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Abstract

Stalk strength is an important trait in maize (Zea mays L.). Strong stalks reduce lodging and maximize harvestable yield.
Studies show rind penetrometer resistance (RPR), or the force required to pierce a stalk rind with a spike, is a valid
approximation of strength. We measured RPR across 4,692 recombinant inbreds (RILs) comprising the maize nested
association mapping (NAM) panel derived from crosses of diverse inbreds to the inbred, B73. An intermated B736Mo17
family (IBM) of 196 RILs and a panel of 2,453 diverse inbreds from the North Central Regional Plant Introduction Station
(NCRPIS) were also evaluated. We measured RPR in three environments. Family-nested QTL were identified by joint-linkage
mapping in the NAM panel. We also performed a genome-wide association study (GWAS) and genomic best linear unbiased
prediction (GBLUP) in each panel. Broad sense heritability computed on a line means basis was low for RPR. Only 8 of 26
families had a heritability above 0.20. The NCRPIS diversity panel had a heritability of 0.54. Across NAM and IBM families, 18
family-nested QTL and 141 significant GWAS associations were identified for RPR. Numerous weak associations were also
found in the NCRPIS diversity panel. However, few were linked to loci involved in phenylpropanoid and cellulose synthesis
or vegetative phase transition. Using an identity-by-state (IBS) relationship matrix estimated from 1.6 million single
nucleotide polymorphisms (SNPs) and RPR measures from 20% of the NAM panel, genomic prediction by GBLUP explained
6462% of variation in the remaining RILs. In the NCRPIS diversity panel, an IBS matrix estimated from 681,257 SNPs and RPR
measures from 20% of the panel explained 3363% of variation in the remaining inbreds. These results indicate the high
genetic complexity of stalk strength and the potential for genomic prediction to hasten its improvement.
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Introduction

Maize stalk strength impacts grain yield and silage quality due

to its relationship with stalk lodging and stover quality. High stalk

strength is important in fields plagued by European corn borer,

Ostrinia nubilalis H. [1], and Southwestern corn borer, Diatraea

grandiosella D. [2]. Stalk strength also affects colonization of fungal

pathogens such as Gibberella zeae [3] and Diplodia zeae [4]. High

winds and soils with poor nitrogen to phosphorous ratios [5]

increase stalk lodging in weak genotypes as well.

Dissection of stalk strength into its constituent traits suggests the

structural composition of the rind, and not the pith or total girth, is

the chief determinant of strength [6–8]. Previous study of maize

rinds, from populations divergently selected for stalk strength,

revealed several means for enhancement [6]. From anatomical

analyses, increases in vascular bundles, rind-parenchyma inter-

lumen thickness, and percent hypodermal cell wall area correlated

with superior strength [6]. Vegetative phase change also occurred

earlier in varieties with strong stalks [9]. In addition, compositional

analyses have revealed the influence of cellulose and lignin on

maize stalk strength [10].

Given the numerous mechanisms mediating stalk strength and

the continuous variation observed for the trait, several studies were

performed to quantitatively dissect its genetic architecture [11–

14]. In the most extensive previous quantitative study of stalk

strength, composite interval mapping of quantitative trait loci

(QTL) controlling stalk strength was performed in four bi-parental

maize families [14]. Construction of three of the families sought to

maximize genetic variation for stalk strength by using parents

divergently selected for stalk strength [14]. Stand counts and other

metrics for stalk strength are environmentally dependent and not

easily reproduced. Therefore, strength in the divergently selected

parents was evaluated by stalk crushing strength and rind

penetrometer resistance (RPR) [8,14,15]. RPR refers to the force

required to pierce a stalk rind with a spike fixed to a digital force

gauge [15,16]. After parental selection, RPR was used to pierce

the mid-internode below the primary ear. QTL controlling stalk

strength were found in all four families [14]. Ear height was

genetically correlated with RPR. Yet, most QTL remained

significant after accounting for ear height variation [14].

Previous RPR studies laid a foundation for evaluating stalk

strength. But, whole genome sequencing of B73 [17] and the
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construction of a maize HapMap detailing the segregation of

millions of single nucleotide polymorphisms (SNPs) [18] now

afford higher mapping resolution. For several traits, putatively

causal alleles have been identified at the gene level in joint-linkage-

assisted genome wide association studies (GWAS) [19–23]. Also,

genomic best linear unbiased prediction (GBLUP) promises to

increase breeding efficiency in complex traits. GBLUP employs all

genotyped SNPs in estimation of an identity-by-state (IBS)

genomic relationship matrix [24] and builds a linear mixed model

from genotypic and phenotypic data. The model allows prediction

of breeding values of genotyped seed before expending testing

resources. This facilitates the selection of individuals with superior

potential performance from a larger germplasm pool than what

may be immediately field tested [25,26].

Stalk strength remains a determinant of harvestable yield and

forage quality in the use of maize for ruminant animals.

Furthermore, new applications in cellulosic ethanol and biopoly-

mer synthesis have caused a surge of interest in stalk strength

related traits such as cell wall composition and biosynthesis [10].

While discoveries were made by molecular methods [10], there

exists interest in quantitatively resolving the genetic architecture of

natural variation in stalk strength. Leveraging our advanced

knowledge of the maize genome as well as new mapping and

prediction methods will enable us to understand the functional

allelic diversity of stalk strength and to breed varieties that suit

both enduring traditional needs and contemporary applications.

In this study, we measured the stalk strength (RPR), days to

anthesis (DTA), and primary ear height (EHT) of approximately

200 recombinant inbreds (RILs) from each of 25 families

composing the maize nested association mapping panel (NAM)

[27]. An intermated B736Mo17 family (IBM) of 196 RILs [28]

and a diversity panel of 2,453 inbreds [29] collected from the

North Central Regional Plant Introduction Station (NCRPIS)

were also evaluated. We measured RPR across the NAM families

in three environments. The IBM family and NCRPIS diversity

panel were both measured in two environments. Bootstrapped

joint-linkage QTL mapping [30] and a GWAS [19] were

performed to resolve the genetic architecture of RPR, DTA, and

EHT. Cross-validated family-nested QTL and GBLUP models

were also constructed to assess the accuracy of predicting each

line’s mean trait value across the surveyed environments [31].

Materials and Methods

Plant Materials and Environments
The NAM panel, developed by the Maize Diversity Project, was

created as previously described [27]. In addition, 196 RILs of the

IBM family [28] and 2,453 inbreds of the NCRPIS diversity panel

[29] were surveyed. A total of 4,536 NAM and 174 IBM RILs

were grown and measured at Muskgrave Research Station in

Aurora, NY (silt-loam soil) in the summer of 2008. Plots of 4,471

NAM and 189 IBM RILs were measured in Rollins Bottoms

Research Station in Columbia, MO (silt-loam soil) during the

summer of 2009. In NY and MO environments, a single row plot

was grown for each line. RILs were assigned to plots in a

randomized fashion but stratified by family in both environments.

B73 and the alternate parent of the NAM and IBM families were

included in each block of 22 plots [32]. Plots were composed of 12

plants in NY and 20 in MO.

NAM families were also grown in Madison, WI at the Arlington

Agricultural Research Station (silt-loam soil) in the summer of

2009. In WI fields, 3,453 RILs of the NAM panel were

randomized and blocked into 10 maturity groups based on

previous flowering data [30]. Each RIL was planted in a two-row

plot containing 40 seeds per row. B73 and four replications of ten

inbreds were randomly included as checks in each maturity group.

All three environments were cultivated in a conventional manner

with respect to fertilization, weed, and pest control. A total of

3,447 of the RILs were measured in all three environments and

used for joint-linkage QTL mapping, GWAS, and genomic

prediction (Table S1).

