Discovery and Characterization of BlsE, a Radical S-Adenosyl-L-methionine Decarboxylase Involved in the Blasticidin S Biosynthetic Pathway

Jun Feng1, Jun Wu1, Nan Dai2, Shuangjun Lin1, H. Howard Xu3, Zixin Deng1, Xinyi He1*

1 State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China, 2 New England Biolabs, Inc., Research Department, Ipswich, Massachusetts, United States of America, 3 Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America

Abstract

BlsE, a predicted radical S-adenosyl-L-methionine (SAM) protein, was anaerobically purified and reconstituted in vitro to study its function in the blasticidin S biosynthetic pathway. The putative role of BlsE was elucidated based on bioinformatics analysis, genetic inactivation and biochemical characterization. Biochemical results showed that BlsE is a SAM-dependent radical enzyme that utilizes cytosylglucuronic acid, the accumulated intermediate metabolite in bslE mutant, as substrate and catalyzes decarboxylation at the C5 position of the glucoside residue to yield cytosylarabinopyranose. Additionally, we report the purification and reconstitution of BlsE, characterization of its [4Fe–4S] cluster using UV-vis and electron paramagnetic resonance (EPR) spectroscopic analysis, and investigation of the ability of flavodoxin (Fld), flavodoxin reductase (Fpr) and NADPH to reduce the [4Fe–4S] cluster. Mutagenesis studies demonstrated that Cys31, Cys35, Cys38 in the CXXXC×MC motif and Gly73, Gly74, Glu236, Pro236 in the GGECP motif were crucial amino acids for BlsE activity while mutation of Met32 had little effect on its function. Our results indicate that BlsE represents a typical [4Fe–4S]-containing radical SAM enzyme and it catalyzes decarboxylation in blasticidin S biosynthesis.

Editor: Anna Kristina Croft, University of Nottingham, United Kingdom

Received February 8, 2013; Accepted May 30, 2013; Published July 18, 2013

Copyright: © 2013 Feng et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported in part by grants from the Ministry of Science and Technology of China (2012CB721004, 2009CB118901); the National Natural Science Foundation of China (31121064); Ministry of Education of China (2011007313001); Open Fund of State Key Laboratory of Bio-organic and Natural Products Chemistry; the Chen Xing Young Scholars Program, Shanghai Jiao Tong University; Dr Xu acknowledge Wang Family Faculty Fellowship from California State University, and U.S. Army Research Laboratory and the U.S. Army Research Office (W911NF-12-1-0059). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: Co-author Nan Dai is employed by New England Biolabs, Inc. There are no patents, products in development or marketed products to declare. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials.

* E-mail: xyhe@sjtu.edu.cn

Introduction

Blasticidin S (1), a representative peptidyl nucleoside antibiotic produced by Streptomyces gissechromogenes, exhibits strong inhibitory activity against rice blast caused by Pyricularia oryzae, a representative of rice blast [1]. It specifically inhibits protein synthesis in both prokaryotes and eukaryotes through inhibition of peptide-bond formation in the ribosomal machinery [2]. Compound 1 and its resistance gene (bss1) have been widely used for transgenic selection in eukaryotic cells [3,4,5,6]. Unlike typical nucleosides, such as puromycin, nikkomycin, and pacidamycin, 1 features a pyranoside core moiety that is shared by agrimycin (2), mildiomicin (3), and cytomyicin (4) (Figure 1A). This moiety is derived from cytosylarabinopyranose (CGA, 8) which is formed by coupling UDP-glucuronic acid with free cytosine by CGA synthase BlsD/MilG (Accession number AAP03118/AFD20743) (Figure 1B). CGA and hydroxymethyl-CGA were accumulated upon mutation of bslE and milG in 1 and 3 biosynthetic pathway, respectively [7,8]. Recently, ArgF (Accession number AGG35696), a homolog of BlsE/MilG (Accession number AY196214/AFD20747), was identified from compound 2 producer Streptomyces arginensis (NRRL 15941). The three protein homologs were predicted to be radical S-adenosyl-L-

methionine (SAM, 10) proteins with a typical motif C×××C××Φ (× represents any amino acid residue but cysteine, Φ usually refers to an aromatic amino acid). The biosynthetic gene clusters for 1 and 3 have been reported to share seven pairs of homologs [7,9]. Each pair of homologous proteins in the pathways may govern the formation of a moiety with same or similar structure. Among the biosynthetic reactions, mechanism for the biochemical step catalyzed by BlsE/MilG remains obscure and most intriguing.

