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Abstract

Dinoflagellates possess many physiological processes that appear to be under post-transcriptional control. However, the
extent to which their genes are regulated post-transcriptionally remains unresolved. To gain insight into the roles of
differential mRNA stability and de novo transcription in dinoflagellates, we biosynthetically labeled RNA with 4-thiouracil to
isolate newly transcribed and pre-existing RNA pools in Karenia brevis. These isolated fractions were then used for analysis of
global mRNA stability and de novo transcription by hybridization to a K. brevis microarray. Global K. brevis mRNA half-lives
were calculated from the ratio of newly transcribed to pre-existing RNA for 7086 array features using the online software
HALO (Half-life Organizer). Overall, mRNA half-lives were substantially longer than reported in other organisms studied at
the global level, ranging from 42 minutes to greater than 144 h, with a median of 33 hours. Consistent with well-
documented trends observed in other organisms, housekeeping processes, including energy metabolism and transport,
were significantly enriched in the most highly stable messages. Shorter-lived transcripts included a higher proportion of
transcriptional regulation, stress response, and other response/regulatory processes. One such family of proteins involved in
post-transcriptional regulation in chloroplasts and mitochondria, the pentatricopeptide repeat (PPR) proteins, had
dramatically shorter half-lives when compared to the arrayed transcriptome. As transcript abundances for PPR proteins were
previously observed to rapidly increase in response to nutrient addition, we queried the newly synthesized RNA pools at 1
and 4 h following nitrate addition to N-depleted cultures. Transcriptome-wide there was little evidence of increases in the
rate of de novo transcription during the first 4 h, relative to that in N-depleted cells, and no evidence for increased PPR
protein transcription. These results lend support to the growing consensus of post-transcriptional control of gene
expression in dinoflagellates.
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Introduction

Phytoplankton are essential primary producers, responsible for

up to 70% of the world’s oxygen production. Dinoflagellates are a

major component of both marine and freshwater phytoplankton

and, as approximately half are photosynthetic, they are key

contributors to the base of aquatic food webs. However, many

dinoflagellates also produce potent toxins and are responsible for

harmful algal blooms (HABs). As HABs have significant ecological,

human health, and economic impacts [1] much recent attention

has been focused on their molecular biology to better understand

the mechanisms underlying bloom dynamics and toxicity for

improved coastal management and forecasting. These unicellular

protists have several unusual nuclear traits, including exceptionally

large genomes of 3–2456106 kbp [2]. Dinoflagellate genes are

often present in tandem arrays and lack recognizable transcription

regulatory elements [3]. Tandemly arrayed gene copies appear to

be transcribed into polycistronic mRNAs [3], although this has

recently been challenged [4] and remains open to debate. All

nuclear encoded mRNAs examined possess an identical 59 trans-

spliced spliced leader (SL) sequence [3], [5], [6]. SL trans-splicing

was first described in the kinetoplastid, Trypanosoma brucei [7]. In

trypanosomes, messages are transcribed as polycistronic pre-

mRNAs that are processed to mature monocistronic messages by

the trans-splicing mechanism. Nearly all genes are constitutively

transcribed, relying on post-transcriptional control for their

regulation [8]. Dinoflagellates also appear to have reduced levels

of transcriptional control relative to other eukaryotes (reviewed in

[9]). However, the extent to which post-transcriptional control of

gene expression occurs in dinoflagellates remains uncertain.

Circadian controlled bioluminescence rhythms in Lingulodinium

polyedrum do not depend upon changes in mRNA levels of luciferin

binding protein or luciferase [10], [11] nor do circadian changes in

GAPDH [12], peridinin-chlorophyl a-binding protein [13], or

superoxide dismutase [14] protein levels. Likewise, in Karenia brevis

cell cycle genes, typically under transcriptional control in most

organisms, appear to be post-transcriptionally regulated [15], [16].

Microarray studies report little evidence of change in transcript

abundance of genes associated with acute stress responses [17] or

responsive to nitrogen or phosphorus limitation [18]. Using

massively parallel signature sequencing (MPSS), Moustafa et al.

