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Abstract

Electroporation is the phenomenon that occurs when a cell is exposed to a high electric field, which causes transient cell
membrane permeabilization. A paramount electroporation-based application is electrochemotherapy, which is performed
by delivering high-voltage electric pulses that enable the chemotherapeutic drug to more effectively destroy the tumor
cells. Electrochemotherapy can be used for treating deep-seated metastases (e.g. in the liver, bone, brain, soft tissue) using
variable-geometry long-needle electrodes. To treat deep-seated tumors, patient-specific treatment planning of the
electroporation-based treatment is required. Treatment planning is based on generating a 3D model of the organ and
target tissue subject to electroporation (i.e. tumor nodules). The generation of the 3D model is done by segmentation
algorithms. We implemented and evaluated three automatic liver segmentation algorithms: region growing, adaptive
threshold, and active contours (snakes). The algorithms were optimized using a seven-case dataset manually segmented by
the radiologist as a training set, and finally validated using an additional four-case dataset that was previously not included
in the optimization dataset. The presented results demonstrate that patient’s medical images that were not included in the
training set can be successfully segmented using our three algorithms. Besides electroporation-based treatments, these
algorithms can be used in applications where automatic liver segmentation is required.
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Introduction

Electroporation is the phenomenon that occurs when a

biological cell is exposed to an adequately high electric field,

which results in the cell membrane becoming transiently

permeabilized [1]. Electroporation is considered to be a universal

method and platform technology since all types of cells (animal,

plant, and microorganisms) can be electroporated [2]. A

paramount electroporation-based application is electrochemother-

apy [3,4] which enhances chemotherapy outcome due to transient

permeabilization of targeted cell membranes: because of the

externally applied electric field, electroporation facilitates the

chemotherapeutic drug diffusion through the plasma membrane

into the cells, which would be otherwise hampered, because of the

impaired or slow transport of the chemotherapeutics that are used

in electrochemotherapy [5].

Electrochemotherapy is performed by high-voltage electric

pulses delivery using applicators (i.e. electrodes) that are in contact

with (or located near the) target tissue. Electrochemotherapy has

already been introduced into clinical use for treating skin

melanoma using plate or needle electrodes with a fixed geometry;

the use of such electrodes imposes following predefined standard

operating procedures for a successful treatment [6,7]. Recently,

however, electrochemotherapy has been introduced to clinical

trials for treating deep-seated metastases in liver [8], bone [9],

brain [10–12], and soft tissue [13]. Electrochemotherapy of deep-

seated tumors imposes the use of variable-geometry long-needle

electrodes introduced either percutaneously or during open-

surgery [13]. Hence, only following the standard operating

procedures cannot ensure success of the treatment, and patient-

specific treatment planning is required for effective electroche-

motherapy of deep-seated tumors [14].

Another important electroporation-based application is termed

non-thermal irreversible electroporation (N-TIRE) and is used for tissue

ablation performed using an externally applied electric field with

electric field strengths and higher number of pulses than the values

used for electrochemotherapy [15]. Nonetheless, the procedure is

technologically very similar to electrochemotherapy and, also,

requires patient-specific treatment planning [16].

To prepare a robust treatment plan for electroporation-based

treatments, an anatomical model that is built from medical images

(Magnetic Resonance Imaging – MRI) needs to be constructed

first [17]. Construction of such a model is based on the acquisition

of the patient’s medical images and relies on processing the images

in order to perform relevant-tissue extraction (i.e. image segmen-

tation) [18]. Image segmentation, then, serves as the basis for

generating a three-dimensional model consisting of the relevant

healthy tissue (e.g. liver) and pathological tissue (i.e. tumors) [19].

Vessels may also be segmented and included into the model [20]

since vessel positions have to be taken into account when defining
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electrodes’ entry direction and relative positions. Then, a Finite-

Element Model (FEM) is built and using the defined electrode

parameters (number, dimensions, position), the distribution of the

electrical field is calculated and optimized [21,22] and finally

presented to the attending physician.

In order to establish the concept of electroporation-based

treatment planning, we follow radiotherapy treatment planning as

the basis [23] using parallelisms and similarities between the

planning procedures [14]. Since development of a user-friendly

treatment planning would simplify electroporation-based preop-

erative procedures, we opt towards developing treatment planning

software that will not require any prior engineering knowledge

from its end-user (e.g. the attending physician). The whole

treatment planning software needs to perform as automatically

as possible, i.e. with minimum of interaction by the clinician, and

the most challenging task is development and implementation of

an automatic image segmentation algorithm. Within the clinical

study of electrochemotherapy of colorectal metastases in the liver

[8], we developed treatment planning procedure that includes liver

segmentation. After implementing the segmentation algorithms

and concluding the segmentation procedures, the latter were

additionally modified using optimization results obtained using a

training set of seven cases that were previously manually

segmented by a radiologist. Finally, additional four cases were

manually segmented by a radiologist and used for the final

validation of the segmentation procedures.

In this study, we evaluated three different liver segmentation

algorithms that can be used for electroporation-based treatment

planning: region growing, adaptive threshold and active contours.

Region growing was selected for evaluation because despite its

simplicity (i.e. segments are included solely based on their

intensities) this algorithm is robust and can provide good results

if its basic drawbacks (e.g. oversegmentation due to leakage) are

eliminated [24] using a postprocessor. Our implementation of the

adaptive threshold algorithm was evaluated because this algorithm

is based on a physical property, i.e. continuity of the tissue:

segments on two neighboring slices are expected to be minimally

different, which although being an intuitive solution which can be

used as initialization of other segmentation methods [25], it proved

to be accurate enough to be used as a standalone method for liver

segmentation. Finally, the active contours algorithm [26] based on

the Gradient Vector Flow (GVF) [27] was evaluated because of its

insensitivity for intensity-based anomalies (e.g. inhomogeneity, or

thin bonds connecting different segments such as the liver and e.g.

kidneys) and possibility of influencing the movement of the

contour by balancing the coefficient that influence attraction of the

contours by the image or by the contour’s inner properties. All

three segmentation algorithms were optimized on a training set of

seven cases, i.e. quantitatively assessed using real case data

obtained from a radiologist. Finally, algorithms were validated

using additional four real cases obtained from a radiologist,

therefore accuracy of how their results are produced is known.

