 (17) 20.12 (32) 20.33 (13)

Coefficients for separate age groups as reported by DK et al., pp. 423 and 429;
overall coefficients were computed on the basis of the data in DK et al., Tables 2
and 4. Figures between brackets represent the number of participants in each
cell.
doi:10.1371/journal.pone.0069172.t009

Table 10. Correlation coefficients for the relationship
between aptitude and GJT.

Overall Young Middle Old

North
America

0.210 (76) 0.11 (20) 0.44 (26) 0.33 (30)

Israel 0.00 (62) 20.37 (17) 0.45 (32) 0.14 (13)

Data are as reported by DK et al., pp. 425 and 429. Figures between brackets
represent the number of participants in each cell.
doi:10.1371/journal.pone.0069172.t010
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Newport’s but used Spanish L1 speakers (n~61) rather than

Korean- and Chinese-speaking participants. These authors found

a breakpoint in the AOA–UA slope that contributed significantly to

the model fit, but this breakpoint was located at AOA 27.5 years –

well beyond a putative critical period. Reanalysing Johnson and

Newport’s data, the authors further found that a breakpoint could

improve the model fit for this data set, too. This time, however, the

breakpoint was located at AOA 18 years. Importantly, the break-

points had different functions in the two data sets: whereas it

marked the beginning of a flatter part of the curve in the Johnson

and Newport data set (as in the left panel of Figure 1), it actually

marked the onset of a steeper part of the curve in the Birdsong and

Molis study (as in the middle panel of Figure 1). In other words,

the age effect in UA actually became more pronounced for the

older arrivals. (Birdsong and Molis did not mention by how much

R2 increased when breakpoint parameters were included in their

models.)

To sum up, I have argued at length that regression approaches

are superior to group mean and correlation coefficient compar-

isons for the purposes of testing the ‘flattened slope’ prediction.

Acknowledging the reservations vis-à-vis self-estimated UAs, we still

find that while the relationship between AOA and UA is not

necessarily perfectly linear in the studies discussed, the data do not

lend unequivocal support to this prediction. In the following

section, I will reanalyse data from a recent empirical paper on the

CPH by DeKeyser et al. [44]. The first goal of this reanalysis is to

further illustrate some of the statistical fallacies encountered in CPH

studies. Second, by making the computer code available I hope to

demonstrate how the relevant regression models, viz. piecewise

regression models, can be fitted and how the AOA representing the

optimal breakpoint can be identified. Lastly, the findings of this

reanalysis will contribute to our understanding of how AOA affects

UA as measured using a GJT.

Materials

Summary of DeKeyser et al. (2010)
I chose to reanalyse a recent empirical paper on the CPH by

DeKeyser et al. [44] (henceforth DK et al.). This paper lends itself

well to a reanalysis since it exhibits two highly commendable

qualities: the authors spell out their hypotheses lucidly and provide

detailed numerical and graphical data descriptions. Moreover, the

paper’s lead author is very clear on what constitutes a necessary

condition for accepting the CPH: a non-linearity in the age of onset

of acquisition (AOA)–ultimate attainment (UA) function, with UA

declining less strongly as a function of AOA in older, post-CP arrivals

compared to younger arrivals [14,22]. Lastly, it claims to have

found cross-linguistic evidence from two parallel studies backing

the CPH and should therefore be an unsuspected source to CPH

proponents.

DK et al. present data from comparable investigations into the

relationship between AOA and UA in morphosyntactic judgements

in two groups of adult Russian-speaking immigrants who had

started learning English (n~76) or Hebrew (n~62) as an L2 at

different ages in North America and Israel, respectively. The

grammaticality judgement task (GJT) was adapted from Johnson

and Newport’s study [23] and was presented auditorily. For each

of the 204 items, the participant had to indicate whether it was a

permissible utterance in the respective L2 or not. One point was

awarded for each correct answer. Participants were split up into

three AOA groups: those who emigrated before the age of 18

(young), those between the ages of 18 and 40 (middle) and those

who arrived after age 40 (old). In addition, all participants took a

verbal aptitude test. For further details, I refer to the original

publication.

The authors set out to test the following hypotheses:

Hypothesis 1: For both the L2 English and the L2 Hebrew

group, the slope of the age of arrival–ultimate attainment

function will not be linear throughout the lifespan, but will

instead show a marked flattening between adolescence and

adulthood.