[19] found 73% of the transcriptome of Alexandrium tamarense

unchanged under a variety of conditions. A similar magnitude of

transcriptome restructuring is found concurrent with the entry into
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stationary phase in K. brevis (29%) [20] and Alexandrium minutum

(36%) [21]. However, microarray and MPSS cannot determine

what mechanism(s) are responsible for the measured changes in

transcript abundance.

The steady-state abundance of mRNAs in a cell is determined

by their relative rates of transcription and degradation [22], [23].

Thus changes in transcript abundance measured by microarray,

high throughput transcriptome sequencing, or qPCR in the studies

cited above may reflect perturbations to either of these mecha-

nisms. Surveys of RNA stability in a number of eukaryotes reveal a

wide range of RNA half-lives that vary over at least two orders of

magnitude [23]. In general RNA half-lives are related to their

physiological roles [24], wherein housekeeping genes typically

have long RNA half-lives while proteins needed for short durations

often have messages with short half-lives. Highly represented

among the genes with rapid mRNA turnover are those known to

be transcriptionally inducible [25]. Therefore, to gain a better

understanding of the processes underlying the regulation of the

dinoflagellate transcriptome, this study examines global message

stability and de novo transcription in K. brevis utilizing biosynthetic

labeling of newly transcribed RNA.

RNA stability is often determined using transcription inhibitors

to block de novo transcription and then monitoring the decay of

specific messages over time. A disadvantage of this approach is

that transcription inhibition has been shown to artificially stabilize

many messages, leading to over estimation of RNA half-lives [24],

[25], [26]. Pulse-chase experiments can also be used to measure

decay rates of individual RNAs following radiolabeling of RNA,

but tend to be imprecise for medium- to long-lived messages [27].

An alternative approach is to biosynthetically label newly

synthesized RNA with 4-thiouracil or 4-thiouridine, which are

readily incorporated and do not impact message stability (reviewed

in [28]). Thiol-specific biotinylation, followed by streptavidin-

coated magnetic bead separation, enables total RNA to be

separated into pools of pre-existing and newly synthesized

(thiolated) RNA that are amenable to transcriptome-level down-

stream applications such as microarrays or RNA-seq [22], [24],

[28], [29], [30], [31], [32], [33], [34], [35]. In addition to

providing a means to identify transcriptionally activated genes,

global RNA half-lives can be determined, capitalizing on the fact

that newly synthesized RNA and pre-existing RNA pools sum to

the total RNA pool. Under steady state conditions RNA synthesis

compensates for RNA decay, consequently de novo synthesis rates

must be much higher for short-lived transcripts than for stable

transcripts. Therefore, RNA half-lives can be calculated from the

ratios of either newly synthesized/total RNA, pre-existing RNA/

total RNA, or newly synthesized/pre-existing RNA, and the

duration of labeling [22], [24], [28], [31]. This approach results in

precise and reproducible data independent of the individual

mRNA half-lives [22].

In this study we applied biosynthetic nucleotide labeling to

characterize global mRNA stability in K. brevis and to examine the

role of de novo transcription in achieving short-term changes in

transcript abundances by microarray analysis. Overall, K. brevis

RNA half-lives were unusually stable, with a median half-life of

33 h, although as in most organisms studied, half-lives ranged over

two orders of magnitude, from 42 minutes to greater than 144 h.

Consistent with measurements from other organisms, there is a

predominance among highly stable messages of genes that are

involved in core cellular processes, including energy metabolism

and transport. Shorter-lived transcripts include many genes

involved in transcriptional regulation, stress response, and other

response/regulatory processes. Microarray analysis of newly

synthesized RNA following nitrate addition to N-depleted cultures

revealed little change in the rate of de novo transcription of genes

found previously to increase in abundance within 4 h of nitrate

addition [18]. These results provide further support for post-

transcriptional mechanisms such as differential RNA stability

driving changes in gene expression in dinoflagellates.