The radical SAM protein superfamily currently contains thousands of members that participate in versatile biochemical reactions in the biosynthesis of coenzymes, vitamins, and antibiotics [10,11,12,13]. Members of this family possess a common C×××C××Φ motif to coordinate with the [4Fe–4S] cluster. The common mechanism for the reaction catalyzed by a radical SAM protein is to generate 5′-deoxyadenosine (5′-AdoH, 11) radical and methionine (12) from SAM, while 11 in turn serves as an oxidant to initiate radical transformation by abstracting a hydrogen radical from its substrate (Figure 1C). The following catalytic steps, specific to the given radical SAM enzyme, can lead to various outcomes, such as sulfur insertion (BioB [14,15] in biotin synthase and LipA [16] in lipoyl synthase), methylthiolation (MiaB [17] in tRNA methylthiolation), and
complex rearrangements (PqqE [18,19] in pyrroloquinoline quinone biosynthesis, ThiC [20] in thiamine biosynthesis and NosL [21] in nosiheptide biosynthesis). Upon dithionite reduction, the iron–sulfur cluster can be reduced to $[4\text{Fe}–4\text{S}]^+$, which is present in all active form of radical SAM proteins [22].

Besides the common C₆C₆C₆ motif, BlsE/MilG also contain the GGEP, ribose, G₆I₆G₆E and b₆ structural motifs that were demonstrated to coordinate with different moieties of SAM (i.e., adenine, ribose and methionine) in the studies of other radical SAM proteins (Figure 2) [23]. We previously observed that in vivo disruption of milG led to accumulation of hydroxymethyl-CGA [8]. CGA was therefore proposed as the direct substrate for the radical SAM protein BlsE in 1 biosynthesis. Herein, we report a full account of the characterization of BlsE and its catalyzed conversion of CGA to cytosylarabinopyranose (CAP, 9).

Results

Expression and purification of BlsE

Since the radical SAM protein has nucleated iron-sulfur cluster(s) that is highly susceptible to oxidation in the air, N-terminal His₁₀-tagged BlsE was purified anaerobically using NTA column followed by concentration using Centricon YM-10 membrane (Millipore). A molecular mass of 38 kDa for BlsE plus the His₁₀-tag predicts a purified protein of 40.2 kDa, consistent with the estimated size determined by gel filtration chromatograph (Figure 3, inset).

Ultraviolet–visible (UV-vis) spectroscopic analysis of the reduced [4Fe–4S] cluster

The catalytic form of iron-sulfur cluster $[4\text{Fe}–4\text{S}]^+$ was generated by using chemical reductant sodium dithionite in the anaerobic condition. The reduction of $[4\text{Fe}–4\text{S}]^{2+}$ to $[4\text{Fe}–4\text{S}]^+$ state in the process of the reaction was monitored by UV-vis spectroscopy. The decreasing shoulder at 420 nm and a remarkable shift at 360 nm indicate the presence of the $[4\text{Fe}–4\text{S}]^+$ cluster (Figure 3) as reported for other radical SAM enzymes, such as BtrN [24] in butirosin biosynthesis, ThiC [25] in thiamin pyrimidine biosynthesis and NosL [21] in nosiheptide biosynthesis.

Iron and sulfur content

The iron content was determined by measuring the maximum absorbance wavelength of Fe²⁺-ferene complex at 593 nm. The
resulting data showed that unreconstituted His6-tagged BlsE contained approximately 1.4 ± 0.5 iron equivalents per monomer of protein. In contrast, the fully reconstituted His6-tagged BlsE contained approximately 6.8 ± 0.4 iron equivalents per monomer, which clearly indicated iron increased by nearly 5 times during reconstitution process. It was shown that the unreconstituted His6-tagged BlsE contained approximately 1.6 ± 0.3 sulfur equivalents per monomer of protein, while the fully reconstituted His6-tagged BlsE contained nearly 8.5 ± 0.4 sulfur equivalents per monomer. These data suggested that the BlsE monomer may contain two [4Fe–4S] clusters after in vitro chemical reconstitution.