Hypothesis 2: The relationship between aptitude and ultimate

attainment will differ markedly for the young and older arrivals,

with significance only for the latter. (DK et al., p. 417)

Both hypotheses were purportedly confirmed, which in the

authors’ view provides evidence in favour of CPH. The problem

with this conclusion, however, is that it is based on a comparison of

correlation coefficients. As I have argued above, correlation

coefficients are not to be confused with regression coefficients and

cannot be used to directly address research hypotheses concerning

slopes, such as Hypothesis 1. In what follows, I will reanalyse the

relationship between DK et al.’s AOA and GJT data in order to

address Hypothesis 1. Additionally, I will lay bare a problem with

the way in which Hypothesis 2 was addressed. The extracted data

and the computer code used for the reanalysis are provided as

supplementary materials, allowing anyone interested to scrutinise

and easily reproduce my whole analysis and carry out their own

computations (see ‘supporting information’).

Data extraction
DK et al. provided high-resolution scatterplots, downloadable

from the journal’s website, to illustrate the relationship between

AOA and GJT performance. Using the open source program g3data,

we extracted the data underlying these scatterplots. g3data is

downloadable from https://github.com/pn2200/g3data and pro-

vides an interface in which users first identify the x- and y-axes of a

scatterplot and then point and click on the data points in it in

order to extract the x- and y-coordinates of the selected points. For

the Israel study, we chose to round off the AOA data to the nearest

integer, as was the case in the North America study, rather than to

the first decimal, as in the original. The extracted North America

and Israel data are supplied as Datasets S1 and S2, respectively.

In order to verify whether we did in fact extract the data points

to a satisfactory degree of accuracy, I computed summary statistics

for the extracted AOA and GJT data and checked these against the

descriptive statistics provided by DK et al. (pp. 421 and 427).

These summary statistics for the extracted data are presented in

Table 1. In addition, I computed the correlation coefficients for

the AOA–GJT relationship for the whole AOA range and for AOA-

defined subgroups and checked these coefficients against those

reported by DK et al. (pp. 423 and 428). The correlation

coefficients computed using the extracted data are presented in

Table 2. Both checks strongly suggest the extracted data to be

virtually identical to the original data, and Dr DeKeyser

confirmed this to be the case in response to an earlier draft of

the present paper (personal communication, 6 May 2013).

Results and Discussion

Modelling the link between age of onset of acquisition
and ultimate attainment

I first replotted the AOA and GJT data we extracted from DK

et al.’s scatterplots and added non-parametric scatterplot smooth-

ers in order to investigate whether any changes in slope in the

AOA–GJT function could be revealed, as per Hypothesis 1. Figures
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3 and 4 show this not to be the case. Indeed, simple linear

regression models that model GJT as a function of AOA provide

decent fits for both the North America and the Israel data,

explaining 65% and 63% of the variance in GJT scores,

respectively. The parameters of these models are given in Table 3.

These straightforward analyses do not reveal any support for

Hypothesis 1. Still, for the sake of completeness, let us turn to the

issue of determining whether slope differences between AOA

groups, if they do indeed exist, are substantial enough to invoke

a critical period. What needs to be established is whether including

multiple slopes in a model contributes sufficiently to the fit of the

model to the data to offset the loss of parsimony associated with a

simpler one-slope model. To this end, I computed linear regression

models allowing of breakpoints in the regression slope (‘piecewise

regression models’). Similarly to ordinary regression, piecewise

regression models the outcome variable y as a function of an

overall intercept a and a slope parameter b linking it to a predictor

variable x. In contrast to ordinary regression, however, the b
parameter of a piecewise regression model changes as a function of

a binary indicator variable, which indicates whether x lies before

or beyond the breakpoint to be modelled, y:

ŷyi~
azb1xi if xiƒy

azb2xi if xiwy

�
ð4Þ

To ensure that both segments are joined at the breakpoint, the

predictor variable is first centred at the breakpoint value, i.e. the

breakpoint value is subtracted from the original predictor variable

values. For a blow-by-blow account of how such models can be

fitted in R, I refer to an example analysis by Baayen [55, pp. 214–

222].