At Muskgrave Research Station in Aurora, NY (silt-loam soil) in

the summer of 2010, a set of 2,293 NCRPIS inbreds were

measured for RPR. The inbreds were planted in single row plots of

12 plants. The same year, 2,453 inbreds from the NCRPIS

diversity panel were measured at South Farm Research Station in

Columbia, MO (silt-loam soil). Single row plots of 15 plants were

grown. B73, and replicates of the 25 alternate NAM parents, were

randomly included as checks in the NY and MO field designs. The

2,293 inbreds measured in both environments were used in

GWAS and genomic prediction of the NCRPIS diversity panel

(Table S2).

Phenotyping RPR and Related Traits
To measure stalk strength, a modified Accuforce Cadet digital

force gauge (Ametek, Largo, FL) was assembled with a spike and

used to manually pierce stalks as previously described [14] for

RPR measures collected in Aurora, NY 2008. Subsequent

measures were collected with a spring-driven Z2S-DPU digital

force gauge reader (Imada, Northbrook, IL) to ease data collection

(Figure 1). In this apparatus, a spike was fixed to the digital force

gauge. The gauge was then fastened to a track and driven by

release of a compressed spring. A trigger, cocking mechanism, and

handle were fabricated to increase ease of measuring RPR by

ensuring uniform acceleration of the spike, when driven into the

rind. Custom Java code was developed to store plot mean RPR

measures from the gauge for later analysis. Audible commands

were encoded in the program to aid identification of plots

measured and those remaining to be collected.

RPR measures were collected near the middle of the stalk

internode immediately below the primary ear. Measures were

taken from three randomly selected plants per plot. This resulted

in the collection of 37,548 RPR measures across NAM families in

three environments. Measures taken in the IBM family and the

NCRPIS inbred diversity panel amounted to 1,735 and 15,399

observations, respectively. These were taken in two environments.

To avoid differential nutrient availability and light capture, the

end plants of each plot were not measured. Phenotypic data for

Figure 1. Spring-driven force gauge built to measure maize
rind penetrometer resistance (RPR). A digital force gauge (model
Z2S-DPU) measuring the kilograms of force imposed on a probe was
adapted to accommodate a steel spike and fit to a triggered spring-
driven track gliding on ball bearings. This apparatus was used to assess
the force required to puncture maize stalk rinds with the spike mid-
internode below the primary ear as a proxy for stalk strength. To ease
data acquisition, custom Java code was developed to maintain
measurements and provide users with audible commands denoting
current inbred score and field plots remaining to be measured.
doi:10.1371/journal.pone.0067066.g001
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DTA and EHT were acquired from the same plots as previously

described [27,30].

Genotyping RIL Families and the NCRPIS Diversity Panel
Three molecular marker sets were used for joint-linkage QTL

mapping, GWAS, and GBLUP across the NAM and IBM

families, as well as linear mixed model GWAS and GBLUP

across the NCRPIS inbred diversity panel. In the first marker set,

1,106 markers were genotyped on an Illumina Golden Gate assay

across the RIL families to facilitate joint-linkage QTL mapping

[27]. In this set, missing genotype calls were imputed as the

weighted average of flanking markers. Weights were derived from

the missing marker’s genetic distance to each adjacent marker as

previously described [19].

A second marker set of 1.6 million SNPs reported in the maize

HapMapV1 [18] were imputed across NAM family parents using

fastPHASE v1.3 [33]. These SNPs were projected on the RIL

families based on their parental lineage and the B73 genome as

previously reported [19]. SNPs projected on the RILs were

assigned a value equal to the weighted average of flanking markers

from the first marker set of 1,106 markers genotyped across all

RILs. Given a lack of recombination information, weights were

estimated by a SNPs’ physical distance from flanking genotyped

markers [19]. These SNPs were then used in joint-linkage-assisted

GWAS and GBLUP of the RIL families.

A third marker set of 681,257 SNPs from the NCRPIS inbred

diversity panel were genotyped using Genotyping-By-Sequencing

(GBS) [34]. Missing SNPs were imputed by a nearest neighbors

algorithm in TASSEL v.3.0 [35] and calculated from haplotypes

constructed from SNPs in a surrounding window of 1,024 bp.

SNPs were then used in linear mixed model GWAS of the

NCRPIS inbred diversity panel and genomic prediction by

GBLUP [31]. All three marker sets genotyped across the RIL

families or the NCRPIS inbred diversity panel, and used in this

study, are publicly available at www.panzea.org.

Partitioning Phenotypic Variance and Estimating Line
Means
To partition phenotypic variance into genetic and environmen-

tal components for RPR, DTA, and EHT, linear mixed modeling

was performed using ASReml v3.0 [36]. We winsorized those plot

observations greater than three standard deviations from each

environmental mean, where environment denotes a unique field

and year of measure. For each trait, linear mixed modeling was

performed in coordination with custom Java code for bottom-up

(variation in each environment was first fit and used to discern the

terms included in the multi-environment likelihood function)

backward selection of significant model terms based on likelihood

ratio testing (p,0.05). Plot measures for the NAM and IBM

families were fit in the same linear mixed model for each trait.

However, measures for the NCRPIS inbred diversity panel were

fit in a separate model given a lack of shared environments and

few common lines.

For the RIL families, linear mixed models were first separately

fit for each environment including a single fixed effect for the

grand mean and multiple random effects. Random effects entering

the full model included family and RIL nested within family

genotypic effects, as well as the environmental effects of the blocks,

rows, and columns of each field design. A separate variance

component was fit for RIL nested within each of the NAM and

IBM families. An additional family term was constructed to

accommodate the replicated parental checks. All random effect

terms in the model, including the genotypic effects of family and

RIL within family, were modeled with independent G structures.

However, a correlated R structure was fit among residuals based

on a two-dimensional separable first-order autoregressive spatial

structure for rows and columns in each environment (AR1row :

AR1col). All environmental effects and residual correlation

structures in each environment’s model were tested by backward

selection and retained if they met a likelihood ratio significance of

p,0.05. BLUPs for each RIL in the NAM and IBM families were

then predicted in each environment.

Next, for each trait a single linear mixed model across

environments was fit for the RIL families, including and nesting

the significant components of each individual environment model

by environment. Across environment terms were also added.

These included environment, family-by-environment, and RIL

nested within family-by-environment interaction terms, as well as a

heterogeneous spatially correlated R structure across environ-

ments, maintaining significant autoregressive spatial structures for

rows and columns in each environment. BLUP line means for

each RIL were predicted from the multi-environment model for

use in mapping and prediction (Table S1). After fitting the multi-

environment model for RPR, a random effect for DTA variation

was included in an additional model to evaluate the variance

captured by genotypic and environmental effects after accounting

for DTA. Analogously, EHT was included in another model to

assess its effect on RPR variance explained by genotypic and

environmental effects.

In the NCRPIS inbred diversity panel, a single linear mixed

model was fit across both environments including a single fixed

effect for the grand mean and random effects for genotypic and

environmental factors using ASReml v3.0 [36]. Random effects

entering the full model included an inbred genotypic effect and the

environmental effects of field, row, column, and blocks within each

environment. As in the case of NAM and IBM families, all random

effect terms including genetic effects were modeled with indepen-

dent G structures. A two-dimensional separable first-order

autoregressive spatial structure for rows and columns in each

environment and a heterogeneous correlated covariance structure

across environments were modeled in the R structure of the

residuals. From the multi-environment model constructed for each

trait, BLUP inbred line means in the NCRPIS diversity panel were

estimated for use in mapping and prediction (Table S2). After

fitting this full model, random effects for DTA and EHT were also

sequentially included in additional RPR models to assess their

influence on the variance in RPR captured by genotypic and

environmental effects.

As a result of fitting a separate variance component for RIL

nested within each NAM and IBM family as well as among the

replicated parental checks, differing levels of shrinkage among

BLUP line means for the three traits existed in each of the RIL

families. Therefore, models constructed across and within

environments were refit including the family term and all RIL

nested within family terms as fixed, rather than random effects.