EPR spectroscopy of the [4Fe–4S] cluster in BlsE

Electron paramagnetic resonance (EPR) spectroscopy has been an essential tool for gaining full understanding of the radical SAM enzymes [26]. In particular, EPR spectroscopy has played a key role in identifying iron-sulfur clusters and, together with Mössbauer spectroscopy, in characterizing cluster types including its oxidation states and the catalytically active cluster in radical SAM enzymes [27]. From our results, the g factor (the value of the dimensionless magnetic moment) obtained was 2.01 for as-isolated BlsE (Figure 4A), characteristic of a [3Fe–4S]$^{+}$ cluster (spin state $S = 1/2$), which was recognized as the product of air oxidation of the [4Fe–4S]$^{2+}$ cluster possessed by the inactive enzyme. Similar g factor values were reported for several radical SAM enzymes, such as the anaerobic ribonucleotide reductase with a g factor centered at 2.017 [28], and D-desosamine oxidative dehydrogenase (DesII) with a g factor centered at 2.01 [29]. Furthermore, this result was supported with the iron and sulfur content analysis which generated Fe$^{2+}$/S$^{2-}$ ratios averaging about 0.8, higher than expected for a [3Fe–4S] cluster. The discrepancies between the spectrum of as-isolated BlsE and that of the synthetic [3Fe–4S] cluster most likely resulted from a mixture of small amount of [4Fe–3S]$^{3+}$ cluster existed in BlsE. However, as the [4Fe–4S]$^{2+}$ cluster usually exhibit silence in EPR spectra, it seems that the [4Fe–4S] cluster of BlsE was unstable in the absence of SAM and could easily lose one iron to assume the [3Fe–4S] form [30]. In contrast, when reduced by sodium dithionite, the reconstituted protein showed two peaks with g factors of 2.02 and 1.93 (Figure 4B), which suggested the generation of a [4Fe–4S]$^{+}$ cluster as reported to be possessed by typical radical SAM proteins [24]. After adding 10 to the reaction mixture, a rhombic spectrum with g values of 2.00, 1.93 and 1.86 was observed ($g_{av} = 1.93$) (Figure 4C), similar to that of the [4Fe–4S]$^{+}$ cluster in DesII with g values of 2.01, 1.96, and 1.87 ($g_{av} = 1.95$) [29]. Adding both 8 and 10 to the reaction led to a significant EPR spectral change, indicating that a substrate radical was generated in the EPR spectrum through the coordination of BlsE nucleophilic groups.
with the active iron of the \([4\text{Fe}–4\text{S}]\) cluster (Figure 4D). The significant EPR signal caused by this unstable conformation indicated the strong interaction between substrate and \([4\text{Fe}–4\text{S}]\) cluster. Samples were also analyzed in the absence of glycerol, and the results showed that glycerol had little effect on the EPR spectra of BlsE (Figure S1). These results confirmed that the EPR spectral changes were caused by the interaction between \(8\) and the \([4\text{Fe}–4\text{S}]\) cluster, not glycerol, in the reaction mixture.

Activity assay of the BlsE-catalyzed reactions

The substrate CGA was chemically synthesized starting from commercial N-acetylcytosine via two-step synthesis (Figure S2) and the structure was confirmed with \(^1\text{H}\) NMR spectra (Figure S3–S4). The complete reaction of fully reconstituted BlsE with CGA yielded two new peaks in the chromatograms during HPLC analysis that corresponded to compounds \(9\) and \(11\) (Figure 5A, d), respectively. However, when BlsE was purified aerobically or the incubation was operated in the air, no new peaks corresponding to the desired products were observed (Figure 5B, Samples 2, 3 respectively), which indicated that this enzyme must work under strict anaerobic conditions. Additionally, BlsE reactions without \(8\), \(10\), or sodium dithionite revealed that no products were detected in the reaction mixtures (Figure 5B, Samples 5, 6 and 7, respectively). Moreover, since dithiothreitol can considerably increase the rate of the cleavage reaction of the SAM [31], its absence in our reaction system led to a significant reduction in the formation of \(9\) (Figure 5B, Sample 4). The same peak fragments were combined, concentrated and analyzed by NMR (\(^1\text{H}\) NMR, methanol-\(d_4\) and \(^13\text{C}\) NMR, 125 MHz, methanol-\(d_4\)) spectra. The signals of \(9\) are as follows: \(\delta\)H 7.70 (d, 2H), 6.06 (d, 1H), 5.55 (d, 1H), 3.97 (m, 1H), 3.65 (dd, 1H), 3.56 (dd, 1H), 3.41 (d, 1H), 3.32 (d, 2H) and \(\delta\)C 167.69, 159.23, 143.50, 97.52, 86.03, 79.25, 73.25, and 71.25 (Figure S5-S6). Furthermore, by using comprehensive 2D NMR techniques including \(^1\text{H}-^1\text{H}\) COSY, HSQC and HMBC, the structure of \(9\) was determined (Figure S7-S9). The High Resolution Electrospray Ionization Mass Spectrometer (HR-ESI-MS) data are listed as follows: for isolated \(9\), HR-ESI-MS \(m/z\) calcd 244.0855, found 244.0853 (Figure S10); for isolated \(11\), HR-ESI-MS \(m/z\) calcd 252.1018, found 252.1152 (Figure S11).

Time dependence of cytosylarabinopyranose and 5’-AdoH formation during in vitro BlsE reaction

To understand the relationship between the reductive cleavage of SAM and oxidative decarboxylation catalyzed by BlsE, we measured the time-dependent formation of cytosylarabinopyranose (CAP, \(9\)) and consumption of SAM (\(10\)), indicated by the formation of 5’-AdoH (\(11\)). In the first 5 minutes, equal molar of \(11\) and \(9\) were formed during the BlsE-catalyzed reaction (Figure 6). This clearly proved that in the initial stage of the reaction one molecule of 5’-deoxyadenosine radical (5’-Ado•, \(13\)), which is generated from reductive homolytical cleavage of 10 by BlsE, can capture one electron from CGA to form \(11\) and catalyze decarboxylation of CGA to form \(9\). The first order rate constants of the BlsE reaction with CGA was 1.93 min\(^{-1}\), which allowed the BlsE-catalyzed reaction to be used for quantitative analysis of \(9\) formation. However, with the increasing formation of \(11\), the generation rate of \(9\) obviously lagged after 60 min compared to formation of \(11\), suggesting that excess \(11\) inhibits \(13\) from capturing electron from \(8\), and thus leading to reduced rate of \(9\) formation.