For the first models, I set the breakpoint at AOA 18, the cut-off

used by DK et al. The models’ details are presented in Table 4. At

first glance, the coefficients for the North America study in Table 4

might appear to confirm Hypothesis 1: the slope linking AOA and

GJT is flatter for participants with AOAw18 than for those with AOA

ƒ18. However, as Figure 5 illustrates, the regression line of a

model without a breakpoint falls well within the 95% confidence

interval of the regression line of the breakpoint model. Thus, the

breakpoint parameter may be superfluous. For the Israel data, the

change in slope at the breakpoint is hardly perceptible and the

regression lines plotted in Figure 6 overlap almost completely. In

both cases, the inclusion of a breakpoint parameter at AOA 18 leads

to an at most negligible increase in variance accounted for (R2).

Unsurprisingly, then, formal F -tests confirm that the simpler

models, i.e. the ones that do not include breakpoints at AOA 18, are

to be preferred on the grounds of parsimony (North America:

F (1,73)~3:27, p~0:07; Israel: F (1,59)~0:15, p~0:98). Note,

incidentally, that F -tests compare whether the residual sums of

squares associated with the more complex model is smaller than

the residual sums of squares associated with the simpler model. As

such, they are one-tailed tests. Halving the p-value of the North

America model comparison to take into account that DK et al.

predicted the direction of the change in slope at the breakpoint

and thereby achieving significance at a~0:05 is therefore

unsound.

Having ascertained that the inclusion of a breakpoint in the

regression to mark the end of a putative critical period at AOA

18 years does not improve the fit of the model to the data, we are

still left with the possibility that placing the breakpoint elsewhere

might do so (see the discussion on the CPH’s scope above).

Following Baayen [55], I computed a series of regression models

for both data sets in which the position of the breakpoints varied

between AOA 5 and 19 years. Breakpoints at AOA v5 could not be

fitted for lack of data points and breakpoints at AOA w19 would

hardly be indicative of a critical period that ends before maturity.

For each fitted model, the deviance (d2) was computed, i.e. the

sum of the squared differences between the actual data points and

the values predicted by the model: d2~
Xn

i~1
(yi{ŷyi)

2. The

smaller the deviance, the better the model fits the data. Thus, the

optimal breakpoint is the one that results in the model with the

smallest deviance. The fitted breakpoints and their associated

deviances are plotted in Figure 7. For the North America study, a

breakpoint at AOA 16 years is optimal; for the Israel study, the

optimal breakpoint lies at AOA 6 years. The regression models were

then refitted with and without breakpoints at AOA 16 (North

America) and 6 (Israel). The models’ details are presented in

Tables 5 and 6 for the North America study and Tables 7 and 8

for the Israel study. The conclusions are largely, though not

completely identical compared to when the breakpoints were fixed

at AOA 18. For the North America study, the slope flattens after the

breakpoint, but as Figure 8 shows, the regression line for a model

without a breakpoint still falls entirely within the 95% confidence

interval of the breakpoint model and the increase in R2 is small.

Nonetheless, an F -test returns a borderline significant p-value,

which can be taken as support for the breakpoint model

(F (1,73)~4:07, p~0:047) Two other relative goodness-of-fit

measures likewise produce borderline results: the breakpoint

model has a slightly better (i.e. lower) Akaike Information

Criterion [53] value than the simpler model (642.3 and 644.4,

respectively), but a slightly worse (i.e. higher) Bayesian Information

Criterion [54] value (651.6 and 651.4, respectively). For the Israel

study, both regression lines again show almost complete overlap

(Figure 9) and the increase in R2 is negligible. Unsurprisingly, an

F -test yields no support for the breakpoint model (F (1,59)~0:25,

p~0:62).

As a technical sidebar, note that regression models are ideally

fitted on homoscedastic data, meaning that the variance around

the model’s predictions does not vary as a function of the value of

those predictions. This condition is not fully met in the present

data sets and, indeed, heteroscedasticity seems to be endemic in

research on age effects: UA variance is typically larger in the older

age groups. A first option to deal with heteroscedasticity of this

kind is to fit robust regression models (see [56]) both with and

without breakpoints using the rlm() function in the MASS package

for R [57]. The parameters of these models were highly similar to

those of their ordinary counterparts (see Script S1). An alternative

is to specify the distribution of the residuals in a generalised least

squares model (see Chapter 4 in [58] for an accessible applied

introduction). In the ordinary linear model, the residuals are

assumed to come from a normal distribution with mean 0 and

fixed variance s2: ei*N (0,s2). In generalised least squares

models, the variance part can be specified to be dependent on a

covariate or on the fitted values. In the present case, the variance

of the normal distribution from which the residuals are drawn can

be specified to increase linearly with the AOA covariate:

ei*N (0,s2|aoai). Generalised least squares models with this

variance structure were fitted both with and without breakpoints

using the gls() function in the nlme package for R [59], but doing

so did not alter the conclusions either (see Script S1).