Methodology

2.1. Automatic Liver Segmentation
2.1.1. Importing DICOM Images. The segmentation

procedure begins with importing the patient’s images into the

treatment planning software. The latter is a MATLAB application,

developed in MATLAB R2012a (Mathworks, Nantick, MA, USA)

using the Image Processing Toolbox and Parallel Processing Toolbox. The

procedure for loading images loads all DICOM (Digital Imaging

and Communications in Medicine) [28] files from the user-defined

folder, and reads their DICOM headers’ SeriesNumber parameter in

order to determine the number of different acquisition series

present in the folder. Then, an image from every series is

presented to the end-user (e.g. the attending physician); an image

from every acquisition series is displayed and labeled using the

original label that was stored at acquisition time and is read from

the DICOM header as the string stored in the SeriesDescription

parameter. Finally, the end-user determines which acquisition
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Figure 1. Sigmoid transformation function for preprocessing
purposes. Presented is an example sigmoid function (B), with
approximations of the step function (A: WC =512, WW =1) and linear
function (C: WC =512, WW =2048).
doi:10.1371/journal.pone.0069068.g001

Figure 2. An example three-dimensional liver object. The
presented object consists of 72 slices (ZMAX = 72, A) and includes slice
ZREF = 47 as the referential slice (B).
doi:10.1371/journal.pone.0069068.g002
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series will be used for planning of the electroporation-based

treatment.

After that, all the images from the selected acquisition series are

loaded and sorted according to their spatial location (i.e. according

to their Z-index which can be read from the DICOM header as

the SliceLocation parameter) using a common bubble-sorting

algorithm. If all obtained Z-indexes after bubble-sorting are not

evenly distributed, empty slices are inserted where the slices are

detected as missing. However, since missing slices may indicate

corruption of the patient’s images collection, the software does not

try to interpolate the missing slices but notifies the end-user

instead.

Besides the image data, essential DICOM metadata is loaded;

the metadata structure appended to the slices includes these

parameters: Width, Height, SliceThickness, PixelSpacing, Modality,

AcquisitionDate, BitsAllocated, and Volume of Interest (VOI) param-

eters WindowCenter (WC) and WindowWidth (WW) which are most

important. Namely, WC and WW determine how source image

data need to be interpreted when displayed; therefore, an initial

sigmoid transformation using parameters WC and WW needs to

be performed first for the image data to be displayed correctly.

The latter is done within the preprocessing procedure.

2.1.2. Preprocessing. For segmentation algorithms to per-

form without problems, the imported slices first need to be

preprocessed. Preprocessing is a procedure which is executed on

each slice separately; therefore, the procedure is non-recursive and

can be run in parallel using multiple processors or processor cores.

Since the preprocessing procedure comprises of several steps, the

steps are marked for debugging and algorithm evaluation purposes

by storing partial results (i.e. partially preprocessed slices) into

separate layers, starting with the source slices (i.e. slices stored as

DICOM data), which enables the developers of the algorithms to

have a clear overview of the whole preprocessing procedure.

Interpretation of imported (i.e. source) slices is defined by the

Volume-of-Interest (VOI) parameters (i.e. Window Center – WC,

and Window Width – WW) that are stored as DICOM metadata.

Since WC and WW differ from slice to slice, each slice first needs

to be transformed from the imported data values (i.e. source layer)

to the normal values (i.e. original layer) which are defined by the

VOI parameters. The transformation can be performed using a

sigmoid function as defined by the DICOM standard [29]; the

transformation is described using Equation 1.

Figure 3. Representation of the initial seed voxel and its 26
neighbors.
doi:10.1371/journal.pone.0069068.g003
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Figure 4. Progress of the region growing algorithm performing
liver segmentation. Presented is the functioning of the algorithm
after 40.000 evaluated voxels (A), after 400.000 evaluated voxels (B), and
after all the voxels have been evaluated (C). The initial seed is located at
X = 192, Y = 209, Z = 47.
doi:10.1371/journal.pone.0069068.g004
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As seen in Figure 1, such a transformation can be used for

multiple purposes. When the WW parameter is small (WW?1),
the sigmoid function (Figure 1B) changes into an approximation of

a step function (Figure 1A) and can be used for thresholding, the

WC parameter being the threshold value and the output value

being Boolean with possible values (0, output_range). When the WW

parameter is large (e.g. WW . output_range), the sigmoid function

changes into an approximation of a linear function (Figure 1C)

and can be used for linear transformations, the output value

residing in the range (0, output_range) depending on the WC and

WW parameter values.

After transforming the source slices into original slices using the

transformation from Eq.1 and parameter values (WC, WW, and

output_range) from the DICOM metadata, the slices are then de-

biased. De-biasing is a procedure that removes intensity inhomo-

geneity [30] that is caused because the magnetic field in the area

where the patient is positioned is not equally intense (i.e. the

magnetic field is more homogeneous in the focal part of the

device); a publicly available inhomogeneity correction algorithm

was implemented for de-biasing [31]. Then, filtering of the slices,

which is necessary for noise elimination, is performed by applying

an average and a Gaussian blur filter (s~3), both with window

sizes of 363 pixels. Finally, another sigmoid transformation is

applied to the slices using fixed VOI parameters (WC=20000,

WW=100, output_range = 216) which ensures the intensity distribu-

tion of the slices is redistributed in the whole 16-bit range

regardless of the source slices’ range, and an adequate contrast

which is dependent on the WW parameter. The fixed VOI values

were selected based on our experience using real case data, and

assure that the liver segment will have an appropriate intensity

value range for the segmentation to be successful. After these

procedures are applied, the resulting slices are stored as preprocessed

slices (i.e. on a separate layer) and are ready for segmentation.