This enabled comparison of best linear unbiased estimated

(BLUE) line means for these traits (Table S1). The unbiased

distribution of line means in each family enabled comparisons to

replicated parental values and improved inference of their relative

rank across families. The mixed model constructed for the

NCRPIS diversity panel was refit with fixed genetic effects in an

analogous fashion (Table S2).

Calculating Broad Sense Heritability on a Line Means
Basis
For each trait, estimates of broad sense heritability on a line

means basis across and within RIL families were calculated from

the multi-environment models fitting genotypic effects as a

Maize Stalk Strength Genetic Architecture
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random effect, as previously described [32]. The variance

component explaining variation between NAM families and the

arithmetic mean of the 25 variance components explaining

variation between RILs within each of the families were summed

to infer the genetic variance between RILs across families for each

trait. The genetic variances in each NAM family and the IBM

family were estimated as the variance component explaining

variation between RILs within that family. These estimates of

between RIL variance composed the numerator of the broad sense

heritability estimator, when computed on a line means basis,

across and within NAM and IBM families, respectively.

The denominator of the broad sense heritability estimator,

when computed on a line means basis [32], reflects the total

variation between and within RILs, less any environmental or

covarying trait (RPR models possessing DTA or EHT covariates)

variance ascribed to alternate sources of variation in the model. It

is the sum of the numerator and that of the estimated contributions

of family-by-environment, RIL nested within family-by-environ-

ment, and residual error to the expected variation in a single RIL.

To estimate these contributions to a single RIL in an unbalanced

design, family-by-environment and RIL nested in family-by-

environment were divided by the harmonic mean of the number

of environments in which each family or RIL was measured. The

contributions of residual error to variation in a RIL was estimated

by dividing the arithmetic mean for error across the heteroge-

neously modeled residuals for each environment by the harmonic

mean of the number of plots a RIL was estimated. Broad sense

heritability on a line means basis in the NCRPIS diversity panel

was calculated in a similar manner [32]. However, no family or

family-by-environment terms were included during estimation of

the genetic variation existing between or within the inbred lines.

Bootstrapped joint-linkage QTL Mapping across RIL
Families
To map genetic associations underlying the estimated heritable

variation, the SAS v9.2 statistics package [37] was implemented.

SAS PROC GLMSelect was applied to regress BLUP line means

for RPR, DTA, and EHT against a family term as well as a subset

of 1,106 markers nested within each of the NAM and IBM families

in a family-nested QTL model. First, a model term was fit for each

of the 26 RIL families. Subsequently family-nested marker

selection was performed by stepwise regression [30]. For all traits,

the significance of model entry and exit, p,5e-4, was obtained for

the marginal F-test of a family-nested marker, based on the results

of permutation testing.

Next, the previously described stepwise joint-linkage mapping

procedure [30] was bootstrapped. For 100 samples, a random

75% of the RILs stratified within each of the families were selected

without replacement and a random sampling of 25% of the RILs

within each family were selected with replacement followed by

family-nested QTL selection. This led to the construction of 100

family-nested QTL models. To rank their robustness, a resample

model inclusion probability (RMIP) [38] was also calculated for

family-nested QTL (Table S3). A RMIP details the probability a

family-nested QTL was included in a model of genetic architec-

ture upon family-stratified bootstrapping of the full data set. Upon

permutation testing of RPR, DTA, and EHT, a type 1 error rate

,0.05 was identified for family-nested QTL with an RMIP of over

10 out of 100 models at the given model entry and exit criteria,

p,5e-4. SAS code detailing the RIL family-stratified boot-

strapping of family-nested QTL mapping is available upon

request.

After constructing a family-nested QTL model for RPR, DTA,

and EHT from the full dataset, each trait’s model was fit to every

other trait for estimation of pleiotropic family-nested QTL.

Significance of pleiotropy was determined as previously described

[30]. It was based upon the significance of correlation between the

estimated allele effects for each trait at a given family-nested QTL

across all 26 RIL families.

GWAS across RIL Families and the NCRPIS Diversity Panel
By modifying family-nested QTL models for RPR, DTA, and

EHT constructed from the full dataset, ten additional models, one

for each maize chromosome, were built to account for background

genetic variation during joint-linkage-assisted GWAS. In the

family-nested QTL models, all terms explaining significant trait

variation were fit, with the exception of the family term denoting

variation between the NAM and IBM families. Family-nested

QTL residing on a model’s designated chromosome were also

dropped. Residual trait variance after fitting this model was

inferred to represent the joint distribution of error and the missing

family-nested QTL of the dropped chromosome.

For each trait, residuals from each of the ten chromosome’s

models were used in joint-linkage-assisted GWAS of the

HapMapV1 SNPs [19]. To perform joint-linkage-assisted GWAS,

model residuals were regressed against SNPs of their respective

chromosome in a bootstrapped forward regression procedure as

previously described [19–21]. A family term for variation between

RIL families was fit in the model prior to marker selection. The

threshold for model entry was set to p,5e-8 by permutation

testing. A total of 100 sampling iterations of a random 75% of the

inbreds without replacement were followed by SNP selection to

attain an estimate of a SNP’s RMIP [38] and assess the robustness

of observed associations (Table S4). Unlike joint-linkage QTL

mapping, this approach did not nest SNPs in each RIL family.

Upon permutation testing of RPR, DTA, and EHT, SNPs with a

RMIP greater than 5 out of 100 models possessed a type I error

rate less than 0.05 at the model entry/exit criteria of p,5e-8.

Using the Genome Association and Prediction Integrated Tool

(GAPIT) [39] in R v2.12.0 [34], sequential single SNP linear

mixed model GWAS was performed for RPR BLUP line means in

the NCRPIS diversity panel (Table S5). This approach accounted

for population structure by inclusion of an identity-by-state (IBS)

genomic relationship matrix and allowed the identification of

associations with RPR [40]. The IBS relationship matrix was

constructed by applying the Van Raden method [24] to 681,257

standardized SNPs genotyped in the NCRPIS diversity panel.

Using GAPIT, association significance was determined by

estimates of false discovery rate, estimated using the Benjamini-

Hochberg method, across all GWAS tests performed for RPR in

the NCRPIS diversity panel [41]. The proximity of established

candidate genes to identified associations was inferred based on

functional annotations of the maize genome sequence release

4a.53.

Cross-validated Genomic Prediction across RIL Families
and the NCRPIS Diversity Panel
We conducted genomic prediction by GBLUP using the

package rrBLUP [31] in R v2.12.0 [34]. IBS genomic relationship

matrices [24] were constructed using the Van Raden method [24]

for the NAM and IBM families from 1.6 million standardized

SNPs of the maize HapMapV1 [18]. Estimates of genomic

relationship among the NCRPIS diversity panel were calculated

using the 681,257 standardized SNPs [35]. BLUP and BLUE line

means for RPR, DTA, and EHT estimated across environments in

a first stage model were regressed against the IBS genomic

relationship matrices of the RIL families and NCRPIS diversity

panel to obtain genomic BLUPs for each inbred and trait.

Maize Stalk Strength Genetic Architecture
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To perform cross-validation, all NAM RILs (not stratified by

family), each NAM and IBM family, and the NCRPIS diversity

panel were randomly partitioned into five disjoint subsets. Line

means from combinations of one (5 subsets choose 1 calibration

set = 5 folds), two (10 folds), three (10 folds), and four (5 folds)

subsets were used to calibrate models and predict the remaining

line mean values. All prediction accuracies were then averaged

across folds. This process was repeated 20 times randomly

selecting five disjoint subsets each time to estimate prediction

accuracy with respect to the number of lines in the model

calibration set.

For comparison to GBLUP, prediction of RPR BLUP line

means by joint-linkage mapping of family-nested QTL was also

performed using PROC GLMSelect in the SAS v9.2 statistics

package [37]. However, unlike the bootstrapping approach taken

to estimate robust family-nested QTL, cross-validation was

performed using family-nested QTL models constructed from

disjoint subsets of the RILs to predict the remaining RILs. This

was performed in a sampling scheme identical to family-stratified

sampling of the NAM panel during GBLUP. A family term was

included in every model and the thresholds for model entry/exit

were relaxed to p,0.05. The significance of marker inclusion was

not tested by permutation as in the bootstrapping approach;

however, a maximum of 40 family-nested QTL were permitted

inclusion in the model.