In sum, a regression model that allows for changes in the slope

of the the AOA–GJT function to account for putative critical period

effects provides a somewhat better fit to the North American data

than does an everyday simple regression model. The improvement

in model fit is marginal, however, and including a breakpoint does
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not result in any detectable improvement of model fit to the Israel

data whatsoever. Breakpoint models therefore fail to provide solid

cross-linguistic support in favour of critical period effects: across

both data sets, GJT can satisfactorily be modelled as a linear

function of AOA.

On partialling out ‘age at testing’
As I have argued above, correlation coefficients cannot be used

to test hypotheses about slopes. When the correct procedure is

carried out on DK et al.’s data, no cross-linguistically robust

evidence for changes in the AOA–GJT function was found. In

addition to comparing the zero-order correlations between AOA

and GJT, however, DK et al. computed partial correlations in

which the variance in AOA associated with the participants’ age at

testing (AAT; a potentially confounding variable) was filtered out.

They found that these partial correlations between AOA and GJT,

which are given in Table 9, differed between age groups in that

they are stronger for younger than for older participants. This, DK

et al. argue, constitutes additional evidence in favour of the CPH.

At this point, I can no longer provide my own analysis of DK

et al.’s data seeing as the pertinent data points were not plotted.

Nevertheless, the detailed descriptions by DK et al. strongly

suggest that the use of these partial correlations is highly

problematic. Most importantly, and to reiterate, correlations

(whether zero-order or partial ones) are actually of no use when

testing hypotheses concerning slopes. Still, one may wonder why

the partial correlations differ across age groups. My surmise is that

these differences are at least partly the by-product of an imbalance

in the sampling procedure.

As indicated in DK et al.’s Tables 2 and 4 (pp. 424 and 430),

AOA and AAT are correlated to the point of near-unity (r~0:97 and

0:98). AAT and GJT, too, are highly correlated (r~{0:78 and

{0:77) and the AAT–GJT correlations are nearly identical in

magnitude to the AOA–GJT correlations (r~{0:80 and {0:79). In

other words, AOA and AAT essentially represent the same variable

when the whole AOA range is considered. However, DK et al. did

not compute their partial correlations on the basis of the whole

AOA continuum. Rather, they looked at each AOA slice separately.

Crucially, however, the AOA–AAT correlation was not constant

across AOA groups. In the North America study, for instance, AOA

and AAT correlated less strongly in the youngest arrivals (r~0:41)

than in the older arrivals (r~0:88 and 0:83); in the Israel study,

the correlations were rather more comparable (r~0:79, 0:88 and

0:98). What DK et al. did not take into account is that it is these

differences in the strength of the AOA–AAT correlation, which for

the purposes of testing the CPH are completely uninteresting, that

are largely responsible for the differences in the strength of the

partial correlations: partial correlations decrease as the correla-

tions between the ‘independent’ variables increase [60]. The

partial correlation between x and y controlling for z (rxy:z) is

computed solely on the basis of the underlying zero-order

correlations rxy, rxz and ryz:

rxy:z~
rxy{rxzryzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1{r2
xz)(1{r2

yz)
q ð5Þ

Decreasing partial correlations with increasing zero-order

correlations between the independent variables (rxz) follow

naturally from this function. This is the most straightforward

explanation of why the differences in the partial correlations are

smaller between all the groups in the Israel study compared to the

North America study: the AOA–AAT correlations in the Israel study

are high in all age groups, not just in two of them.

The upshot of this brief discussion is that the partial correlation

differences reported by DK et al. are at least partly the result of an

imbalance in the sampling procedure: AOA and AAT were simply

less intimately tied for the young arrivals in the North America

study than for the older arrivals with L2 English or for all of the L2

Hebrew participants. In an ideal world, we would like to fix AAT or

ascertain that it at most only weakly correlates with AOA. This,

however, would result in a strong correlation between AOA and

another potential confound variable, length of residence in the L2

environment, bringing us back to square one. Allowing for only

moderate correlations between AOA and AAT might improve our

predicament somewhat, but even in that case, we should tread

lightly when making inferences on the basis of statistical control

procedures [61].