2.1.3. Referential Slice. First, we define the referential slice as

the slice in the patient’s medical images collection with a high

probability to include a large liver segment. We define ZREF as the

index (i.e. spatial location) of the referential slice using Equation 2:

ZREF~ceil(0:65:ZMAX ) ð2Þ

where ZMAX is the number of all the slices in the patient’s medical

images collection and the constant 0.65 was found empirically on

real case data. Using Equation 2, we have a high probability of

obtaining a referential slice with a liver segment that is morpholog-

ically similar to the liver segment shown in Figure 2B.

The identified referential slice serves as the beginning point of

segmentation, i.e. the slice where segmentation is initiated, and its

identification is independent of the chosen segmentation algo-

rithm. Hence, there is a high probability that the referential slice will

include a liver segment as the one shown in Figure 2B. For region

growing, the referential slice is used as the slice that is presented to

the end-user (e.g. attending physician) in order to place the initial

seed on the slice; for adaptive threshold (and also for active

contours which use adaptive threshold for contour initialization),

the referential slice is used for comparing the dynamically

thresholded slice to the presets that include similar liver segments,

and marking the threshold value with the highest similarity to any

of the presets as the initial liver segment.

2.1.4. Region Growing Segmentation Algorithm. We first

implemented an intensity-based segmentation algorithm known as

the region growing algorithm. The latter determines whether

voxels are part of the target region or not by comparing their

intensities to the intensity of the initial seed. The initial seed is a

voxel manually selected by the end-user (e.g. the attending

physician) at the beginning of the procedure; in our case, the

referential slice is presented to the end-user who is required to click

on the liver segment where there are no internal liver structures

such as vessels or tumor nodules. The pixel clicked then serves as

the initial seed voxel.

The region growing segmentation algorithm works in three

dimensions and evaluates the voxels that are scheduled into the

queue. At the beginning, a single voxel is added to the queue,

namely the initial seed. The algorithm examines the current voxel in

the queue by comparing the intensity of every current voxel’s

neighbor to the intensity of the current voxel, as shown in Figure 3

where an array of 36363 voxels is displayed and the middle voxel

represents the current voxel (i.e. 26-connected neighbors).

Since intensity of the target region varies in all three dimensions

due to inhomogeneity, it is imperative to allow some intensity

deviation when evaluating if the neighboring voxels belong to the

Figure 5. Adaptive threshold algorithm functioning. Demon-
strated is the functioning of the algorithm comparing a slice while
sweeping the intensity threshold value; presented are three examples
where the intensity threshold value is set to 15.000 bits and similarity is
0.12 (A), 25.000 bits and similarity is 0.81 (B) and 35.000 bits and
similarity is 0.95 (C); the comparison is done to the previous already-
segmented slice (D).
doi:10.1371/journal.pone.0069068.g005
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target region. The allowed intensity deviation is defined using a

threshold deviation value (e.g. setting the threshold deviation value

to 0.20, which is the value we used, determines the intensities that

are acceptable for inclusion into the target region; the determined

intensities reside in the range 0:8:ISEEDvICURRENTv1:2:ISEED,
where I denotes the voxel’s intensity and a bit is its unit).

Therefore, any of the evaluated neighbor voxels that have the

intensity in the defined range are marked as part of the target

region by being added to the queue. After all the neighbors of the

current voxel are evaluated, the algorithm evaluates the next voxel

in the queue; the next voxel becomes the current voxel and its

neighbors are evaluated. The procedure is repeated until there are

no voxels left in the queue. Finally, all the voxels that are stored in

the queue represent the target region which in our case is the liver.

Figure 4 displays progress of the segmentation based on region

growing after 40.000 evaluated voxels (A), after 400.000 evaluated

voxels (B), and after all the voxels in the queue have been

evaluated (C).

Due to leakage, region growing may include unwanted

segments (e.g. the lower part of the heart, as seen in the upper

right part of Figure 4C) which are later eliminated by the

postprocessing procedure.

2.1.5. Adaptive Threshold Segmentation Algorithm. The

second liver segmentation algorithm that we evaluated is adaptive

threshold algorithm. We developed this algorithm as an upgraded

threshold-based algorithm that executes filtering of the current

slice using a threshold function while sweeping the intensity

threshold value and at the same time comparing the currently

filtered slice to the previous already-segmented slice (i.e. the

maximum similarity criterion). The intensity threshold value is

swept over the whole intensity range, and the similarity

comparison is done using normalized cross-correlation which

performs segment area comparison (i.e. surface overlap). Similarity

to the previous slice is chosen as the criterion for segment

determination of adaptive threshold algorithm because the

difference in liver shape and size between two neighboring slices

is expected to be minimal; therefore, choosing similarity with the

previous properly segmented slice as the criterion ensures that the

current slice will also be segmented properly. Hence, the error of

such a procedure is cumulative and shall the segmentation fail on

one slice, all the following slices will be improperly segmented as

well. The procedure is shown in Figure 5, where the current slice

with three different threshold values (Figures 5A, 5B, and 5C) is

compared to the previous slice (Figure 5D).

The comparison results (i.e. similarity) which are obtained using

normalized cross-correlation are stored during sweep for each

intensity threshold value. After the intensity threshold value sweep

is done, the intensity threshold value with the highest similarity (i.e.

the maximum normalized cross-correlation) is selected, and the

current slice is, finally, transformed using the selected intensity

Figure 6. Three example liver presets used by the adaptive
threshold algorithm. The preset are used for determining the final
intensity threshold value of the referential slice.
doi:10.1371/journal.pone.0069068.g006

Figure 7. Active contours algorithm and the Gradient Vector
Flow map. Presented is an example original liver slice (A) with its edge
map (B) and overlaid with a calculated Gradient Vector Flow (GVF) map
(C).
doi:10.1371/journal.pone.0069068.g007
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threshold value. The procedure is started from the referential slice

and repeated on the following slices until the end of the slices

collection; then, the procedure is restarted from the referential slice

to the beginning of the slices collection. If the highest similarity is

lower than a certain similarity threshold, the algorithms deter-

mines the segment has ended and empties the current and all the

following (or previous, depending on the segmentation Z-direction)

slices; in our case, the similarity threshold was set to 0.70 based on

our experience on real case data. Moreover, since the referential

slice has no prior slices it could be compared to, a set of six presets

that include various possible liver segments is used instead, and the

maximum similarity to any of the presets indicates the final

intensity threshold value for the referential slice. Three out of six

example presets that are used for thresholding the referential slice

are shown in Figure 6.