Materials and Methods

K. brevis Culture Conditions
Batch cultures of K. brevis (Wilson isolate) were maintained in

1 L bottles in f/2 medium using 20 mm filtered, autoclaved natural

seawater (salinity 36) with the following modifications: ferric

sequestrene was substituted for EDTA?Na2 and FeCl3?6H2O and

0.01 mM Na2SiO3 was added. Nitrogen-limited cultures were

adapted to 10 mM nitrate, approximately 1.1% of the nitrate

concentration in nutrient replete cultures, by a minimum of six

serial log phase transfers prior to experimental treatments. N-

depleted cultures were achieved by allowing these cultures to enter

stationary phase. Illumination from cool white lights was supplied

at approximately 175–215 mmol photons?m22?s21 on a 16:8 h

light:dark cycle at 2561uC. All experiments were initiated and

cultures harvested during the light phase of the diel cycle.

Biosynthetic Labeling and Extraction of RNA
To determine if K. brevis is amenable to biosynthetic labeling of

newly synthesized RNA by 4-thiouracil (4tU, Sigma, St. Louis,

MO) or 4-thiouridine (4sU, LKT Laboratories, Inc., St. Paul,

MN), cultures were exposed to 0.02, 0.05, or 0.2 mM 4tU (in

DMSO) or 0.2, 1, or 2 mM 4sU (in water) for 5 m to 20 h. To

determine the half-lives of K. brevis mRNAs, one liter log-phase

cultures (n = 6) were exposed to 0.2 mM 4tU for 2 h. To

determine the transcriptional response to increased nitrate

concentrations, sodium nitrate was used to add 155 mM NO3 to

6 N-depleted 1 L cultures, as in Morey et al. [18]. 4-thiouracil

(0.2 mM) was then added to triplicate cultures for 1 h from 0 h–

1 h post N-addition and to triplicate cultures from 3 h–4 h post N-

addition. Newly transcribed messages were labeled in parallel by

the incorporation of 0.2 mM 4tU for 1 h in triplicate N-depleted

cultures. Cultures were harvested by centrifugation at 6006 g for

10 m and total RNA was extracted using Tri-Reagent (Molecular

Research Center, Inc., Cincinnati, OH) according to the

manufacturer’s protocol with ethanol precipitation. RNA was

resuspended in nuclease-free water, treated with Promega’s

(Madison, WI) RQ1 RNase-free DNase, and further purified

using an RNeasy mini column according to manufacturer’s

protocol (Qiagen, Valencia, CA). RNA was then quantified using

a NanoDrop ND-1000 (Wilmington, DE) and qualified on an

Agilent 2100 Bioanalyzer (Santa Clara, CA).

Biotinylation, Detection, and Fractionation of RNA
Total RNA was biotinylated according to the methods of

Dölken et al. [22] with minor modifications, using Pierce EZ-Link

Biotin-HPDP (Rockford, IL) for 3 h at 60uC in the dark with

rotation. Two microliters of 1 mg?mL21 Biotin-HPDP in DMF

were added to the labeling reaction per 1 mg of RNA. The labeling

was carried out in 10 mM Tris (pH 7.4) and 1 mM EDTA in a

final volume 5X that of the Biotin-HPDP in the reaction. RNA

was then precipitated by the addition of 1/10 the reaction volume

of 5 M NaCl and 1.1 volumes of isopropanol and centrifugation at

20,0006 g for 20 m at room temperature. The pellet was washed

in 75% EtOH, centrifuged at 20,0006 g for 5 m at room

temperature, resuspended in nuclease-free water, and quantified

and qualified as described previously.

Karenia brevis mRNA Stability
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To determine how quickly 4tU is incorporated into K. brevis

RNA, total RNA was biotinylated, heat denatured, centrifuged at

20,0006 g for 1 m to remove free biotin, and bound to positively

charged nylon membrane (Roche, Indianapolis, IN) with alkaline

binding buffer (10 mM NaOH, 1 mM EDTA) using a slot blot

apparatus [22]. The membrane was blocked with PBS, pH 7.5,

10% SDS, 1 mM EDTA for 30 m at room temperature and

probed with Pierce High Sensitivity Streptavidin – HRP at 1:1000

in blocking buffer for 15 m at room temperature. The blot was

washed 2610 m each in PBS, pH 7.5 containing decreasing

amounts of SDS (10%, 1%, 0.1%) and detected using Pierce

SuperSignal West Pico Chemiluminescent Substrate.