Activity assay of BlsE-catalyzed reactions by flavodoxin (Fld) and flavodoxin reductase (Fpr)

Although chemical reductants such as 5-deazaflavin and dithionite are commonly used in the process for the reduction of \([4\text{Fe}–4\text{S}]\) cluster, Fld, Fpr and NADPH have also been demonstrated as effective reducing systems for several radical SAM enzymes. In this system, the electron from \([4\text{Fe}–4\text{S}]\) cluster, Fld, Fpr and NADPH have also been demonstrated as effective reducing systems for several radical SAM enzymes. In this system, the electron from \([4\text{Fe}–4\text{S}]\) was transferred to \([4\text{Fe}–4\text{S}]\) stepwise from NADPH to NADP,
following by the recycle of Fld and Fpr in the \textit{in vivo} reducing system. Fld and Fpr genes were cloned from \textit{E. coli} BL21 (DE3). The expressed Fld and Fpr proteins were purified and analyzed by SDS-PAGE. Purified fractions revealed two bands of ca. 22 kDa and 30 kDa in size, consistent with calculated molecular weight of Fld and Fpr, respectively (Figure 7A). Additionally, Fpr and Fld solutions had golden and brown color, respectively (Figure 7A), suggesting the presence of a flavin mononucleotide cofactor and a flavin adenine dinucleotide in the active site, respectively. The results indicated that 9 could also be generated when using NADPH, Fld and Fpr reducing system and the amount of 9 was 1.5 times higher than that when sodium dithionite was used (Figure 7B).

\section*{Mutagenesis study of the conserved motif of BlsE}

Multiple alignment of BlsE with its homologs revealed a C3132C355C357C369 motif and a G73G74E75P76 motif (Figure 2). The first one was crucial for binding the [4Fe–4S] cluster for the coordination with SAM; the latter one was required for binding with the amino group of methionine moiety of SAM, thus ensuring proper ligation of the cluster’s unique iron and correct orientation of the SAM methionyl moiety [32]. We constructed a series of mutants for the replacement of cysteine residues of C3132C355C357C369 with alanine, and Met37 with aromatic amino acids, phenylalanine, tyrosine or tryptophan, individually. Similarly, we replaced each amino acid residue of the G73G74E75P76 motif with alanine. The mutant proteins were purified and analyzed with SDS-PAGE (Figure S12). The results showed that Cys is required for BlsE activity because all Cys-replaced mutants could not convert 8 to 9 (Figure 8). In other radical SAM proteins, Met37 is usually an aromatic acid, typically phenylalanine or tyrosine that interacts with the adenine of SAM. However, in our system, minimal effects were observed on production in the BM37F, BM37Y and BM37W mutants, indicating that this site was not vital for BlsE catalytic activity (Figure 8). On the other hand, none of the GGEP motif mutants showed any activity for BlsE-catalyzed reactions, demonstrating that binding via the GGEP motif with methionine moiety of SAM was essential for BlsE activity. The failure of 9 formation in the reactions by mutants BG73A and BG74A indicated that the methyl group of alanine may block the steric conformation of binding site of [4Fe–4S] cluster. Nevertheless, the identity of GG residues has not always been conserved. For example, the residues in BioB are AAW instead of GGE, while the structure and function of this motif was equivalent to a classic GGE motif [33]. Similarly, lack of production of 9 could be observed for mutants BE75A and BP76A. This provided the evidence that substitutions in BioB are AAW instead of GGE, while the structure and function of this motif was equivalent to a classic GGE motif [33].

\section*{Determination of the kinetic parameters for reactions catalyzed by BlsE and select mutant proteins}

A 500-\textmu L reaction volume was used for reactions containing lower substrate concentrations to facilitate HPLC analysis. Enzyme reactions were performed with varying concentrations of substrate 8 (0.05–800 \textmu M) in the presence of a constant concentration of 10 (1 \textmu M). The results were fitted to the Michaelis–Menten equation by nonlinear regression and yielded a k_{cat} of 1.62±0.3 min$^{-1}$ and a k_{m} of 1.93±2.4 \textmu M for 8 (for BlsE), while the mutants BM37F, BM37Y and BM37W have k_{cat} values of 1.46±0.3 min$^{-1}$, 1.24±0.5 min$^{-1}$ and 1.43±0.3 min$^{-1}$, respectively, and k_{m} values of 2.15±3.8 \textmu M, 1.96±4.2 \textmu M, and 2.17±3.8 \textmu M for 8, respectively (Table 1). The results indicated that BlsE has a higher binding affinity for with CGA than the mutants since the $k_{\text{cat}}/k_{\text{m}}$ for BlsE was 0.84 \textmu M$^{-1}$min$^{-1}$, much higher than those of BM37F, BM37Y and BM37W proteins, which have the $k_{\text{cat}}/k_{\text{m}}$ ratios of 0.68, 0.63, and 0.70 \textmu M$^{-1}$min$^{-1}$, respectively (Table 1). Additionally, such results could provide guidance for us while we analyze the crystal structure of BlsE, MilG, ArgF, NosL and NocL, which all share a methionine in place of an aromatic amino acid, commonly found at this position in other members of this enzyme family.
Discussion