2.1.6. Active Contours Segmentation Algorithm. The

third algorithm for performing liver segmentation that we

evaluated for electroporation-based treatment planning is the

active contours segmentation, sometimes referred to as the snakes

segmentation algorithm. This algorithm is based on placing a

deformable (i.e. active) contour, which is a closed curve made of

points, on the same location as certain voxels (i.e. the initial

contour position). Then, for each point of the active contour

(located at the current voxel), the energy of the current and all its

neighboring voxels is calculated based on four energy contribu-

tions: elasticity of the contour’s point in the current voxel, curvature

of the contour’s point in the current voxel, magnitude of intensity-

based energy in the neighboring voxels, and direction of the

intensity-based energy in the current voxel. Each point of the active

contour is, then, moved to the voxel with the lowest energy. The

procedure is repeated until the active contour reaches the desired

location (e.g. after a defined number of iterations).

The active contours segmentation algorithm is initiated by

placing an initial active contour on top of the referential slice. The

active contour is attracted by the edges in the image [26];

therefore, it is imperative to initialize the active contour by placing

it near the edge of the desired segment (i.e. the liver). Hence, the

adaptive threshold segmentation algorithm is used to generate the

initial active contour by segmenting the referential slice and

transforming the edge of the segment identified on the referential

slice into a closed curve with points sorted according to their

location on the segment’s circumference. Moreover, the number of

all the points in the active contour is reduced by decimation; in our

case, the number of circumference pixels between two active

contour points is limited to 8. Next, the image energy is calculated

as the Gradient Vector Flow (GVF) of the image; a publicly-

available GVF calculation algorithm [27] has been implemented

using parameter m=0.2 and run in 1.000 iterations. The

calculation of the GVF is based on the edge map deriving from

intensities in a slice; individual steps of this procedure are shown in

Figure 7.

The energy contributions to the total voxel energy are, based on

our experience with optimizing algorithms using real case data,

balanced using the coefficients 1, 3, 9, 3 for curve elasticity, curve

curvature, GVF magnitude, GVF direction, respectively. All the

energy contributions are normalized to reside within the range

(0,1) in order for the energy coefficients to be properly balanced.

In our segmentation algorithm, the curve elasticity energy contribu-

tion is calculated based on Equation 3, while the curve curvature

energy contribution is calculated based on Equation 4. The

implemented GVF algorithm already ensures normalized energy

results; the GVF magnitude energy contribution is calculated as the

magnitude of the GVF vector in the evaluated voxel, while the

GVF direction energy contribution is defined as representing low

energy (0) in the neighboring voxel that is located in the direction

the GVF vector of the evaluated voxel is pointing to, while all the

other voxels have a high energy (1). In Equations 3 and 4, E

denotes the energy contribution, while PCURR, PPREV and PNEXT
denote the current, the previous and the next points of the active

contour, respectively.

EELAST~
( PCURR,PPREVk kz PCURR,PNEXTk k)

2
ð3Þ

ECURV~D PCURR,PPREVk k{ PCURR,PNEXTk kD ð4Þ

After the total energy on and around each active contour point

is calculated, and balanced using energy contribution coefficients,

the active contour points iteratively move toward the voxel with

the lowest total energy. Since the energy depends on the active

contour points’ locations, the curve elasticity and curve curvature

contributions are recalculated after every iteration, and the total

energy is recalculated as well. The active contour movement is

stopped after a predefined number of iterations (e.g. in our case,

the active contour movement is limited to 100 iterations).

When the active contour movement is stopped on one slice, the

procedure is repeated on another slice. The procedure is started

from the referential slice and is repeated on the next slices until the

end of the slices collection; then, the procedure is restarted from

the referential slice to the beginning of the slices collection; therefore,

the active contour segmentation algorithm may be split into two

processing threads.

In order to perform segmentation using the active contours

algorithm in three dimensions, the initial contour on the current

slice is the same as the final active contour on the previous slice.

Because the difference in liver shape and size between two

neighboring slices is expected to be minimal on the slices where

the organ that is subject to segmentation is present, the previous

slice’s final active contour is a good initial contour for the current

slice. Moreover, due to the expected minimal active contour

movement, less iterations are required when calculating the

Figure 8. Radiologist manual segmentation procedure. Present-
ed is a defined liver segment on a slice (A) and a final three-dimensional
liver object (B).
doi:10.1371/journal.pone.0069068.g008
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image’s GVF since edges will attract active contours in their

vicinity even when the GVF is calculated in less iterations;

therefore, the processing time of the active contour segmentation

algorithm is reduced (e.g. in our case, we are calculating the GVF

in 1000 iterations).

2.1.7. Postprocessing. After segmentation, a postprocessing

algorithm needs to be executed to eliminate possible anomalies

that may occur during segmentation (e.g. segment leakage).

Postprocessing eliminates redundant segments that cannot be part

of the final results; elimination is based on comparing neighboring

slices in the direction of the third dimension (i.e. component Z)

using normalized cross-correlation.

The postprocessing algorithm is initiated on the referential slice;

namely, the probability that a slice includes only one identified

segment is the highest on the referential slice, since segmentation was

initiated on this slice regardless of the chosen segmentation

algorithm: for region growing, the seed was placed on this slice; for

adaptive threshold, the comparison with presets was made on this

slice and also, the active contour was initiated using the adaptive

threshold segmentation algorithm on the referential slice as well.

Shall the morphological operations during segmentation split the

segment on the referential slice into multiple segments, the first step

of postprocessing eliminates such redundant segments by only

keeping the largest segment on the referential slice.

Then, the postprocessed referential slice, i.e. ZCURR=ZREF, is used

as the basis for performing normalized cross-correlation with the

next, i.e. ZCURR+1 or the previous, i.e. ZCURR21 slice, respectively.