On estimating the role of aptitude
Having shown that Hypothesis 1 could not be confirmed, I now

turn to Hypothesis 2, which predicts a differential role of aptitude

for UA in SLA in different AOA groups. More specifically, it states

that the correlation between aptitude and GJT performance will be

significant only for older arrivals. The correlation coefficients of

the relationship between aptitude and GJT are presented in

Table 10.

The problem with both the wording of Hypothesis 2 and the

way in which it is addressed is the following: it is assumed that a

variable has a reliably different effect in different groups when the

effect reaches significance in one group but not in the other. This

logic is fairly widespread within several scientific disciplines (see

e.g. [62] for a discussion). Nonetheless, it is demonstrably

fallacious [63]. Here we will illustrate the fallacy for the specific

case of comparing two correlation coefficients.

The p-value associated with a correlation coefficient is solely a

function of three factors: (a) the strength of the correlation, i.e. r,

(b) the number of pairs of correlated observations, i.e. n, and (c)

whether one wishes to conduct a one-tailed or a two-tailed test.

Given r and n, a t-statistic can be calculated using the formula

t~
rffiffiffiffiffiffiffiffiffiffiffi

1{r2

n{2

r . A two-tailed t-test reaches significance at a~0:05 at

around t~2, though the precise figure varies as a function of n.

Thus, a two-tailed test will reveal that a correlation coefficient of

0.28 for 50 pairs of observations is significant at the 0.05 level

(p~0:049), whereas a coefficient of 0.27 fails to reach significance

(p~0:06). But it would be clearly wrong to conclude that the

minuscule difference between the two correlation coefficients

therefore has to be significant, too. Most researchers will probably

share this insight when p-values hover around the 0.05 threshold.

Importantly, however, even more substantially different correla-

tion coefficients are not necessarily ‘significantly different’ from

one another either, not even if their associated p-values indicated

that one were ‘highly significant’ (e.g. r~0:40, n~50, pv0:01)

and the other were not even close to significance (e.g. r~0:10,

n~50, pw0:48).

The correct procedure for comparing independent correlation

coefficients consists of converting the correlation coefficients to z-

scores using Fisher’s r-to-z transformation (Eq. 6), computing the

z-statistic of the difference between the two converted correlation

coefficients (Eq. 7) and checking this z-statistic for significance

[64,65]. In two-tailed tests, the difference of two correlation

coefficients reaches significance at a~0:05 for z~1:96; in one-

tailed tests for z~1:64.
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z~
1

2
ln

1zr

1{r

� �
ð6Þ

z~
z1{z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1{3
z 1

n2{3

q ð7Þ

Plugging in the numbers for the substantially different

correlation coefficients of 0.10 and 0.40 introduced above, we

find that the difference between these coefficients is actually not

significant (z~1:57). When the correct method is applied to DK

et al.’s correlation coefficients, comparisons of the young arrivals

against the older arrivals only revealed a single difference in

correlation strength, even when carrying out one-tailed tests: the

correlation between aptitude and GJT in young arrivals in Israel

(r~{0:37, n~17) differs significantly from the one in middle-

aged arrivals (r~0:45, n~32; z~2:68, one-tailed pv0:01). For

all other comparisons, z varied between 0.46 and 1.28.

Apart from not being replicated in the North America study,

does this difference actually show anything? I contend that it does

not: what is of interest are not so much the correlation coefficients,

but rather the interactions between AOA and aptitude in models

predicting GJT. These interactions could be investigated by fitting a

multiple regression model in which the postulated CP breakpoint

governs the slope of both AOA and aptitude. If such a model

provided a substantially better fit to the data than a model without

a breakpoint for the aptitude slope and if the aptitude slope

changes in the expected direction (i.e. a steeper slope for post-CP

than for younger arrivals) for different L1–L2 pairings, only then

would this particular prediction of the CPH be borne out.