Following biotinylation, total RNA was fractionated into two

pools, newly synthesized thiolated RNA and pre-existing non-

thiolated RNA using Dynabeads MyOne Streptavidin C1

magnetic beads (Life Technologies, Grand Island, NY). One

microliter of beads was used per 160 ng of RNA and manufac-

turer’s protocols were followed for immobilization of nucleic acids

with the addition of 0.1% Tween 20 to the binding and washing

buffer (BWT). Following immobilization, the supernatant contain-

ing unlabeled RNA was saved and, following isopropanol

precipitation, constituted the pre-existing RNA fraction. The

beads were then washed three times in 3X the original volume of

beads with 1X BWT at 65uC, followed by 3 washes at room

temperature and a final wash with 1:10 1X BWT at room temp.

Biotinylated RNA was released from the beads by adding 1X

volume of 5% b-mercaptoethanol and incubating 5 m at room

temperature with rotation. The supernatant was saved and

another 1X volume of 5% b-mercaptoethanol was added to the

beads and incubated at 60uC for 10 m with occasional mixing.

This supernatant was added to the previous elution and, following

isopropanol precipitation, constituted the newly synthesized RNA

fraction.

Microarray Analysis
A K. brevis oligonucleotide microarray containing 10,263 unique

60-mer gene probes [36], [37] was used for these studies,

employing a one-color protocol. For half-life studies total, newly

synthesized, and pre-existing RNA pools were labeled. For the

nitrate addition study only the newly synthesized RNA was

labeled. Based on bioanalyzer profiles, total and pre-existing RNA

pools were treated as total RNA samples, whereas newly

synthesized RNA pools were treated as mRNA samples, as

described in Dölken et al. [22]. Agilent’s Low Input Quick Amp

Labeling Kit was used to amplify and label total RNA (100 ng) or

mRNA (25 ng) with Cy3 dye. The amplified labeled RNA was

quantified using a NanoDrop ND-1000 and 480 ng of Cy3 labeled

targets were hybridized to the array for 17 h at 60uC. After

hybridization, arrays were washed according to the manufacturer’s

protocol and imaged using an Agilent microarray scanner. Images

were extracted with Agilent Feature Extraction version 9.5.3.1

using a rank consistency filter and a combination linear and

LOWESS normalization algorithm.

Half-Life Calculation: Normalized data for each biological

replicate of total, pre-existing, or newly synthesized RNA were

uploaded to the freely available software HALO (Half-life

Organizer, www.bio.ifi.lmu.de/software/HALO) [31]. Data were

filtered, where a Feature Extraction p#0.0001 was required in all

data sets (n = 18) for inclusion of a probe in further analyses to

assure only high quality data was utilized. Since newly transcribed

and pre-existing RNA should sum up to total RNA, a negative

linear correlation should exist between the newly transcribed/total

and pre-existing/total RNA ratios. Data was therefore normalized

by linear regression in HALO. This normalization step is

necessary because the amount of template RNA differs between

the three different RNA pools, therefore standard microarray

normalization methods which assume equal overall intensities are

insufficient [31]. A probe quality score (PQS) assessing the distance

of each feature from the regression line was then calculated for

each feature, Features with PQSs greater than 1 were filtered out

and normalization, PQS calculation, and data filtering were

repeated [31]. Half-lives were then calculated for each regression-

normalized feature using newly synthesized/pre-existing RNA as

well as newly synthesized/total RNA and pre-existing/total RNA.

The minimum half-life was set at 1 m and the maximum

established empirically at 8640 m, a time at which less than

1.5% of features exceeded the maximum.