Prediction accuracy was measured as the coefficient of

determination obtained by regressing BLUP or BLUE line means

from first stage models against predicted line means obtained by

GBLUP or the family-nested QTL models of second stage models

for each trait upon cross-validation. This differs from traditional

estimates of genomic prediction accuracy as the coefficient of

determination between genomic estimated and true breeding

values. This metric was not calculable given a lack of true breeding

values for RPR in RIL families or the NCRPIS inbred diversity

panel.

Results

Variation in RPR and Related Traits
Heritable variation between maize lines was identified for RPR,

EHT, and DTA within the NAM, and IBM families, as well as the

NCRPIS inbred diversity panel (Table 1). Transgressive segrega-

tion of the traits was also identified in most RIL families, based on

comparison of parental BLUE line means and their RIL progeny

(Figure 2). However, in the case of RPR, few contrasts were

statistically significant. BLUE values for inbreds revealed 95% of

the RILs fell between 4.03 and 6.84 kilograms of force (KgF). In

the NCRPIS diversity panel, 95% of RPR measures ranged from

2.66 KgF to 10.02 KgF. Substantial variation for DTA and EHT

also existed within this panel (Figure S1). Based on review of line

means for RPR across replicated NAM progenitors, the inbreds

with the weakest RPR among the NAM and IBM family parents

were the sweet corn inbreds, IL14H and P39. The common

parent, B73 had a mean RPR of 5.18 KgF and was stronger than

one third of the NCRPIS diversity panel. It also had a higher RPR

than nine of the 25 alternate NAM parents (p,0.1). The BLUE

line mean of B73 for RPR was weaker than Mo17, the alternate

parent of the IBM population. However, this contrast was not

statistically significant.

Broad sense line means heritability estimates for RPR measures

in the surveyed germplasm were low (Table 1). This was true both

across NAM families where the broad sense heritability estimated

on a line mean basis was 0.21, and within NAM families where the

average broad sense heritability was 0.17 when estimated on a line

means basis. Of the 25 NAM families, 19 families possessed an

estimated broad sense heritability for RPR above 0.05. At a broad

heritability of 0.34, a higher proportion of RPR variation was

heritable in the IBM family than among any of the NAM families

studied. RPR in the NCRPIS diversity panel was more heritable

with a broad sense line means heritability of 0.54. Accounting for

covariation of DTA and EHT with RPR in the NCRPIS diversity

panel increased broad sense heritability estimates to 0.63 and 0.65,

respectively. In contrast, accounting for this covariation in NAM

and IBM families did not greatly influence estimates of broad sense

heritability in RPR across or within families.

About 37% of stalk strength variation in the NAM panel was

attributed to environmental variation (Figure 3). This was greater

than that observed for DTA or EHT. Nonetheless, measures of

environmental variation were confounded with manual and

spring-driven RPR phenotyping methods. Estimates of the

proportion of genotype-by-environment variation in RPR were

about 11%, but were also confounded by phenotyping method.

Correlations between BLUE line means for RPR in the RIL

families calculated using the manual RPR approach, taken in New

York 2008, and spring-driven RPR approach, taken in Missouri (r

= 0.37, p,5e-3) and Wisconsin (r = 0.20, p,5e-3), were weaker

than correlation between the spring-driven RPR environments (r

= 0.51, p,5e-3).

Correlations between RPR and DTA, were positive among

plots across NAM and IBM families (r = 0.46, p,5e-3, Figure 4A)

and within many of the families (Figure S2). However, correlations

among BLUE line means across RIL families were reduced (r

= 0.23, p,5e-3, Figure 4B). In the NCRPIS diversity panel, the

opposite trend was found between RPR and DTA among plots (r

= 0.27, p,5e-4, Figure 4C), and the BLUE line means (r = 0.45,

p,5e-3, Figure 4D). RPR and EHT correlations were weakly

positive among plots across RIL families (r = 0.18, p,5e-3,

Figure 4A); but, varied widely within families (Figure S2).

Correlations among the BLUE line means were similar (r

= 0.18, p,5e-4, Figure 4B). In the NCRPIS, these correlation

were similar among plot measures (r = 0.32, p,5e-3, Figure 4C,

Figure S2), and BLUE line means (r = 0.40, p,5e-3, Figure 4D,

Figure S2).

Joint-linkage QTL Mapping of RPR and Related Traits in
RIL Families
Using bootstrapped joint-linkage mapping, family-nested QTL

explaining variation in BLUP inbred line means for RPR were

detected across NAM and IBM families on all chromosomes

(Table 2, Figure S3). Differences between families explained

6064% of the variation in BLUP line means for RPR in the NAM

and IBM families. But, inclusion of family-nested QTL brought

the fraction of RPR variation explained up to 8163%. A total of

78 of the 1,106 family-nested markers possessed a RMIP greater

than 10 (Table S3, Figure S3). However, only 1862 family-nested

QTL were included within any given model build constructed

from a single bootstrap sample before reaching the model entry

threshold set by null permutation.

At a RMIP of 61, the most robust family-nested marker

association was located on chromosome seven at about 105.2 cM

on the composite NAM map [27]. Separated by about 1.7 cM,

two neighboring markers on chromosome eight located at about

97.4 cM possessed RMIPs of 35 and 28. A strong positive

correlation (r = 0.78, p,5e-3) of median allele effects across NAM

and IBM families for these markers suggested the segregation of a

common factor.

Partitioning variation in BLUP line means for RPR revealed no

single family-nested marker association explained over 2.7% of the
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within family variation. Allele effects of the joint-linkage marker

associations were small across families (Table S3). While 95% of

effect estimates in the NAM and IBM families spanned a range of

1.22 KgF, the median significant (T-test allele effect within family,

p,5e-3) negative and positive effects across the 100 model builds

were comparable and about 0.0760.01 KgF from the family

mean of the BLUP line means for RPR. The number of

associations found in a family was correlated with that family’s

heritability (r = 0.89, p,5e-3). The median number of families in

which a marker possessed a significant effect for RPR was 963 out

of the 26 families and was correlated with its RMIP (r = 0.81,

p,5e-3).

B73 and all 26 alternate parental inbreds of the NAM and IBM

families had positive and negative effects for RPR across the 78

joint-linkage mapped associations. Given the weak correlations

among inbreds for RPR, DTA and EHT, no significant

correlation of allele effect estimates across NAM and IBM families

were observed, when DTA and EHT were regressed against the

RPR constructed family-nested QTL model built from the full

dataset. Similarly, no significant correlation of RPR allele effects

estimated were identified when RPR was regressed against the

DTA and EHT constructed family-nested QTL models built from

the full dataset. Nonetheless, weak correlations between RPR and

both DTA (r = 0.31, p = .12), and EHT (r = 0.30, p = .12), were

observed across the NAM and IBM BLUP family means.

The resolution afforded by joint-linkage mapping did not

provide gene level characterization of RPR associations. In most

instances, robust family-nested marker association persisted an

interval of one to three cM before dropping below a RMIP of 10.

In these intervals, few genes with known involvement in

phenylpropanoid or cellulose synthesis pathways were identified.

While no robust associations were found near the brown midrib

mutants involved in lignin biosynthesis of the phenylpropanoid

pathway, a putative 4-coumarate-CoA ligase-like gene

(AF466202.2_FG012) potentially involved in the same pathway

was located near a linkage marker on chromosome ten at about

69.2 cM with a RMIP of 18. Also, a caffeoyl-CoA O-methyl-

transferase (GRMZM2G077486) of the phenylpropanoid pathway

was flanked by linkage markers on chromosome ten at 38.6 and

40.1 cM possessing RMIPs for RPR of 20 and 11, respectively.