BlsE was predicted as a radical SAM enzyme as it has five conserved motifs that serve to coordinate with the iron-sulfur cluster and SAM, characteristic of this family of proteins. To gain insights into the reaction mechanism, we first investigated [4Fe–4S] cluster of BlsE by UV-vis absorption and the EPR spectra. As expected, BlsE contains the [4Fe–4S] cluster that is characteristic of the radical SAM protein. The content of iron and sulfur indicated that BlsE may contain two [4Fe–4S] clusters, which is
supported by the fact that removal of two electrons is theoretically necessary for the oxidative decarboxylation of CGA to obtain CAP. We assume that the $C_{31}^{6}C_{35}^{6}M_{37}C_{38}$ motif binds one of the $[4Fe–4S]$ clusters which coordinates binding with SAM, while another motif ($C_{317}^{6}C_{319}^{6}C_{322}^{6}$) may provide the binding site for the second iron-sulfur that is supposed to coordinate with the nucleophilic groups of CGA. A good example is BtrN, which contains two $[4Fe–4S]$ clusters to coordinate with SAM and 2-deoxy-scyllinoosamine (DOIA), respectively [34]. This assumption was partly supported by the generation of a significant EPR signal when SAM and CGA were added into the reaction mixture (Figure 4D), suggesting that one active iron of the $[4Fe–4S]$ cluster in BlsE coordinates with the nucleophilic groups of CGA. Similar EPR signals were also found for several other radical SAM enzymes, such as the pyruvate formate-lyase-activating enzymes [27], in which the EPR signal was generated due to the alteration in $[4Fe–4S]$ cluster geometric conformation. In addition, glycerol is known to be able to coordinate with the $[4Fe–4S]$ cluster, resulting in spectroscopic changes similar to those observed for SAM coordination [35]. In our study, the EPR spectrum of BlsE in the absence of glycerol was nearly identical to that containing glycerol, suggesting that glycerol does not coordinate with $[4Fe–4S]$ cluster in the presence of SAM. This evidence helped us eliminate the effect of glycerol on the reactions. In addition, small changes were observed in the reduced BlsE with SAM, because the $g = 2.00$ feature was more pronounced when glycerol was used alone in the mixture. These findings are similar to those reported for NocL, which is involved in nocathiacin I biosynthesis, in which the EPR signal also changed when L-Trp was added to the reaction mixture [36].

Since dithionite was not the physiologically reductant, assays were performed to test whether flavodoxin and flavodoxin reductase could also support this reaction. Flavodoxin is a flavin mononucleotide-containing protein that provide reducing equivalents in a variety of enzyme-catalyzed reactions [37]. In reactions using the reconstituted functional BlsE, flavodoxin, flavodoxin reductase, and dithionite, a significant EPR signal was generated, suggesting that flavodoxin reductase could support the reaction.

Figure 6. Time dependence of CAP and 5'-AdoH production. Time dependence of CAP (○) and 5'-AdoH (△) formation in the reaction with CGA. Error bars show SD, each data point represents the average of three replicates.
doi:10.1371/journal.pone.0068545.g006

Figure 7. Activity assay of BlsE-catalyzed reaction by Fld, Fpr and NADPH. (A) Gel electrophoresis analysis (SDS-PAGE) of Fpr and Fld on the left side. Fpr and Fld came out as golden and light brown in 50 mM HEPES (pH 8.0) on the right side, respectively. (B) Activity of the natural reduction system. Sample 1 represents the reaction mixture containing SAM, CGA, sodium dithionite, and BlsE. Sample 2 has same reaction mixture as sample 1 but with sodium dithionite substituted by NADPH, Fpr and Fld. Samples 3–5 represent reaction 2 without NADPH, Fpr and Fld, respectively. Error bars show SD, each data point represents the average of three replicates.
doi:10.1371/journal.pone.0068545.g007
reductase and NADPH were demonstrated to be more effective reducing system than sodium dithionite. In this system, the electron from \([4Fe–4S]^{2+}\) to \([4Fe–4S]^+\) was transferred stepwise from NADPH to NADP, followed by the cycle of flavodoxin and flavodoxin reductase in the \(in vitro\) reducing system. This \(in vitro\) reducing system was also employed in studies of NosL- and DesII-catalyzed reactions instead of chemical reductant sodium dithionite [39].