The template for the normalized cross-correlation is generated by

intersecting each segment on the current slice, i.e. ZCURR, with the

finally postprocessed previous, i.e. ZCURR-1 or next, i.e. ZCURR+1
slice, respectively (depending on the postprocessing Z-direction).

Then, each segment on the current slice is compared to its

corresponding template generated from its neighboring slice using

normalized cross-correlation; if the result of the comparison

exceeds a predefined threshold, the segment is kept on the slice,

else it is discarded. In our case, we set the comparison threshold to

0.65 which was found empirically on real case data. The

postprocessing procedure may be split into two processing threads,

since it is symmetrically executed from Z=ZREF+1 to Z=ZMAX,

and from Z=ZREF-1 to Z=1 (i.e. the postprocessing Z-direction).

Moreover, if we compared the neighboring slices only by using

the whole next or previous slice as the template for comparison to

the current slice (i.e. without comparing separate segments on a

slice), we would be unable to extract these separate segments and

Table 1. Optimization results of seven cases compared to radiologist data by mean values.

case number REGION GROWING ADAPTIVE THRESHOLD ACTIVE CONTOURS

SC std(SC) SG std(SG) SC std(SC) SG std(SG) SC std(SC) SG std(SG)

20091223 91.2% 15.9% 61.1% 38.9% 72.2% 39.1% 72.2% 39.1% 88.2% 22.1% 68.8% 36.3%

20100930 92.7% 13.7% 86.8% 19.0% 70.1% 38.1% 68.1% 40.2% 89.7% 20.7% 64.5% 40.1%

20101221 84.7% 19.6% 79.9% 19.2% 73.4% 34.5% 70.1% 33.9% 84.6% 22.3% 78.6% 23.6%

20110228 81.1% 25.5% 65.7% 36.0% 74.0% 29.1% 73.2% 29.5% 79.4% 29.1% 67.2% 37.1%

20110421 86.6% 19.4% 78.2% 29.0% 60.0% 35.6% 40.1% 41.6% 64.8% 36.6% 54.8% 37.9%

20110624 94.4% 2.1% 94.2% 2.9% 80.2% 13.4% 80.2% 13.4% 87.6% 14.1% 67.9% 36.6%

20110707 92.5% 4.9% 92.5% 4.9% 69.3% 37.8% 69.3% 37.8% 80.3% 30.9% 80.3% 30.9%

mean 79.8% 12.7% 67.6% 12.8% 68.8% 8.6%

Presented are mean similarities of seven cases segmented using three segmentation algorithms and compared to models that were generated by radiologist manual
segmentation. Every similarity (S) is the mean value of similarities from each slice of a case, and was evaluated using individual, case-specific parameters (SC) or using
globally-optimized parameters (SG). Std stands for standard deviation of similarities of slices within a case.
doi:10.1371/journal.pone.0069068.t001

Table 2. Optimization results of seven cases compared to radiologist data by median values.

case number REGION GROWING ADAPTIVE THRESHOLD ACTIVE CONTOURS

SC SG SC SG SC SG

20091223 95.6% 79.9% 92.0% 92.0% 94.0% 82.6%

20100930 95.9% 91.8% 88.8% 90.0% 95.3% 82.5%

20101221 90.3% 85.6% 88.6% 87.8% 91.0% 86.9%

20110228 88.8% 84.8% 83.7% 83.7% 88.3% 86.4%

20110421 92.6% 89.2% 73.6% 55.4% 80.2% 75.6%

20110624 94.4% 94.4% 82.7% 82.7% 91.2% 88.9%

20110707 93.4% 93.4% 87.6% 87.6% 91.5% 91.5%

median 89.2% 87.6% 86.4%

Presented are median similarities of seven cases segmented using three segmentation algorithms and compared to models that were generated by radiologist manual
segmentation. Every similarity (S) is the median value of similarities from each slice of a case, and was evaluated using individual, case-specific parameters (SC) or using
globally-optimized parameters (SG).
doi:10.1371/journal.pone.0069068.t002
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determine whether they derive from the target tissue (e.g. liver) or

not; therefore, such comparison enables us to keep multiple

segments on a slice with the possibility of eliminating segments that

are not part of the target tissue. Besides, in order to allow

separation of single segments that are in fact multiple segments

connected by a thin bond (possibly due to leakage), all the slices are

eroded before and dilated after the postprocessing procedure using

a disk structuring element of 363 pixel size.

2.2. Validation
2.2.1. Optimization using Radiologist Data Set as a

Training Set. Since segmentation algorithms are required to

produce not only meaningful but also accurate results, validation

of the algorithms is an imperative. In our case, validation was

performed as a two-step procedure. In the first step, the algorithms

were optimized using radiologist dataset as a training set, and then

in the second step, the algorithms were validated after being

optimized using another radiologist dataset.

In order to perform segmentation algorithms’ optimization,

seven sets of patient’s liver manually segmented by a radiologist

were used as a training set. The patient images that were used for

development and optimization of segmentation algorithms belong

to patients from the clinical study ‘‘Treatment of Liver Metastases

with Electrochemotherapy (ECTJ)’’ (EudraCt no. 2008-008290-

54, registered at Clinicaltrials.gov no. NCT01264952). The study

was prospective, phase I/II, conducted at the Institute of

Oncology Ljubljana, Ljubljana, Slovenia. Regulatory approvals

from the Institutional board, as well as from the National Medical

Ethics Committee were obtained. Written consents of the patients

were obtained. Additional 4 patients were included for final

validation of segmentation algorithms: these patients were under

standard treatment, according to Declaration of Helsinki, and all

patient data were anonymized before processing. For each

segmentation algorithm, changeable parameters that significantly

influence the functioning of the algorithms were defined, and their

possible value ranges were defined based on our previous

experience using real-case data. These changeable parameters

were then subject to variation within optimization iterations; every

of the seven cases that were already manually segmented by the

radiologist was re-segmented using our three segmentation

algorithms (i.e. region growing, adaptive threshold, and active

contours) in the optimization process. During this optimization

process, variation of the defined changeable parameters was

performed in order to each time automatically obtain a liver object

that is most similar to the one segmented by the radiologist.