Discussion

Using data extracted from a paper reporting on two recent

studies that purport to provide evidence in favour of the CPH and

that, according to its authors, represent a major improvement over

earlier studies (DK et al., p. 417), it was found that neither of its

two hypotheses were actually confirmed when using the proper

statistical tools. As a matter of fact, the GJT scores continue to

decline at essentially the same rate even beyond the end of the

putative critical period. According to the paper’s lead author, such

a finding represents a serious problem to his conceptualisation of

the CPH [14]). Moreover, although modelling a breakpoint

representing the end of a CP at AOA 16 may improve the statistical

model slightly in study on learners of English in North America,

the study on learners of Hebrew in Israel fails to confirm this

finding. In fact, even if we were to accept the optimal breakpoint

computed for the Israel study, it lies at AOA 6 and is associated with

a different geometrical pattern.

Diverging age trends in parallel studies with participants with

different L2s have similarly been reported by Birdsong and Molis

[26] and are at odds with an L2-independent CPH. One

parsimonious explanation of such conflicting age trends may be

that the overall, cross-linguistic age trend is in fact linear, but that

fluctuations in the data (due to factors unaccounted for or

randomness) may sometimes give rise to a ‘stretched L’-shaped

pattern (Figure 1, left panel) and sometimes to a ‘stretched 7’-

shaped pattern (Figure 1, middle panel; see also [66] for a similar

comment).

Importantly, the criticism that DeKeyser and Larsson-Hall levy

against two studies reporting findings similar to the present

[48,49], viz. that the data consisted of self-ratings of questionable

validity [14], does not apply to the present data set. In addition,

DK et al. did not exclude any outliers from their analyses, so I

assume that DeKeyser and Larsson-Hall’s criticism [14] of

Birdsong and Molis’s study [26], i.e. that the findings were due

to the influence of outliers, is not applicable to the present data

either. For good measure, however, I refitted the regression

models with and without breakpoints after excluding one

potentially problematic data point per model. The following data

points had absolute standardised residuals larger than 2.5 in the

original models without breakpoints as well as in those with

breakpoints: the participant with AOA 17 and a GJT score of 125 in

the North America study and the participant with AOA 12 and a

GJT score of 117 in the Israel study. The resultant models were

virtually identical to the original models (see Script S1). Further-

more, the AOA variable was sufficiently fine-grained and the AOA–

GJT curve was not ‘presmoothed’ by the prior aggregation of GJT

across parts of the AOA range (see [51] for such a criticism of

another study). Lastly, seven of the nine ‘‘problems with supposed

counter-evidence’’ to the CPH discussed by Long [5] do not apply

either, viz. (1) ‘‘[c]onfusion of rate and ultimate attainment’’, (2)

‘‘[i]nappropriate choice of subjects’’, (3) ‘‘[m]easurement of AO’’,

(4) ‘‘[l]eading instructions to raters’’, (6) ‘‘[u]se of markedly non-

native samples making near-native samples more likely to sound

native to raters’’, (7) ‘‘[u]nreliable or invalid measures’’, and (8)

‘‘[i]nappropriate L1–L2 pairings’’. Problem No. 5 (‘‘Assessments

based on limited samples and/or ‘‘language-like’’ behavior’’) may

be apropos given that only GJT data were used, leaving open the

theoretical possibility that other measures might have yielded a

different outcome. Finally, problem No. 9 (‘‘Faulty interpretation

of statistical patterns’’) is, of course, precisely what I have turned

the spotlights on.

Conclusions

The critical period hypothesis remains a hotly contested issue in

the psycholinguistics of second-language acquisition. Discussions

about the impact of empirical findings on the tenability of the CPH

generally revolve around the reliability of the data gathered (e.g.

[5,14,22,52,67,68]) and such methodological critiques are of

course highly desirable. Furthermore, the debate often centres

on the question of exactly what version of the CPH is being

vindicated or debunked. These versions differ mainly in terms of

its scope, specifically with regard to the relevant age span, setting

and language area, and the testable predictions they make. But

even when the CPH’s scope is clearly demarcated and its main

prediction is spelt out lucidly, the issue remains to what extent the

empirical findings can actually be marshalled in support of the

relevant CPH version. As I have shown in this paper, empirical data

have often been taken to support CPH versions predicting that the

relationship between age of acquisition and ultimate attainment is

not strictly linear, even though the statistical tools most commonly

used (notably group mean and correlation coefficient comparisons)

were, crudely put, irrelevant to this prediction. Methods that are

arguably valid, e.g. piecewise regression and scatterplot smooth-

ing, have been used in some studies [21,26,49], but these studies

have been criticised on other grounds. To my knowledge, such

methods have never been used by scholars who explicitly subscribe

to the CPH.