Transcriptional Response to Nitrate: Following feature extrac-

tion, microarray data were analyzed with Rosetta Resolver version

7.2 gene expression analysis system (Rosetta Biosoftware, Cam-

bridge, MA). Based on the Rosetta error model designed for the

Agilent platform, a composite array was generated for newly-

synthesized RNA at each time point following N-addition (1 and

4 h) from triplicate arrays (representing three biological replicates),

in which the data for each feature underwent a normalization,

intensity averaging, and error estimation based on data from the

replicate arrays making up the composite [38]. The composite

arrays were then used to build ratios at each time point, relative to

newly transcribed RNA over a 1 h period in the N-depleted

cultures.

Blast2GO Annotation: Blast2GO [39], [40] was used to

partially automate annotation, assign gene ontology (GO) terms,

and test for enrichment. Additional annotation was carried out

using the Yeast GO slim application. Fisher’s exact enrichment

tests were carried out on GO terms for annotated features relative

to all features on the microarray in Blast2GO.

RNA Stability Following Transcription Inhibition
Tube cultures (25 mL) of K. brevis were grown to mid-log phase

under standard culture conditions (described above). Triplicate

tubes were then treated with either 2 mg?mL21 actinomycin D or

DMSO carrier for 12, 24 or 48 h. Total RNA was harvested at

each time point as described above, quantified using a NanoDrop

ND-1000 (Wilmington, DE) and duplicate reverse transcription

reactions were carried out using 100 ng total RNA with an

oligo(dT) primer using Ambion’s RETROscript Kit (Austin, TX).

Primer pairs specific for the contig of interest were designed (Table

S1) for qPCR on an ABI 7500 using the ABI Power SYBR Green

master mix (Applied Biosystems, Foster City, CA). The optimal

annealing temperature for each primer set was determined prior to

the analysis of experimental samples. The efficiency of each primer

set was determined using a standard curve of cDNA from K. brevis.

The specificity of each primer set and size of the amplicon were

verified by analysis with an Agilent Bioanalyzer 2100 and further

confirmed by melt curve analysis. A cycle threshold (Ct) was

assigned at the beginning of the logarithmic phase of PCR

amplification and the difference in the Ct values of the

actinomycin D treated and carrier control samples were used to

determine the relative expression of the gene in each time point.

Results and Discussion

K. brevis readily incorporates 4-thiouracil into RNA
Methods for labeling and purifying newly synthesized RNA

amenable to high-throughput downstream analyses have been

employed in a variety of eukaryotes using either 4-thiouracil (4tU)

or 4-thiouridine (4sU) [22], [24], [28], [29], [30], [31], [32], [33],

[34], [35]. Incorporation of 4tU requires the activity of uracil

Karenia brevis mRNA Stability
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phosphoribosyltransferase (UPRT), a key enzyme in the pyrimi-

dine salvage pathway for recycling uracil to uridine monophos-

phate (UMP). In contrast, 4sU is incorporated by uridine kinase

(UK), which recycles uridine by phosphorylation to form UMP.

Both UK and UPRT are widely found in prokaryotes and

eukaryotes. However, in many eukaryotes, UK has higher activity

than UPRT leading to more efficient salvage of uridine rather

than uracil [41]. To date, only Toxoplasma gondii and yeast have

demonstrated the ability to utilize 4tU as a substrate for RNA

synthesis [28], [29], [30]. Because we had no a priori knowledge of

the pyrimidine salvage pathway in the dinoflagellate, we first

assessed the ability of K. brevis to incorporate 4tU and/or 4sU into

newly synthesized RNA. Cultures of K. brevis were exposed to

increasing concentrations of 4tU (0.02, 0.05, or 0.2 mM) or 4sU

(0.2, 1.0, or 2.0 mM) over a range of times (5 m to 20 h). These

concentrations have previously been shown to yield measurable

incorporation into RNA by T. gondii (4tU) [30] and a variety of

eukaryotic cell types (4sU) [22]. Following thiol-specific biotinyla-

tion, the incorporation of thiolated nucleotides into mRNA was

measured by transferring total RNA to nylon membranes using a

slot blot and detecting biotinylated RNA with streptavidin-HRP.