Figure 8 demonstrates how manual segmentation was performed

by the radiologist: an example slice during manual segmentation

can be seen (Figure 8A), and a final three-dimensional liver object

as a result of the manual segmentation by the radiologist

(Figure 8B).

After acquiring the data obtained from the radiologist and

arranging them into the form that was applicable to optimization

and validation (i.e. changing the data syntax by converting them to

a raw format, so that inclusion into optimization algorithms was

seamless), value ranges of the changeable parameters were defined.

For region growing, the parameters subject to variation during

optimization were the size of the noise-elimination filter mask

during preprocessing, and the threshold deviation value which

determines the range of the intensities that are acceptable for

inclusion into the target region during segmentation (for optimi-

zation purposes, the initial seed of the region growing algorithm

was chosen manually and fixed for each segmented case

separately). For adaptive threshold, the parameters subject to

variation during optimization were the size of the noise-

elimination filter mask during preprocessing, and the initial

coefficient that determines the targeted size of the referential

segment (i.e. the initial liver segment on the referential slice) in the

beginning of segmentation. For active contours, all four energy-

contribution coefficients were varied during optimization.

Optimization was run on a workstation with Intel Core-i7 965

Extreme Edition processor (maximum frequency 3.46 GHz, 4

cores, 8 threads) with 12 GB of DDR3 memory (frequency

1.333 MHz), two 300 GB hard disk drives (velocity 10.000 rpm)

running in stripe mode, and operating system Windows 7

Enterprise (64-bit). The segmented three-dimensional liver object

that was produced in each iteration of optimization was compared

to the corresponding model that was manually segmented by the

radiologist; comparison was done on a slice-by-slice basis using

normalized cross-correlation. Similarity (i.e. the results of the

normalized cross-correlation) was stored together with the current

values of the changeable parameters, and finally the iteration with

the maximum similarity (i.e. the mean value of similarity of all

slices), was chosen as the optimum (i.e. case-specific similarity, SC
in Table 1 and 2); the changeable parameters used in that iteration

were marked as optimal parameters for the current case and

currently evaluated segmentation algorithm. Moreover, optimal

parameters of every evaluated segmentation algorithm were also

determined for the whole evaluated series (i.e. all the seven cases)

by comparing similarity of different cases with the same

changeable parameters to the corresponding model that was

manually segmented by the radiologist. These optimized param-

eters can be defined as globally-optimized parameters since their

Table 3. Validation results of four cases compared to radiologist data by mean and median values.

case number REGION GROWING ADAPTIVE THRESHOLD ACTIVE CONTOURS

SMN std(SMN) SMD
S
MN std(SMN) S

MD SMN std(SMN) S
MD

V1 79.4% 24.8% 87.0% 67.3% 30.5% 76.4% 54.5% 43.0% 79.5%

V2 87.1% 18.0% 92.5% 64.5% 35.9% 79.0% 51.7% 42.6% 70.2%

V3 71.3% 33.1% 85.5% 67.5% 30.1% 78.0% 72.8% 28.5% 81.9%

V4 49.6% 38.1% 70.5% 65.9% 35.7% 81.9% 58.2% 43.6% 83.7%

71.9% 16.2% 86.3% 66.3% 1.4% 78.5% 59.3% 9.4% 80.7%

Presented are validation results: mean and median similarities of four cases compared to manually-segmented data from the radiologist. Similarity (S) was evaluated on
a slice-by-slice basis using validation-only parameters as mean (SMN) or median (SMD) of all the slices in a case. Std is the standard deviation of mean similarities of slices
within a case.
doi:10.1371/journal.pone.0069068.t003
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similarity (SG in Tables 1 and 2) to the training set was evaluated

globally (i.e. for all the cases, and not using separate parameters for

each case) and is, therefore, estimated that these globally-

optimized parameters are optimal for every possible liver that

needs to be segmented using our algorithms.

2.2.2. Final validation. After globally optimizing changeable

parameters of all three evaluated segmentation algorithms, final

validation was performed on additional four cases that were

manually segmented by the radiologist. As opposed to the

optimization procedure, the changeable parameters were fixed

during validation using values obtained from optimization and

previously defined as globally-optimized parameters. Then,

segmentation was performed and results were compared (i.e.

validation similarity, SMN and SMD in Table 3) to the reference

model that was manually segmented by the radiologist in the same

manner as when performing optimization.

Results

The results of optimization, displayed as similarity to the

training set, are shown in Tables 1 and 2. Both the similarity using

case-specific optimal parameters (SC in Tables 1 and 2) and using

globally-optimized parameters (SG in Tables 1 and 2) are

presented. The similarity was evaluated using two possible criteria:

as the mean (Table 1) or the median similarity (Table 2) of all the

slices within a case of the training set.

As presented in Table 1, after being globally optimized (i.e. for

all cases) our implementation of region growing algorithm

provides mean slice similarities (SG in Table 1) from 61.1% to

94.2% with the mean value of 79.8% (standard deviation 12.7%)

which classifies the region growing as the most accurate algorithm

evaluated based on the mean and also the median values of all the

slices’ similarities. Based on the data from Table 2, median slice

similarity values for the region growing algorithm vary from

84.8% to 94.4% with the median value of 89.2%, which is the

highest among all three evaluated algorithms.

Our implementation of adaptive threshold algorithm provides

globally optimized (i.e. for all cases) mean slice similarities (SG in

Table 1) from 40.1% to 80.2% with the mean value of 67.6%

(standard deviation 12.8%) which classifies the adaptive threshold

algorithm as the least accurate algorithm evaluated based on the

mean values of all the slices’ similarities. Based on the data from

Table 2, median slice similarity values for the adaptive threshold

algorithm vary from 55.4% to 92.0% with the median value of

87.6%.

Our implementation of active contours algorithm provides

globally optimized (i.e. for all cases) mean slice similarities (SG in

Table 1) from 54.8% to 80.3% with the mean value of 68.8%

(standard deviation 8.6%). Based on the data from Table 2,

median slice similarity values for the active contours algorithm

vary from 75.6% to 91.5% with the median value of 86.4%.