To determine the functional involvement of some key amino acids of BlsE in decarboxylation, we systematically generated mutations which changed conserved amino acid residues in the \(C\times\time...
this case, an uncharacterized electron acceptor in a cell-free extract of *E. coli* was required to complete the reaction. Surprisingly, in our work, it appears that the electron from CAP can be transmitted to an electron acceptor, while the [4Fe–4S]^{2+} also could be reduced to the [4Fe–4S]^+ for the next cycle. As mentioned above, the electron released from the substrate radical intermediate is somehow transferred to the [4Fe–4S]^{2+} cluster to produce CAP and regenerate the [4Fe–4S]^+ cluster for the next catalytic cycle. Another example of radical SAM enzyme is NirJ which is involved in tetrapyrrole biosynthesis; it catalyzes the decarboxylation of siroheme to yield didecarboxysiroheme, which is then converted to Fe-coproporphyrin by oxidative decarboxylation of two acetyl side chains \([41,42]\). Given the high similarity between BlsE and NirJ (35% amino acid identity and 50% similarity), it is reasonable to propose that BlsE may also catalyze similar reactions.

In summary, we have successfully reconstituted the BlsE, which catalyzed carbon chain cleavage of C5 glucoside in CGA to yield CAP. Also, we have demonstrated via EPR and UV-vis spectroscopy that this enzyme requires a reduced [4Fe–4S] cluster for catalysis. To our knowledge, this is the first report detailing the in vitro decarboxylation of a glucoside moiety by a member of the radical SAM superfamily, which expands the functional diversity of this enzyme family. Further characterization of this unique mechanism is ongoing in our laboratory. Elucidating unique functions of BlsE and other radical SAM enzymes may lead to the discovery of novel metabolic pathways and facilitate chemical and biochemical applications of peptidyl nucleoside antibiotics.

Materials and Methods

General

SAM was purchased from Sigma-Aldrich Corporation. Dithiothreitol and ferrous ammonium sulfate were obtained from Sangon Biotech Co. Ltd. Cysteine, sodium dithionite and N-acetylcysteine were purchased from TCI Inc. All media were purchased from Oxoid Ltd. HPLC-MS analysis was operated using an Agilent 1100 Series System with TC-C18 (5 \(\mu\)m, 4.6 \(\times\) 250 mm) equipped with a diode array UV-vis detector and an in-line fluorescence detector. \(^1\)H and \(^{13}\)C spectra were recorded using Agilent instruments (\(^1\)H frequencies = 500 MHz; corresponding \(^{13}\)C frequencies = 125 MHz). Chemical shifts were expressed as parts per million relative to TMS. Primers used are shown in Table S1.

Cloning, expression and purification of BlsE, flavodoxin (Fld) and flavodoxin reductase (Fpr)

For BlsE overexpression, the *blsE* gene was amplified from the total DNA of *Streptomyces griseochromogenes* via PCR and the 1.1-kb PCR product was cloned to pBluescript SK\(^+\). After digestion with the restriction enzymes NdeI and EcoRI, the resulting insert fragment was cloned to the same enzyme sites of pET-28a to generate recombinant plasmids, respectively.

All strains were grown from overnight cultures in fresh Luria–Bertani medium with 50 \(\mu\)g mL\(^{-1}\) kanamycin at 37°C. When the optical density reached 0.6–0.8 at 600 nm, the protein over-expression was induced with 0.2 mM IPTG and continuously grown at 16°C for another 20–24 h. After harvesting by centrifugation at 6,000 rpm for 10 min, the cells were stored at −80°C until use. For BlsE purification, all processes were carried out in an anaerobic box (Coy Laboratory Product Inc., USA) under a strictly controlled oxygen concentration below 2 ppm.

Figure 9. Proposed mechanism of BlsE-catalyzed reaction

BlsE catalyzes the decarboxylation at C5 position of 8, leading to the formation of 9. SAM (10) serves as the source of methionine (12) and 5′-Ado radical (13), the latter could abstract the hydrogen from 8 and generate 5′-AdoH (11).

doi:10.1371/journal.pone.0068545.g009
The proteins were resuspended in an ice-cold lysis buffer (50 mM HEPES, pH 8.0). After being lysed by a sonicator (Sonics Materials, Inc., USA), the cell debris was removed by centrifugation at 15,000 rpm for 60 min, and the supernatant was incubated with 5 mL of Ni-NTA resin (Invitrogen) pre-equilibrated with lysis buffer. The resins were loaded onto a polypropylene column and washed with lysis buffer until there was no UV absorption at 280 nm. After additional wash with 5 column volumes of wash buffer (50 mM HEPES, 300 mM NaCl, and 50 mM imidazole, pH 8.0), His-tagged proteins were eluted from the column with elution buffer (50 mM HEPES, 300 mM NaCl, and 500 mM imidazole, pH 8.0). The resulting proteins were concentrated with ultra centrifugation filter YM-10 membrane (Millipore), their purity was confirmed by 12% SDS-PAGE analysis, and their concentrations were determined by Bradford assay using bovine serum albumin as standard.