Table 1. Broad-sense heritability of RIL families and the NCRPIS diversity panel.

Family/Panel Plants scored RPR RPR (DTA cov) RPR (EHT cov) DTA EHT

NAM panel 37,548 0.21 0.20 0.21 0.94 0.93

B736B97 1,763 0.20 0.20 0.20 0.85 0.94

B736CML103 1,804 0.07 0.06 0.06 0.85 0.95

B736CML228 1,211 0.07 0.08 0.07 0.94 0.93

B736CML247 1,313 0.28 0.29 0.26 0.93 0.93

B736CML277 1,311 0.16 0.16 0.15 0.94 0.93

B736CML322 1,530 0.03 0.04 0.02 0.92 0.92

B736CML333 1,554 0.33 0.31 0.30 0.94 0.93

B736CML52 1,105 0.03 0.04 0.03 0.95 0.92

B736CML69 1,378 0.19 0.20 0.18 0.89 0.93

B736Hp301 1,815 0.11 0.12 0.10 0.90 0.95

B736Il14H 1,587 0.05 0.05 0.04 0.91 0.93

B736Ki11 1,352 0.12 0.11 0.12 0.94 0.94

B736Ki3 997 0.04 0.03 0.03 0.93 0.92

B736Ky21 1,611 0.17 0.18 0.17 0.84 0.93

B736M162W 1,556 0.15 0.14 0.14 0.91 0.92

B736M37W 1,641 0.15 0.14 0.13 0.90 0.91

B736Mo18W 1,365 0.08 0.08 0.07 0.93 0.93

B736MS71 1,684 0.08 0.09 0.08 0.78 0.90

B736NC350 1,517 0.28 0.24 0.26 0.92 0.93

B736NC358 1,685 0.24 0.25 0.23 0.84 0.92

B736Oh43 1,715 0.24 0.21 0.21 0.81 0.93

B736Oh7B 1,548 0.03 0.03 0.03 0.90 0.95

B736P39 1,473 0.02 0.04 0.01 0.95 0.93

B736Tx303 1,505 0.03 0.02 0.02 0.92 0.95

B736Tzi8 1,526 0.28 0.24 0.25 0.93 0.95

B736Mo17(IBM) 1,735 0.34 0.30 0.31 0.92 0.96

NCRPIS panel 15,399 0.54 0.63 0.65 0.92 0.86

All reported broad-sense heritability estimates are calculated on a line means basis. RPR, DTA, and EHT detail the proportion of variance between and within lines
explained by between line variance after accounting for known environmental variance in the trait. RPR (DTA cov) and RPR (EHT cov) detail the proportion of variance
between and within lines explained by between line variance after accounting for known environmental variance and the covariance of RPR with DTA and EHT,
respectively.
doi:10.1371/journal.pone.0067066.t001
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Of the 12 known cellulose synthases in the maize genome, the

only synthase whose nearest linkage marker possessed a RMIP

over 10 was cellulose synthase-9 (GRMZM2G018241). This gene

and marker are located on chromosome two at 82.5 cM and

possessed a RMIP of 24. Uncharacterized annotations

(GRMZM2G157729, GRMZM2G110145) with predicted cellu-

lose synthase activity by homology and known transcriptional

evidence were also identified on chromosome nine near a linkage

marker at about 42.8 cM and chromosome ten at about 38.6 cM

on the NAM composite map. Both these linkage markers possessed

a RMIP of 20, with the latter also flanked by a marker possessing a

RMIP of 10. Cloned loci previously identified for vegetative phase

transition and other stalk strength related traits, such as the

mutants of brittle stalk 2, glossy1–15, and teopod1, 2 were not

identified near associations possessing RMIPs for RPR over 10.

Similarly, co-localization of QTL mapped in the previous multi-

family RPR study and this family-nested QTL study was not

substantial [14].

GWAS of RPR and Related Traits
To further resolve joint-linkage mapped RPR associations, 141

significant associations were identified by joint-linkage-assisted

GWAS in the NAM and IBM families (Figure S3, Table S4).

Family-nested QTL identified during joint-linkage mapping were

used to account for background genetic variation during GWAS.

Figure 2. Asymmetric transgressive segregation observed for RPR. Comparisons of parent, mid-parent, and progeny BLUE line means for
RPR revealed transgressive segregation. Parents of the NAM and IBM families were not chosen from populations divergently selected for RPR.
Recombination of additive effects and novel mutations likely play a role in the transgressive variation among their inbred progeny. Furthermore, the
asymmetry present in these distributions suggests a role for epistasis.
doi:10.1371/journal.pone.0067066.g002

Figure 3. Variation in RPR, days to anthesis (DTA), and ear
height (EHT). About 15% of the total variation in RPR across all NAM
and IBM families was attributable to genetic factors. This proportion of
genetic variation was smaller than that observed for DTA or EHT.
Despite this reduction in genetic variation of RPR, the proportion of
genetic-by-environment variation were slightly larger for RPR than the
other surveyed traits. Differences in the remaining RPR, DTA, and EHT
variation were due to environmental factors or could not be attributed
to known sources of variation.
doi:10.1371/journal.pone.0067066.g003
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The most robust GWAS associations co-localized with estimated

joint-linkage mapped effects. However, many significant effects

were found across the maize genome. No significant RPR

associated SNPs were shared with joint-linkage assisted GWAS

of DTA (277) or EHT (304) in the NAM and IBM families. About

5% (15) of DTA associations were located within 1 cM of a RPR

association; whereas, about 10% (29) of the EHT associations were

located within 1 cM of an RPR association. Nearly one third (43)

of associated SNPs were identified in a known or hypothesized

gene. However, no significant associations were located in genes

with known involvement in the phenylpropanoid or cellulose

synthesis pathways (Table S4). Also, no associations with a RMIP

over three were identified in 100 kb of genes with established

involvement in these pathways. The same was true of genes

implicated in vegetative phase transition.

The effect sizes of GWAS RPR associations across the NAM

and IBM families were uniformly small and similar in size and

distribution to the significant alleles nested within each family

during joint-linkage QTL mapping. No RPR effects with an

absolute value greater than 0.0560.02 KgF were observed for

GWAS effect estimates. The most robust association identified

across the NAM and IBM families possessed a RMIP of 100. This

SNP is located on chromosome three at 176,660,475 bp and was

flanked by linkage markers that possessed RMIPs of 10 and 13

during joint-linkage mapping. The nearest annotation is 5,139 bp

downstream and encodes a transferase (GRMZM2G165192)

responsible for transferring acyl groups other than amino-acyl.

No annotations within a 1 cM interval surrounding the association

were obvious candidates for stalk strength. The second and third

most robust associations were both identified on chromosome

eight at 163,943,201 bp and 8,415,595 bp. These possessed RMIP

of 94 and 73, respectively. Both were also located near regions of

the genome neighboring significant markers identified in joint-

linkage analysis. The former is located in an interval wherein two

linked markers spaced about 1.7 cM apart possessed a combined

RMIP of 62. The latter neighbors a linked marker with a RMIP of

14 in joint-linkage mapping. In both instances, no obvious

candidates for stalk strength related pathways or developmental

processes were apparent. The nearest respective annotations were

a glycosyl-transferase (GRMZM2G002023) 4,605 bp downstream

and an O-glycosyl hydrolyzing enzyme (AC234160.1_FG003)

3,349 bp downstream.

In addition to joint-linkage-assisted GWAS across the NAM and

IBM families, sequential single marker GWAS was also performed

across the NCRPIS diversity panel regressing BLUP line means

for RPR against SNPs. (Figure S3, Table S5). To account for the

population structure of the panel that was not reduced by the

recent recombination of genetic diversity a linear mixed model

framework including a term for kinship was implemented [42].