The results of validation of the four additional cases manually

segmented by the radiologist are shown in Table 3. The

similarities are non-optimized: the segmentation results (SV in

Table 3) are validated using globally-optimized parameters (SG in

Tables 1 and 2) without further modifications of these parameters

in order to show functioning of our segmentation algorithms on

models which previously were not used as a training set during the

optimization procedure.

As presented in Table 3, the region growing algorithm achieves

highest similarities (mean 71.9% with standard deviation 16.2%,

or median 86.3%) of the validated models. The standard deviation

between different models segmented using the same algorithm is

the smallest (i.e. 1.4%) using the adaptive threshold algorithm.

Individual validation similarities (SV in Table 3) on a slice basis are

also presented in Figure 9.

Figure 9 shows that although the four validation cases (A, B, C,

and D) were not included in the training set, they could be
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segmented using our implementations of the region growing,

adaptive threshold and active contours algorithms.

Discussion

The aim of this paper was to present three possible automatic

liver segmentation algorithms and perform their evaluation by

optimizing their functioning for an accurate liver segmentation;

the optimization was based on seven-patients dataset segmented

by the radiologist and used as a training set, while validation was

performed using additional radiologist dataset consisting of four

additional patients. As presented in the Results section, developing

an automatic segmentation algorithm that generates accurate

three-dimensional liver models is demanding, especially because of

the variability of input data (i.e. liver in the patient’s medical

images). Nevertheless, because the region growing requires the

end-user to place an initial seed (i.e. to click on the liver on one

image), this segmentation algorithm cannot be classified as a fully-

automatic algorithm but rather semi-automatic; however, an

algorithm for automatically placing the initial seed could upgrade

the region growing algorithm to a fully-automatic algorithm. The

initial seed-placing algorithm can be developed based on the

adaptive threshold segmentation algorithm (described in 2.1.5.) on

the referential slice, with an additional task of selecting a pixel with a

median intensity of the segment on the referential slice which should

ensure avoidance to selecting vessels or nodules as the target

region.

The liver includes or may include various inner structures (e.g.

blood vessels, metastases, hemangioma, etc.) that do not have a

predictable intensity range or texture; these structures may directly

interfere with segmentation algorithms by possibly influencing the

generation of segments. Also, certain organs near the liver (i.e. the

spleen, the heart, the kidneys) have similar intensity ranges to the

liver [32], which results in segmentation leakage for threshold-

based segmentation methods (i.e. region growing and adaptive

threshold). Moreover, active contours are attracted to edges,

including the edges of the inner structures; therefore, straight-

forward three-dimensional segmentation of the liver using active

contours would only be possible if the three-dimensional contour

(i.e. the deformable surface) was initialized entirely near the edge

of the liver. Besides, the soft transitions of the organs from one slice

to another often prevent detection of the organ edges, which leads

to an insufficient Gradient Vector Flow (GVF) map and

consequently corrupting the generated segments of the active

contours algorithm. All the identified difficulties demonstrate that

accurate automatic liver segmentation is indeed a challenging task.

Fortunately, highest accuracy of liver segmentation is not required

for electroporation-based treatment planning since tissue of

interest for electric field distribution actually represents the tumor

tissue, and possibly large blood vessels which must be taken into

account because of electric field calculations and electrode

placement. The liver tissue, however, is only a medium that

surrounds the tissue of interest, i.e. the tumor that resides in the

liver, since electroporation-based treatment planning is required

for tumor nodules that are inside or on the edge of the liver.

Therefore, the main function of the generated three-dimensional

liver model besides being the medium surrounding the tissue of

interest is to provide instructions to the attending physician on

how the electroporation-based treatment will be performed (i.e.

where the tumor is located, since it cannot be seen as it is deep-

seated), and serves as electrode-insertion approximate offline

navigation for the clinician.

Since similarity comparisons using normalized cross-correlation

were performed on each slice of a case separately, final results of

each case are presented using two representations: the mean

similarity of all the slices, and the median similarity of all the slices

in a case. Two representations of the data were presented since

there are many individual slices with a similarity of 0%, which

means whether the radiologist marked a segment on that slice and

the segmentation algorithm missegmented it, or vice-versa (i.e. the

segmentation algorithm detected a segment that the radiologist did

not identify). Hence, such slices significantly contribute to the final

results of the comparison regardless of the size of the segment that

caused the 0% similarity on the slice (i.e. even a segment of only

few pixels detected by the segmentation algorithms and not

identified by the radiologist would produce a 0% similarity of its

slice). Since such slices significantly impact the quality of the final

results, the mean similarity of all the slices in a case does not reflect

success of the segmentation algorithm enough. Therefore, the

median similarity of the slices in a case was presented as well.

Optimization results presented in Tables 1 and 2 show that

using case-specific optimization parameters (i.e. parameters

optimized for every case separately, SC in Tables 1 and 2), very

good similarities to the training set can be obtained (median

similarities of up to 95.9% using region growing, up to 80.2%

using adaptive threshold, and up to 80.3% using active contours).

However, results applying to case-specific parameters can only be

achieved if a reference model which is part of the training set is

available. Therefore, globally-optimized parameters are the

parameters that give meaningful information on how accurate a

segmentation algorithm is. Our implementation of region growing

algorithm could be optimized to achieve an 89.2% median

similarity (79.8% mean similarity with 12.7% standard deviation)

to the training set, which classifies this algorithm as the most

optimization-prone algorithm evaluated. The adaptive threshold

algorithm could be optimized to achieve an 87.6% median

similarity (67.6% mean similarity with 12.8% standard deviation),

and our implementation of the active contours algorithm an

86.4% median similarity (68.8% mean similarity with 8.6%

standard deviation), which shows that despite being more

sophisticated, these two algorithms achieved lower results than

region growing. The main reason is that region growing algorithm

can be effectively optimized since the optimizable threshold-

deviation parameter majorly influences segmentation (i.e. it

significantly influences which voxels will be part of the final tissue

segment). The adaptive threshold only has one most relevant

parameter that could be optimized (i.e. the initial coefficient that

determines the targeted size of the initial segment on the

referential slice), which does not influence segmentation on further

slices. Although the active contours algorithm includes four

optimizable parameters (i.e. the four coefficients that balance

energy contributions), it is almost impossible to influence the

movement of the active contour (i.e. the snake). Namely, even if

the four energy contributions are ideally balanced, the active

contour movement needs to mostly rely on the edges in the image

(i.e. the two coefficients representing GVF magnitude and

directions). Therefore, if the edges of the target tissue were

improperly detected after preprocessing (e.g. the target tissue does

not have clearly detectable edges), the movement of the active

contour will produce unwanted results.