Iron–sulfur content determination

Iron content was measured by determining the optical density of the Fe

\[
\text{Fe}^{2+}\text{-ferene complex at the wavelength of 593 nm [43].}
\]

Specifically, the protein solution was diluted with ddH2O to a final volume of 100 µL. In total, 100 µL of 1% HCl was added to the solution, and the mixture was incubated for 10 min at 80°C to denature the protein. Next, 500 µL of ammonium acetate (7.5%, w/v), 100 µL of ascorbic acid (4%, w/v), 100 µL of SDS (2.5%, w/v), and 100 µL of ferene (1.5%, w/v) were added, resulting in a blue solution. The mixture was vortexed and centrifuged at 9,000 rpm for 5 min. The optical density at 593 nm was measured using an Ultraspec 3000 photometer (Pharmacia Biotech). A standard curve was obtained by measuring iron standards with an iron range of 2–40 nmol.

For the measurement of sulfide content, a small amount of the protein solution was diluted with ddH2O to a final volume of 200 µL. After the addition of 600 µL of zinc acetate (1%, w/v) and 50 µL of sodium hydroxide (7%, w/v), the solution was carefully mixed, incubated for 15 min at room temperature, and centrifuged at 3,000 rpm for 10 s. Subsequently, 150 µL of DMPD (V, V-dimethyl-p-phenylene-diamine monohydrochloride) (0.1%, w/v, in 5 M HCl) and 150 µL of FeCl3 (10 mM in 1 M HCl) were added. The released inorganic sulfide was first absorbed onto zinc to generate zinc sulfide and then released to react with HCl) were added. The released inorganic sulfide was first absorbed onto zinc to generate zinc sulfide and then released to react with HCl (0.1%, w/v, in 5 M HCl) and 300 µL of ammonium acetate (7.5% in 5 M HCl) were added to the solution. The mixture was allowed to incubate on ice for 30 min, after which 2.5 mL of reconstituted protein was loaded onto a 10 DG desalting column (Bio-Rad) pre-equilibrated with lysis buffer. After being eluted with 3 mL of lysis buffer, the dark brown protein was collected, sealed tightly, and stored at −80°C until use.

UV-vis and EPR spectroscopy

For UV-vis assay, samples were prepared in a glove box in the presence of 5 mM dithiothreitol. The reconstituted BlsE was treated with sodium dithionite and the reactions were monitored by UV-vis spectra at a full wavelength scan of 300–900 nm. For EPR assay, samples were prepared including 10 mM dithiothreitol and 120 µM BlsE in each EPR tube. BlsE (with or without glycerol) was reduced with excess sodium dithionite (10 mM) at 25°C for 30 min. SAM (1 mM) and CGA (500 µM) were added to the reduced sample in the same manner into an EPR tube, frozen in liquid nitrogen, and stored on dry ice before recording the spectra. EPR spectra were recorded using a Bruker EMX Plus 10/12 spectrometer (Bruker Co., Ltd., Germany) equipped with an Oxford ESR910 liquid helium continuous flow cryostat (Oxford Instrument Co., Ltd., UK) at the National High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei, China. Acquisition conditions for the Fe-S cluster analysis are: microwave frequency, 9.390 GHz; microwave power, 1 mW; field modulation amplitude, 5 Gauss; modulation frequency, 100 kHz; temperature, 13K. EPR spectra of the iron-sulfur clusters were simulated by SimFonia (Bruker, Co., Ltd., Germany).

Activity assay of BlsE-catalyzed reactions

Assays were performed in a glove box under strictly anaerobic conditions with an oxygen concentration below 2 ppm. The assay carried out contained 1 mM SAM, 5 mM dithiothreitol, 1 mM sodium dithionite, 500 µM CGA, and 15 µM protein in 50 mM HEPES buffer (pH 8.0). Reactions were initiated with SAM and incubated at 25°C for 3 h. triplicate samples were pipetted into the reaction mixture, and the precipitates were removed by centrifugation. The supernatant was subjected to HPLC-MS analysis. The HPLC-MS experiments used a two-stage linear gradient: from 2% to 10% acetonitrile in 20 mM ammonium acetate, pH 5.5, versus ddH2O over 30 min, followed by 40% to 2% acetonitrile in 20 mM ammonium acetate, pH 5.5, versus ddH2O over 20 min at a flow rate of 0.3 mL min⁻¹. For the product isolated, an Agilent semi-prepared column (ZORBAX ODS 250×9.4mm, 5 µm) was used. The mixture was subjected to separation by using the column coupled with the detector set at 260 nm and eluted with a 30-min linear gradient of 2% to 20% acetonitrile at a flow rate of 1 mL min⁻¹.

Quantitative analysis of product formation in vitro

Time course analysis including various intervals at 1, 3, 10, 30, 60, and 120 min was performed. At each interval, a 50-µL reaction aliquot was collected and terminated by addition of 5% TFA. CAP and 5'-AdoH production was measured by HPLC. The standard curves were generated with the authentic 5'-AdoH and CAP so as to correlate peak area with the amount of 5'-AdoH and CAP.