We observed incorporation of 0.2 mM 4tU, but not 4sU

(Figure 1a). Incorporation of a 10-fold higher concentration of

4sU was still undetectable, even after 20 h (data not shown).

Measurable 4tU was incorporated into K. brevis mRNA in as little

as 5 minutes (Figure 1b). The K. brevis transcriptome contains a

putative UPRT gene (KbUPRT1, Genebank Accession

No. KC862324) with highest homology to UPRT in Aureococcus

(BLASTx e-value = 1E-67), as well as a gene encoding a dual

domain UK-UPRT protein (KbUK-UPRT1, Genebank Acces-

sion No. KC862325) with highest homology to Arabidopsis thaliana

(BLASTx e-value = 1E-174). UK-UPRT fusion genes encoding

bifunctional proteins with both UK and UPRT activities are found

across eukaryotic the tree of life, but are notably absent from the

nearest neighbors to dinoflagellates, the apicomplexans, except for

Cryptosporidium parvum, and have not previously been identified in

dinoflagellates [42]. Based on the incorporation of 4tU and the

presence of UPRT genes in the K. brevis transcriptome, it appears

that K. brevis contains a pyrimidine salvage pathway that utilizes

UPRT activity.

When the newly synthesized RNA was separated from pre-

existing RNA by thiol-specific biotinylation, we observed expected

bioanalyzer profiles (Figure 2a), wherein early time points

contained only mRNAs, visible as a broad peak increasing with

time. Longer labeling (12 h) showed evidence of rRNA, visible as

two small peaks at approximately 41 and 44 s, which is generally

synthesized at a slower rate than mRNA [34]. Pre-existing RNA

profiles (Figure 2b) looked similar to typical K. brevis total RNA

profiles with prominent ribosomal peaks at approximately 41 and

44 s and numerous smaller RNAs visible. Both newly synthesized

and pre-existing fractions of K. brevis RNA were of high quality and

amenable to downstream applications such as microarray and

qPCR.

Global analysis of K. brevis mRNA reveals unusually stable
half-lives

To establish the global distribution of RNA half-lives in K. brevis,

we utilized the method of Dölken et al. [22] as modified by Friedel

and Dölken [28]. Six liters of K. brevis were labeled with 4tU for

2 h and total RNA was biotinylated and separated into 3 fractions:

total RNA, pre-existing RNA, and newly synthesized RNA. Each

fraction from each replicate was Cy3 labeled and hybridized to an

Agilent custom microarray for K. brevis containing 10,263 unique

60-mer gene probes. This data has been deposited in the Gene

Expression Omnibus (GEO) as accession # GSE46174. An array

p-value of p#0.0001 was required on all 18 arrays for inclusion of

a probe in half-life calculations, resulting in 7102 probes used for

the analysis in the freely available software HALO [31]. Unlike

typical gene expression microarray analyses, the input RNA from

total, pre-existing, and newly synthesized RNA pools is not

equivalent, and therefore direct comparisons of probe intensity

cannot be made across arrays. However, because the newly

transcribed and pre-existing RNA together make up total RNA, a

negative correlation should be observed between their ratios to

total RNA; thus, HALO utilizes a linear regression of these ratios

to normalize array data. Following regression normalization in

HALO, data were further filtered such that outliers were removed

from further analyses, resulting in a final data set of 7086 features.

Regression plots of the raw and normalized ratios are provided in

Figure S1. Using the normalized values from linear regression,

RNA half-lives can then be calculated using any one of three

ratios: newly synthesized/total RNA, pre-existing/total RNA, or

newly synthesized/pre-existing RNA. In this study we chose to use

the ratio of newly synthesized/pre-existing RNA ratio because it

combines the overall performance of the newly synthesized/total

RNA with the higher precision obtained from the pre-existing/

total RNA ratio for messages with short half-lives [28], [31].