Using this method to query 681,257 GBS SNPs, the most

significant RPR associations still possessed a false discovery rate

above 10%. Upon review of the top 500 associations possessing a

Figure 4. Trait correlations between RPR, DTA, and EHT variation. Positive correlations between RPR and DTA were greater among plot
means (A) than line means (B) across all RILs of the NAM families. However, the opposite relationship was observed between these traits among plot
means (C) and line means (D) in the inbreds of the NCRPIS diversity panel. The relationship between RPR and EHT was less varied between the NAM
and NCRPIS diversity panels.
doi:10.1371/journal.pone.0067066.g004
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false discovery rate less than 17%, the most significant explained

less than 1% of the heritable variation of RPR in the NCRPIS

diversity panel. The median minor allele frequency among these

top 500 enriched associations was 2.1%. None of the enriched

associations in the NAM and IBM families or the NCRPIS

diversity panel were identified in the brown midrib, brittle stalk, or

teopod loci or near enzymes with known involvement in

phenylpropanoid and cellulose synthesis pathways or vegetative

phase transition. Comparisons between significant RPR associa-

tions identified in the RIL families and those enriched in the

NCRPIS inbred diversity panel revealed little discernible com-

monality.

Genomic Prediction of RPR and Related Traits
Given the highly polygenic architecture of RPR, genomic

prediction was performed to determine the ability of all genotyped

diversity to explain variation in BLUP line means for RPR, DTA,

and EHT across all NAM families possessing a broad sense line

means heritability over 0.05 (Figure 5, Figure S4). An IBS genomic

relationship matrix was constructed from 1.6 million maize

HapMapV1 SNPs and fit in a GBLUP framework [24,31].

Cross-validation revealed strong prediction accuracy, 20% of the

RILs (approximately 40 lines), randomly but equally chosen from

each heritable NAM family, calibrated a model predicting 6462%

of BLUP line mean variation in RPR among the remaining RILs

(Figure 5A). When 80% of the RILs (approximately 160 lines from

Table 2. Family-nested QTL for RPR in RIL families.

Chr Mb cM RPR (RMIP) DTA (RMIP) EHT (RMIP) Local annotations of interest

1 15.7 31.7 31 59 10

1 22.3 39.2 34 22 26

1 34.4 54 22 5 0

1 251.1 146.6 28 9 66

1 260.3 156.5 27 15 4

1 281.8 176.9 26 15 15

1 285.9 180.9 20 61 13

2 27.8 58.8 29 3 47

2 31.4 62.2 35 13 6

2 161.8 82.5 24 25 14 Cellulose Synthase-9 (GRMZM2G018241)

2 192.6 103.7 31 21 14

2 233.1 155.7 36 15 13

3 5.2 20.1 37 11 15

3 28.0 53.4 20 65 37

3 178.2 90.0 35 6 62

4 241.7 126.9 28 5 13

5 5.9 22.1 18 0 0

5 75.2 66.8 25 54 57

5 175.5 87.2 23 3 1

5 211.9 138.0 18 8 8

7 6.0 26.3 18 18 0

7 159.4 105.2 61 2 3

7 170.0 135.0 44 78 7

8 163.1 94.1 53 45 11

8 164.8 100.3 40 15 4

9 4.0 0.0 23 2 2

9 16.2 28.5 38 3 6

9 25.7 42.8 20 31 32

9 140.9 85.6 17 24 7

9 148.7 107.6 19 0 1

9 150.1 114.8 19 3 1

10 77.5 38.6 31 34 64 Predicted cellulose synthase activity by homology
(GRMZM2G157729, GRMZM2G110145)

10 139.6 69.2 19 6 5 Putative 4-coumarate-CoA ligase-like gene
(AF466202.2_FG012)

The reported resample model inclusion probabilities (RMIP) of this table detail the number of models one or more markers located within three cM of the noted
association was selected out of 100 models. Each of these models was constructed from family-stratified sampling of the RILs with replacement. Physical positions are
stated with respect to reference genome AGPv1.
doi:10.1371/journal.pone.0067066.t002
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each family) were used to calibrate the model, the variation in

RPR explained increased to 6864%. Prediction accuracies did not

significantly differ when RILs chosen for the calibration set were

not stratified by family. When all RILs from all heritable families

were included in model calibration, 80% of the BLUP line mean

variation in RPR was explained by the IBS genomic relationship

matrix (Figure 5B).

Fitting a family-nested QTL model with an included family

term, constructed by joint-linkage mapping of calibration sets

subsampled from each of the heritable NAM families, wielded

lower prediction accuracies than GBLUP (Figure S5A). Con-

structing a family-nested QTL model using 20% of the RILs in

each NAM family predicted 2867% of BLUP line mean variation

in RPR among the remaining lines. Falling short of the prediction

accuracy achieved by GBLUP, using 80% of the RILs in each

family only increased the prediction accuracy to 40614% of

BLUP line mean variation in RPR among the remaining lines. At

every calibration set size, variation in prediction accuracy was

larger between calibration sets than that observed in GBLUP.

However, when all RILs were included in joint-linkage mapping

across the NAM panel, 81% of the BLUP line mean variation in

RPR was explained, a value comparable to that attained by

GBLUP (Figure S5B).

An IBS relationship matrix constructed for the RILs of the IBM

family was less predictive of variation in BLUP line means for

RPR, DTA, and EHT than that obtained across all NAM families

when fit by GBLUP (Figure 5, Figure S4). Cross-validation

revealed about 20% of the RILs (38 lines) could not predict BLUP

line means of RPR in the remaining lines (Figure 5C). This did not

substantially improve as 80% (152 lines) of the RILs in the IBM

family were used to predict the remaining line means and

explained 867% of their variation. In contrast, approximately

56% of the BLUP line mean variation in RPR was explained by a

GBLUP model constructed from the entire IBM family

(Figure 5D). Comparable levels of variation in BLUP line means

for RPR, DTA, and EHT to that explained in the IBM family

were explained in predicting and fitting most of the similarly sized

heritable NAM families.

In addition to RIL families, the accuracy of GBLUP at

predicting BLUP line mean variation in RPR, DTA, and EHT

was assessed in the NCRPIS inbred diversity panel (Figure 5,

Figure S4). This was accomplished with an IBS genomic

relationship matrix constructed from 681,257 SNPs genotyped

by GBS (Figure 5E). Even when 80% of the panel was used to

calibrate a model to predict RPR variation in the remaining

inbreds, only 3864% of the BLUP variation in RPR was

explained. This contrasted the 71% of variation explained by

fitting the entire NCRPIS diversity panel (Figure 5F).

In a final assessment of genomic prediction accuracy, BLUE

line means of RPR, DTA, and EHT between families and inbreds

across environments were predicted by GBLUP (Figure S6).

Correlation between BLUE and BLUP line means were weaker

across RIL families before (RPR r = 0.78, p,5e-3; DTA r =0.99,

p,5e-3; EHT r = 0.97, p,5e-3) than after accounting for

between family variation (RPR r = 0.83, p,5e-3; DTA r =0.99,

p,5e-3; EHT r = 0.99, p,5e-3). Higher GBLUP accuracies were

obtained predicting BLUP than BLUE line means for RPR

(Figure S6). Models calibrated from 20% of the inbreds stratified

by family explained 2162% of BLUE line mean variation for

RPR. When fitting the total NAM panel, 52% of the variation was

explained. Given their high heritability and minimal shrinkage of

random genetic effects, comparable prediction accuracies for both

BLUP and BLUE line mean estimators were attained for DTA,

and EHT (Figure S6). BLUP and BLUE line means across the

NCRPIS diversity panel were highly correlated (RPR r =0.87,

p,5e-3; DTA r = 0.99, p,5e-3; EHT r = 0.99, p,5e-3) and

wielded only slight reductions in prediction accuracy relative to

BLUP line means (Figure S6).

Discussion

In this study, we inferred the genetic architecture and genomic

prediction accuracy of RPR as a proxy for maize stalk strength. In

total, over 50,000 plants were measured for RPR across NAM and

IBM families, and the NCRPIS diversity panel. These measures

were collected in addition to DTA and EHT within three

environments for NAM and IBM families, and two environments

for the NCRPIS inbred diversity panel.