I suspect that what may be going on is a form of ‘confirmation

bias’ [69], a cognitive bias at play in diverse branches of human

knowledge seeking: Findings judged to be consistent with one’s

own hypothesis are hardly questioned, whereas findings inconsis-

tent with one’s own hypothesis are scrutinised much more strongly
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and criticised on all sorts of points [70–73]. My reanalysis of DK

et al.’s recent paper may be a case in point. CPH exponents used

correlation coefficients to address their prediction about the slope

of a function, as had been done in a host of earlier studies. Finding

a result that squared with their expectations, they did not question

the technical validity of their results, or at least they did not report

this. (In fact, my reanalysis is actually a case in point in two

respects: for an earlier draft of this paper, I had computed the

optimal position of the breakpoints incorrectly, resulting in an

insignificant improvement of model fit for the North American

data rather than a borderline significant one. Finding a result that

squared with my expectations, I did not question the technical

validity of my results – until this error was kindly pointed out to me

by Martijn Wieling (University of Tübingen).) That said, I am keen

to point out that the statistical analyses in this particular paper,

though suboptimal, are, as far as I could gather, reported

correctly, i.e. the confirmation bias does not seem to have resulted

in the blatant misreportings found elsewhere (see [74] for

empirical evidence and discussion). An additional point to these

authors’ credit is that, apart from explicitly identifying their CPH

version’s scope and making crystal-clear predictions, they present

data descriptions that actually permit quantitative reassessments

and have a history of doing so (e.g. the appendix in [8]). This leads

me to believe that they analysed their data all in good conscience

and to hope that they, too, will conclude that their own data do

not, in fact, support their hypothesis.

I end this paper on an upbeat note. Even though I have argued

that the analytical tools employed in CPH research generally leave

much to be desired, the original data are, so I hope, still available.

This provides researchers, CPH supporters and sceptics alike, with

an exciting opportunity to reanalyse their data sets using the tools

outlined in the present paper and publish their findings at minimal

cost of time and resources (for instance, as a comment to this

paper). I would therefore encourage scholars to engage their old

data sets and to communicate their analyses openly, e.g. by

voluntarily publishing their data and computer code alongside

their articles or comments. Ideally, CPH supporters and sceptics

would join forces to agree on a protocol for a high-powered study

in order to provide a truly convincing answer to a core issue in SLA.
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13. Snow CE, Hoefnagel-Höhle M (1978) The critical period for language

acquisition: Evidence from second language learning. Child Development 49:

1114–1128.

14. DeKeyser R, Larson-Hall J (2005) What does the critical period really mean? In:

Kroll and De Groot [75], 88–108.

15. Abrahamsson N, Hyltenstam K (2009) Age of onset and nativelikeness in a

second language: Listener perception versus linguistic scrutiny. Language

Learning 59: 249–306.

16. White L, Genesee F (1996) How native is near-native? The issue of ultimate

attainment in adult second language acquisition. Second Language Research 12:

233–265.

17. Cook VJ (1992) Evidence for multicompetence. Language Learning 42: 557–

591.

18. Grosjean F (1989) Neurolinguists, beware! The bilingual is not two monolinguals

in one person. Brain and Language 36: 3–15.

19. Newport EL (1991) Contrasting conceptions of the critical period for language.
In: Carey S, Gelman R, editors, The epigenesis of mind: Essays on biology and

cognition, Hillsdale, NJ: Lawrence Erlbaum. 111–130.

20. Birdsong D (2005) Interpreting age effects in second language acquisition. In:

Kroll and De Groot [75], 109–127.

21. Hakuta K, Bialystok E, Wiley E (2003) Critical evidence: A test of the critical-

period hypothesis for second-language acquisition. Psychological Science 14: 31–
38.

22. DeKeyser R (2012) Age effects in second language learning. In: Gass SM,

Mackey A, editors, The Routledge handbook of second language acquisition,

London: Routledge. 442–460.

23. Johnson JS, Newport EL (1989) Critical period effects in second language
learning: The inuence of maturational state on the acquisition of English as a

second language. Cognitive Psychology 21: 60–99.

24. Weisstein EW. Discontinuity. From MathWorld–A Wolfram Web Resource.

Available: http://mathworld.wolfram.com/Discontinuity.html. Accessed 2012
March 2.