Activity assay of BlsE-catalyzed reactions using Fld, Fpr and NADPH as the reducing system

The natural reduction system assay contained 50 mM HEPES buffer (pH 8.0), 500 µM CGA, 1 mM SAM, 1 mM NADPH, 25 µM Fld, 20 µM Fpr, and 15 µM reconstituted BlsE in 200 µL of volume. The mixture was incubated at 25°C for 1 h and stopped with 5% TFA. After centrifugation at 12,000 rpm for 5 min, the supernatant was subjected to HPLC assay.

Mutagenesis study of the conserved motif in BlsE

Site-directed mutational analysis of BlsE was performed using a KOD-Plus-Mutagenesis Kit with the pET-28a-blsE plasmid as the template. After PCR with KOD-Plus DNA polymerase (TOYOBO), the obtained DNA fragments were digested for 1 h with DpnI to remove the methylated template plasmid. Further steps were carried out according to the manufacturer’s instructions. The plasmids containing the confirmed desired mutations (pET-28a-BC31A, pET-28a-BC35A, pET-28a-BM37F, pET-28a-BM37Y, pET-28a-BM37W, pET-28a-BC38A, pET-28a-BG73A, pET-28a-BG74A, pET-28a-BE75A and pET-28a-BP76A) were simulated by SimFonia (Bruker, Co., Ltd., Germany).
used to transform into E. coli BL21 (DE3) cells for subsequent expression. The resulting plasmids were introduced into E. coli BL21 (DE3) to yield the recombinant strains BC31A (C\(\times\times\times\times\times\Phi\)C), BC35A (C\(\times\times\times\times\times\Phi\)C), BC39A (C\(\times\times\times\times\times\Phi\)C), BM37G3 (AGEP), BM37A (GAEP), BE75A (GGAP), and BP76A (GGEA). As the \(\Phi\) amino acid in the C\(\times\times\times\times\times\Phi\)C motif for most radical SAM proteins belongs to an aromatic amino acid ([45], Met\(_37\) was thus changed into phenylalanine, tyrosine or tryptophan to yield BM37F (C\(\times\times\times\times\times\Phi\)C), BM37Y (C\(\times\times\times\times\times\Phi\)C) and BM37W (C\(\times\times\times\times\times\Phi\)C) to determine the effects of amino acid substitutions on enzyme activity.

Determination of the kinetic parameters for BlsE-catalyzed reaction

The steady-state kinetic parameters of the BlsE-catalyzed reactions were determined by activity assay as previously described above. Specifically, 10 \(\mu\)M enzyme (either BlsE, the mutant versions BM37F, BM37Y, or BM37W), 1 mM SAM, 1 mM sodium dithionite, and varied amounts of CGA (0.025–800 \(\mu\)M) were mixed in 50 mM HEPES buffer (pH 8.0). A 500-\(\mu\)L reaction volume was used for the lower substrate concentrations to facilitate HPLC analysis. The reaction was incubated at 25°C, and aliquots were removed at appropriate time points for HPLC analysis as described above. The percent conversion as determined by HPLC was used to calculate the product’s quantity. The product for a given substrate concentration at different time points was plotted, and the initial rate was then plotted against substrate concentration. The results were fitted to the Michaelis-Menten equation by nonlinear regression using GraphPad Prism 5 to determine the \(k_m\) and \(K_m\) values.

Supporting Information

Figure S1 Continuous-wave X-band EPR of BlsE under various conditions with or without glycerol. A, As-isolated sample of BlsE (120 \(\mu\)M), B, Reconstituted BlsE (with and without glycerol) reduced by dithionite before loading into an EPR tube anaerobically, C, B with 1 mM SAM added to the mixture. D, B with 1 mM CGA added to the mixture.

Figure S2 Two steps chemical synthesis of 8.

PDF

References

Figure S3 \(^1\)H NMR (500 MHz) spectrum of compound 16.

PDF

Figure S4 \(^1\)H NMR (500 MHz) spectrum of compound 8.

PDF

Figure S5 \(^1\)H NMR (500 MHz) spectrum of compound 9.

PDF

Figure S6 \(^13\)C NMR (125 MHz) spectrum of compound 9.

PDF

Figure S7 \(^1\)H–\(^1\)H COSY spectrum of compound 9.

PDF

Figure S8 HSQC spectrum of compound 9.

PDF

Figure S9 HMBC spectrum of compound 9.

PDF

Figure S10 HR-ESI-MS spectra of compounds 9.

PDF

Figure S11 HR-ESI-MS spectra of compounds 11.

PDF

Figure S12 SDS-PAGE results of mutant proteins.

PDF

Table S1 Primers used in this study.

PDF

Acknowledgments

We thank Dr. Xu Hui from Prof. Tang Gong-Li’s group for her guidance in performing the anearobiclal protein purification, and also thank Tong Wei (National High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei, China) for EPR operation and data collection.

Author Contributions

Conceived and designed the experiments: JF XH. Performed the experiments: JF. Analyzed the data: JF SL, HHX XH. Contributed reagents/materials/analysis tools: JW ZD. Wrote the paper: JF ND HHX XH.