Transgressive segregation for RPR was observed in many NAM

and IBM families (Figure 2). This finding contrasts past QTL

Figure 5. Prediction of RPR in RIL families and NCRPIS diversity
panel by GBLUP. Cross-validation revealed steady gains in prediction
accuracy with respect to the NAM family-stratified calibration set size
(A). About 80% of the variation in BLUP line means for RPR was
explained using an identity-by-state (IBS) genomic relationship matrix
constructed from 1.6 million SNPs of the maize HapMapV1 (B). Using
the same SNP set, prediction accuracy was not significant in the IBM
family (C), and the variation explained by the entire family was only 56%
(D). In the NCRPIS diversity panel, prediction accuracies were lower than
in the NAM panel when using an IBS genomic relationship matrix of
681,257 SNPs constructed and fit in the same manner (E). In total, 71%
of the variation in RPR was explained upon fitting the entire panel (F).
doi:10.1371/journal.pone.0067066.g005
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analyses performed in families constructed from parents diver-

gently selected for stalk strength and highlights the advantage of

understanding the history of the germplasm under study [14].

Given alleles positively and negatively influencing RPR were not

differentially pyramided and fixed by the divergent selection of

progenitors in the NAM and IBM families, repulsion phase RPR

QTL present in each inbred parent are a likely cause of increased

variance in RPR among RILs relative to their parental difference.

However, the shifted mean and asymmetry of RPR distributions

among the RILs of many families relative to their mid-parent

values suggest non-additive genetic variation may play a role in

defining the genetic architecture of RPR. Given the inbred state of

the NAM and IBM progenitors as well as their RIL progeny, this

may be attributed to the presence of epistasis among loci. Results

obtained for measures of both DTA and EHT across RIL families

indicate these factors may play a role in the genetic architecture of

these traits as well.

Despite the increased genetic variation in RPR among RILs

relative to their parental values, estimates of broad sense

heritability calculated on a line means basis were low in all

families (Table 1). This contrasted DTA, EHT, and a previous

RPR study performed in four biparental maize families distinct

from this study [14]. Given the similarity in the RPR phenotyping

method employed in both studies [14], this reduced heritability

may be attributed to differing genetic architectures in the surveyed

families. A reduction in the number or effect size of QTL

segregating for RPR, or an increase in the linkage of opposing

QTL for RPR may exist in several of the NAM and IBM families

relative to the previous study. Multi-environment efforts were

taken in both studies and likely mitigated the impact of

environment on estimates of heritability. But, differences in the

nature of the environments may also lead to divergence in

estimates of variance explained by genetic-by-environment inter-

actions. Our abilities to successfully model the potentially complex

patterns of micro environmental variation in both studies may also

differ and consequently influence estimates of error and thus

heritability.

However, it is most likely the reduction in heritability resulted

from the decreased replication of measures taken on each inbred

in this study relative to the former multi-family RPR study [14].

The greatly increased number of RILs surveyed within this study,

relative to previous studies [14], provided more effective recom-

bination events, and increased mapping resolution. It also better

ensured family-nested QTL were independent of confounding

environmental variation and improved estimation of allele effects.

But, the reduced replication of RPR measures collected on each

inbred led to imprecision in estimation of line means and reduced

heritability. The most powerful balance between replicating RPR

measures on a given inbred and increasing the number of unique

inbreds surveyed during mapping depends on the allele frequen-

cies and linkage disequilibrium of QTL in the true model of

genetic architecture. This true model is unknown and can only be

approximated. As such, it may be instructive for future RPR

mapping populations to be designed in a sequential manner [43],

dynamically adapting population design to maximize power to

best validate prior estimates of the true model of genetic

architecture.

Of the heritable RPR variation that was observed in this study,

approximately 6064% was explained by variation between

families. With a shared B73 founder, all SNPs differing between

families also segregated within at least a fraction of the families

depending on an allele’s frequency among founders. Variation

between RIL families may then be attributed to mutation and

ancestral recombination occurring between the non-B73 progen-

itor of each family; whereas, variation within families may be

attributed largely to recent recombination. Differences in variance

within and between families are likely due in part to the reduced

functional diversity segregating within a single family relative to

across families. But, given the random genetic effects used to

model RPR, another reason for increased variance estimates

between families, is an increased number of observations available

to estimate between family variance. This increase in observations

between families relative to within them reduced the error and the

shrinkage of random effects modeling between family variance.

To resolve family-nested QTL explaining RPR variation, BLUP

line means for RPR were used in bootstrapped joint-linkage

mapping of the RIL families. After accounting for RPR variation

between families, variation in families was mapped to family-

nested molecular markers. This identified 78 family-nested

markers with a RMIP over 10 (Table S3). Given the nature of

bootstrapped joint-linkage mapping, two or more linked markers

with an RMIP over 10 may explain RPR variation for the same

family-nested QTL. For instance, a family-nested marker may be

selected in model construction during one bootstrap sample; but, a

linked family-nested marker capturing variation from the same

family-nested QTL may be selected in another model.

While the identified number of family-nested QTL is highly

dependent on the mapping resolution and method employed, the

number entering into a single model for RPR in our approach was

1862 before the permutation-based threshold for model entry was

reached. Of these family-nested QTL, only about half were

significant within a given NAM or IBM family. A single family-

nested QTL model explained 8163% of the variation across RPR

BLUP line means. Supporting the presence of repulsion phase

linkages of RPR loci in NAM parents, positive and negative allele

effects relative to the common parent, B73, were observed within

all families. The allele series present in all family-nested QTL may

be attributed to the genetic background specificity of the effects

and differing linkage patterns among nearby loci whose cumula-

tive effect is explained by the family-nested QTL. Further

highlighting the highly polygenic genetic architecture of RPR,

all family-nested QTL effects were small and none explained over

2.7% of the BLUP variation in RPR across RILs after accounting

for the between family variation. Although covariation was

observed for DTA, EHT, and RPR among line and family

means, and several loci for these traits co-localized, no significant

mutually pleiotropic family-nested QTL were identified. This

supports previous studies indicating ear height is a poor proxy for

stalk strength during selection [14]. The modularity of the genetic

architectures for these traits also suggests substantial flexibility

exists in breeding to increase stalk strength in germplasm related to

these RIL families.

After joint-linkage mapping, RPR variation between BLUP line

means of the RIL families was further resolved by joint-linkage-

assisted GWAS. This analysis revealed the segregation of 141

significant non-nested associations across families, after accounting

for variation between families (Table S4). Further supporting

estimates of modularity among the traits, no GWAS associations

for RPR were shared with DTA or EHT associations mapped in

joint-linkage-assisted GWAS. With the exception of the most

robust associations, many RPR associations for GWAS did not co-

localize with significant family-nested QTL. This may be a result

of differing power in testing the family-nested QTL that allow for

the positive and negative effects of an allele series, and that of the

non-nested molecular markers queried for a unidirectional effect

across all RIL families. Although co-localization of significant

associations with previous studies was identified, the low resolution
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of past studies makes co-localization a probable event for all but

the least complex traits [14].

In addition to joint-linkage-assisted GWAS, a sequential single

marker linear mixed model GWAS of RPR BLUP line mean

variation was performed in the NCRPIS diversity panel (Table

S5). However, no highly significant associations with a false

discovery rate below 10% were discovered. This paucity of

significant associations in the NCRPIS diversity panel may be

attributed to the low heritability of RPR and a lack of sufficient

statistical power. Unlike the RIL families, where minor alleles are

present in at least half the RILs of a single family and in most

instances are found at much higher frequencies, rare alleles are

responsible for a large proportion of the total genetic variance in

the NCRPIS diversity panel. Also, the global population structure

within this panel is substantial and each local subpopulation may

have evolved differing genetic architectures for RPR leading to

genetic background specificities and non-additive genetic variation

that remain difficult to map across the entire panel.