Results of the final validation that are presented in Table 3 show

that new patient images that were not part of the optimization

training set can be segmented using our implementations of

segmentation algorithms (region growing, adaptive threshold, and

active contours). The best results are provided by the region

growing algorithm (median similarity 86.3%, mean similarity

71.9% with standard deviation 16.2%), while adaptive threshold

(median similarity 78.5%, mean similarity 66.3% with standard
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deviation 1.4%) and active contours (median similarity 80.7%,

mean similarity 59.3% with standard deviation 9.4%) provide

lower similarity values. As it can be seen in Figure 9, there were

many slices missegmented in all four cases. Most missegmented

slices were produced using the active contours algorithm, while the

least standard deviation is provided using the adaptive threshold

algorithm. Although such missegmented slices would negatively

influence not only generation of the liver model, but also detection

of the tumors, this drawback is avoided using manual validation by

the attending physician, which is discussed in the following

paragraph. Finally, although the region growing was expected to

be the least sophisticated and accurate algorithm, it proved to be

the most robust of all the evaluated algorithms, providing highest

accuracy and least missegmented slices.

Tumor detection from the patient’s medical images is currently

still in development and will be implemented as a semi-automatic

procedure: identification of structures within the segmented liver

(including its edge area) will be done automatically, but finally the

end-user (i.e. the attending physician) will be required to manually

determine which identified structures are tumors and are,

therefore, subject to electroporation-based treatment. Therefore,

the whole liver needs to be properly segmented, since tumors are

detected as structures within or on the edge of the liver, and could

be missed if some slices at the top or at the bottom of the liver are

not segmented. Figure 10 demonstrates possible situations that are

related to missegmenting liver segments at the beginning or at the

end of the liver: Figure 10A shows an ideal case where all the slices

are segmented with a high similarity to the radiologist data; in

Figure 10B, there are three slices that do not include liver

segments but should include them (similarity of these slices is zero);

Figure 10C shows a bad case where many slices that should

include liver segments do not include them. The main reason for

missing segments on such slices is intensity inhomogeneity in the Z

direction (i.e. not on a single slice but through slices); although the

latter is actually corrected when preprocessing the images applying

the sigmoid transformation using Volume of Interest (VOI)

parameters from the DICOM header, the anomaly is not

completely removed, especially in the beginning and in the end

of the series. Since this phenomenon cannot therefore be fully

avoided, and because there are rare cases that can be automat-

ically segmented as the case from Fig 10A, manual validation of

the segmented slices is required at the end of electroporation-based

treatment planning procedure. The validation can be combined

with the attending physician’s manual identification of the

structures whether they are tumors or healthy tissue, which

reduces the time needed to execute the whole treatment planning

procedure. Hence, the attending physician manually validates the

segmented images to ensure proper liver and tumor model

generation, and manually corrects them if required.

Currently, only Magnetic Resonance Imaging (MRI) images are

segmented for electroporation-based treatment planning, as MRI

is preferred in clinical practice for the liver. Namely, MRI is a non-

invasive procedure (i.e. there is no ionizing radiation present

during MRI) and using a contrast medium it can provide

satisfactory images of the liver for electroporation-based treatment

planning. Hence, our algorithms are currently written and

optimized only for MRI images; the preprocessing procedures

are prepared for expected intensity ranges and Volume-of-Interest

(VOI) values that derive from MRI sources, and could therefore

not perform segmentation of e.g. Computed Tomography (CT)

images. However, since the modality of obtained images can be

easily determined from the header of the DICOM files, and

because only minor modifications of the preprocessing algorithms

would be required, a modification allowing non-MRI image

segmentation would not be demanding to implement.

Further steps of our research in the field of electroporation-

based treatment planning include improved algorithms for tumor

detection and, also, automatic vessel segmentation. Namely,

segmentation of tumors and vessels needs to be also developed

since algorithms for liver segmentation (i.e. region growing,

adaptive threshold, and active contours) cannot be used for this

purpose without thorough modifications of the algorithms. We

expect to develop vessel segmentation algorithms as a combination

of intensity- and morphology-based methods with the aim of

extracting line-like structures from the liver.

We plan to develop electroporation-based treatment planning as

a web application that will be remotely accessible from a web

browser and will allow generating treatment plans by allowing the

attending physician to upload the DICOM images of the patient

and, after calculations and manual validation of the results,

obtaining a directly applicable treatment plan. Hence, besides the

automatic liver segmentation, the treatment planning software will

also need to include electrode insertion and calculation of the

electric field distribution with electrode position optimization in

order for the treatment plan to comprise all the required

information. The treatment planning procedure will be simplified

in order to minimize the input of the clinician: because the

segmentation of the tissue is automatic, the clinician will only need

to validate the segmentation results (and if required, correct the

segmentation by dragging the produced contours towards desired

positions on each slice) and, finally, determine the entry direction

of the electrodes. Namely, the electrodes will be automatically

inserted towards the gravitational center of the tumor (or tumors),

and the required number of electrodes will be proposed by the

software based on the shape and size of the tumor (or tumors).

Therefore, the clinician will only need to rotate the electrode array

towards the excepted intraoperative entry direction, which will

simplify the procedure.

Finally, since automatic liver segmentation can be implemented

for other applications [32–34] beside electroporation-based

treatments, we opt towards extending the functioning of our

web-based treatment planning software for electroporation-based

treatments onto related fields of surgical liver intervention

planning.
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