25. Bialystok E, Miller B (1999) The problem of age in second-language acquisition:

Inuences from language, structure, and task. Bilingualism: Language and

Cognition 2: 127–145.

26. Birdsong D, Molis M (2001) On the evidence for maturational constraints in
second-language acquisition. Journal of Memory and Language 44: 235–249.

27. Flege JE (1999) Age of learning and second language speech. In: Birdsong [76],
101–132.

28. Flege JE, Yeni-Komshian GH, Liu S (1999) Age constraints on second-language

acquisition. Journal of Memory and Language 41: 78–104.

29. Johnson JS (1992) Critical period effects in second language acquisition: The

effect of written versus auditory materials on the assessment of grammatical
competence. Language Learning 42: 217–248.

30. McDonald JL (2000) Grammaticality judgments in a second language: Inuences

of age of acquisition and native language. Applied Psycholinguistics 21: 395–

423.

31. Patkowski MS (1980) The sensitive period for the acquisition of syntax in a
second language. Language Learning 30: 449–472.

32. Cohen J (1983) The cost of dichotomization. Applied Psychological Measure-
ment 7: 249–253.

33. Schmidt FL (1996) Statistical significance testing and cumulative knowledge in

psychology: Implications for training of researchers. Psychological Methods 1:
115–129.

CPH in SLA: Statistical Critique and Reanalysis

PLOS ONE | www.plosone.org 14 July 2013 | Volume 8 | Issue 7 | e69172



34. Sedlmeier P, Gigerenzer G (1989) Do studies of statistical power have an effect

on the power of studies? Psychological Bulletin 105: 309–316.

35. Cohen J (1992) A power primer. Psychological Bulletin 112: 155–159.

36. Champely S (2009) pwr: Basic functions for power analysis. Available: http://

cran.r-project.org/package = pwr. R package, version 1.1.1.

37. R Core Team (2013) R: A language and environment for statistical computing.

Available: http://www.r-project.org/. Software, version 2.15.3.

38. Nakawaga S (2004) A farewell to Bonferroni: the problems of low statistical

power and publication bias. Behavioral Ecology 15: 1044–1045.

39. Perneger TV (1998) What’s wrong with Bonferroni adjustments. BMJ 316:

1236–1238.

40. Cohen J (1994) The Earth is round (p,05). American Psychologist 49: 997–

1003.

41. Ioannidis JPA (2005) Why most published research findings are false. PLoS

Medicine 2: e124.

42. Simmons JP, Nelson LD, Simonsohn U (2011) False-positive psychology:

Undisclosed exibility in data collection and analysis allows presenting anything

as significant. Psychological Science 22: 1359–1366.

43. Wetzels R, Matzke D, Lee MD, Rounder JN, Iverson GJ, et al. (2011) Statistical

evidence in experimental psychology: An empirical comparison using 855 t tests.

Perspectives on Psychological Science 6: 291–298.

44. DeKeyser R, Alfi-Shabtay I, Ravid D (2010) Cross-linguistic evidence for the

nature of age effects in second language acquisition. Applied Psycholinguistics

31: 413–438.

45. Flege JE, Birdsong D, Bialystok E, Mack M, Sung H, et al. (2006) Degree of

foreign accent in English sentences produced by Korean children and adults.

Journal of Phonetics 34: 153–175.

46. Marinova-Todd SH, Marshall DB, Snow CE (2000) Three misconceptions

about age and L2 learning. TESOL Quarterly 34: 9–34.

47. Hyltenstam K, Abrahamsson N (2003) Maturational constraints in SLA. In:

Doughty CJ, Long MH, editors, The handbook of second language acquisition,

Malden, MA: Blackwell. 539–588.

48. Stevens G (1999) Age of immigration and second language proficiency among

foreign-born adults. Language in Society 28: 555–578.

49. Bialystok E, Hakuta K (1999) Confounded age: Linguistic and cognitive factors

in age differences for second language acquisition. In: Birdsong [76], 161–181.

50. Cleveland WS (1979) Robust locally weighted regression and smoothing

scatterplots. Journal of the American Statistical Association 74: 829–836.

51. Stevens G (2004) Using census data to test the critical-period hypothesis for

second-language acquisition. Psychological Science 15: 215–216.

52. DeKeyser R (2006) A critique of recent arguments against the critical period

hypothesis. In: Abello-Contesse C, Chacón-Beltrán R, López-Jiménez MD,
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