Even in sizeable populations, such as the NCRPIS diversity

panel, only the most common and largest additive effect alleles not

severely confounded with population structure will significantly

associate with a trait during a single marker mixed model GWAS.

If the functional diversity of stalk strength is correlated with fitness

and follows the Fisher-Orr model [44], many of the largest effect

alleles are likely to be rare in the population as it nears optimal

fitness. This suggests the large proportion of genetic diversity

which persists as rare alleles in the NCRPIS diversity panel may

contain the largest and most important alleles; however, we lack

the power to find them. Also, if alleles for RPR are strongly

confounded with population structure they will not be identified.

Instead, their contributions to RPR variance will be explained by

the IBS genomic relationship matrix. While it is necessary to

account for population structure to overcome spurious associations

during GWAS, this reduced false discovery rate may come at a

steep cost to statistical power. Further studies in the NCRPIS

diversity panel should seek to identify the importance of rare alleles

by performing burden [45] or sequence kernel association tests

[46]. Moreover, studies in populations that test these alleles

approaching a frequency of 0.5 and nearer to linkage equilibrium

are needed. This again suggests utility in the sequential design of

mapping populations.

However, it remains to be determined if these studies should

focus on candidate genes based on known molecular homology.

GWAS associations identified as significant in the NAM and IBM

families as well as the top 100 associations with a false discovery

rate just over 10% in the NCRPIS diversity panel did not co-

localize with genes involved in phenylpropanoid and cellulose

synthesis, or vegetative phase transition. This lack of co-

localization with genes in pathways known to influence many

constituent traits of stalk strength may be due to their conservation

in natural variation. This may result as a consequence of negative

fitness effects. Nonetheless, given the low heritability of RPR, and

high levels of diversity observed, it is likely the numerous

anatomical and compositional factors influencing RPR greatly

complicate mapping of causal loci. While little pleiotropy was

observed between stalk strength and ear height or days to anthesis,

interactions among other constituent traits may greatly influence

stalk strength, and may do so in a non-additive manner. Future

mapping efforts should decompose stalk strength into its constit-

uent traits to reduce latent complexities limiting power and aid

mapping of their potentially simpler genetic architectures.

Given the high degree of complexity in stalk strength genetic

architecture inferred while mapping RPR, genomic prediction was

performed using GBLUP to model relatedness based on an IBS

relationship matrix. This method revealed substantial variation in

BLUP and BLUE line means for RPR, DTA, and EHT was

predictable using a fraction of RILs randomly selected from each

NAM family (Figure 5, Figure S4, Figure S6). While BLUP and

BLUE estimated line means for DTA and EHT produced nearly

identical results due to their high heritabilities (Figure S4, Figure

S6), BLUP line means for RPR (Figure 5) were significantly more

predictable by GBLUP than BLUE line means (Figure S6). Both

BLUP and BLUE line means for RPR were estimated in the first

stage analysis without inclusion of a relatedness G structure for

family or RIL nested within family. Interestingly, shrunken

estimates of BLUP line means were better explained by the

relationship matrix when fitted by GBLUP than BLUE line means

for RPR. This may be a result of the similarity in biases imposed

on RPR line mean estimates when terms for family and RIL

nested within family are shrunken to their means as when GBLUP

predicted line means are shrunken to the mean based on the

relationship matrix. Future studies should perform a single stage

analysis and include a genomic relationship matrix in estimation of

BLUP line means if it is deemed significant by likelihood ratio

testing.

As a comparison to GBLUP, the expected prediction accuracy

of family-nested QTL models constructed by joint-linkage

mapping subsets of the full data set was also assessed across the

BLUP line mean variation for RPR. The variation explained in

NAM by family-nested QTL models, 81% (Figure S5), and that

explained by GBLUP, 80% (Figure 5) were comparable. But, upon

cross-validation to assess prediction accuracy, family-nested QTL

models possessed significantly lower accuracies than GBLUP

within the RIL families at all surveyed calibration set sizes. The

reduced accuracy of family-nested QTL relative to GBLUP may

result not only from the modeling approach taken; but also from

the unique marker data available. In the family-nested QTL

model, QTL were selected from a set of 1,106 markers; but, the

model was also provided information detailing to which family

each RIL belonged and QTL were nested within these families. In

GBLUP, the 1.6 million markers of the maize HapMapV1 [18]

were provided. Further testing of cross-validated models con-

structed in joint-linkage-assisted GWAS of the 1.6 million markers

in the maize HapMap is needed. This will help to evaluate the

relative merits of marker effect selection and shrinkage approaches

on the expected prediction accuracies of RPR in the NAM panel.

In the NCRPIS diversity panel, GBLUP was also performed to

assess expected prediction accuracies. This was accomplished with

an IBS relationship matrix estimated from 681,257 SNPs. While

significant prediction accuracies were attained, they remained

lower than those observed in the NAM panel. The increased

genetic diversity and reduced marker density in the NCRPIS

panel relative to the NAM and IBM families may be attributed to

this lower prediction accuracy. The potential complexity of the

underlying genetic architecture for each trait increases as the

diversity in the population increases, the marker density and size of

the calibration set limit the degree that GBLUP is both informed

of, and able to explain this complexity. Also, given the highly

structured nature of the NCRPIS panel and the prevalence of rare

alleles, the genetic architecture explaining variation in the

surveyed traits may have evolved by differing mechanisms within

each subpopulation of the diversity panel. This may introduce

genetic background specificity and non-additivity into modeling

the global population and is a potential reason for the more limited

prediction accuracy of GBLUP in the NCRPIS diversity panel

relative to the NAM panel.

While the expected RPR prediction accuracy of a given

calibration set size is informative, variation in prediction
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accuracies was present at all the calibration set sizes in both NAM

and NCRPIS diversity panels. Variations in accuracy were

especially high within the family-nested QTL models in the

NAM panel. This suggests the exact set of lines chosen to calibrate

a model may have a larger influence on prediction accuracy when

family-nested QTL or other marker effects are selected than when

a GBLUP model is assumed and all effects are included but

shrunken to the mean. In GBLUP, RPR prediction accuracies did

not significantly differ if lines included in a calibration set were

randomly selected across families, or were stratified by family.

Given the large fraction of BLUP line mean variation in RPR

explained by between family variation, family stratified sampling

should ensure this variation is better modeled. However, a

randomly selected 20% of the NAM panel appeared to sufficiently

sample most families to accurately capture between family RPR

variation. Previous studies have revealed the gains to be had from

strategically sampling the phenotypic/genotypic space when

developing calibration sets for genomic prediction [47–49], and

algorithms have been developed to select improved calibration sets

[50]. Given only five sizes of calibration sets were screened for

random and family-stratified RPR prediction accuracy, further

testing of calibration sets, especially those smaller than 20% of the

NAM panel, is needed to determine those properties enhancing

reliability of stalk strength prediction by GBLUP and other

genomic prediction methods.

Stalk strength and its constituent traits will continue to play an

important role in the selection of maize varieties maximizing grain

harvestability and silage desirability. This study presents a

comprehensive look at the genetic architecture of stalk strength

and an assessment of its prediction accuracy. Future efforts

detailing the genetic architecture of the anatomical, compositional,

and phase change traits underlying stalk strength may reveal

simpler architectures and better leverage our existing biological

knowledge to understand the genetics of stalk strength. Under-

standing the genetic architecture of these traits and employing

crop modeling to realize how they interact to influence stalk

strength is a logical path to better inform plant breeding decisions.

Breeding efforts in low heritability traits like stalk strength must

incorporate a present, but inherently limited, understanding of

genetic architecture and an ability to predict breeding values into a

unified selection framework. These efforts will improve prediction

of a population’s response to frequency-dependent selection on

alleles, haplotypes, and genotypes. Given the availability of

inexpensive sequence data, this is increasingly becoming an

achievable goal in the optimization of crop improvement.
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