Overall, extremely stable messages were observed, with a mean

of 40.6 h and median of 33.3 h for the 7086 features (Figure 3;

Table S2). The minimum half-life calculated was 41.9 m, while

1.4% of features reported a half-life of at least 6 days (Figure 3,

Table S2). Over 13% of the features had a half-life of at least 3

days, whereas only 5.4% of features had half-lives of less than 6 h

(Figure 3). Half-lives were also calculated using pre-existing/total

RNA ratios and newly synthesized/total RNA ratios with similar

results (Figure S2). A highly significant correlation was observed

between data sets calculated using newly synthesized/pre-existing

RNA and newly synthesized/total RNA ratios (Spearman’s Rho

= 0.9811, p,0.0001, n = 7086). The correlation between half-life

calculations based on newly synthesized/pre-existing RNA and

pre-existing/total RNA was much lower (Spearman’s

Rho = 0.4811, p,0.0001, n = 7086). This is consistent with the

Figure 1. Incorporation of 4sU and 4tU into K. brevis RNA. A. Slot
blots of biotinylated total RNA (1 mg) show that K. brevis specifically
incorporates 0.2 mM 4-thiouracil (4tU), but not 0.2 mM 4-thiouridine
(4sU), during a 20 h exposure. B. Following exposure to 0.2 mM 4tU,
incorporation into RNA is detected in as little as 5 minutes (10 mg RNA
loaded per slot). A representative blot is shown from multiple studies.
An equal amount total RNA from cells treated with DMSO (carrier),
processed similarly, served as a negative control to measure non-
specific binding of biotin. Detection was with streptavidin-HRP.
doi:10.1371/journal.pone.0066347.g001
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results of Friedel and Dölken [28], who found that that half-lives

calculated from pre-existing to total RNA ratios are precise for

short-lived messages, but unreliable for stable messages.

The median half-life of K. brevis transcripts calculated in this

study exceeded that of other organisms reported to date. Global

analyses of transcript stability report median mRNA half-lives of

2.4 m in the cyanobacteria Prochlorococcus [43] and 5 m in E. coli

[44]. Among eukaryotes, the median mRNA half-life in yeast was

found to be 21 m [45], Arabidopsis 3.8 h [46]; mouse 7.1 h [27],

and human 10 h [47]. In trypanosomes, a median half-life of 13 m

is found in the bloodstream form [23], but half-lives are generally

much longer in the more slowly growing procyclic stage [48], [49].

Amongst most organisms studied, the median RNA half-life is

roughly proportional to the length of the cell cycle [45], [46], [47]:

in bacteria with a cell cycle of 20 m, the median RNA half-life is

5 m; in yeast with a cell cycle of 90 m the median RNA half-life

was 21 m; in human HepG2/Bud8 cells with a cell cycle of

3000 m the median RNA half-life was 600 m. In comparison, in

K. brevis with an average cell cycle of approximately 3 days

(4320 m) [50], [51], [52], the median RNA half-life was 33.3 h

(1998 m). However, in all organisms individual transcript half-lives

ranged from minutes to hours or days, in many cases the lifetime

of mRNA was approximately one cell generation time. Greenberg

calculated that approximately 40% of mammalian mRNAs survive

more than one cellular generation [53]. In the case of K. brevis,

approximately 13% of features showed a half-life of at least 3 days,

or at least one generation time. It has been noted in trypanosomes

that messages present in high copy number tend to be more stable,

while rarer messages have short half-lives [23]. As the K. brevis

microarray employed in these studies was constructed using

10,263 unique contigs obtained from Sanger sequencing, it is

possible that the transcriptome features arrayed are biased towards

Figure 2. Representative bioanalyzer profiles of pre-existing and newly synthesized RNA fractions. A. Following 4-thiouracil (4tU)
incorporation, biotinylation, and streptavidin-magnetic bead purification, newly synthesized RNA fractions are comparable to purified mRNA samples
from K. brevis. With increasing labeling time, synthesis of ribosomal RNA becomes discernible, with peaks at approximately 41 and 44 s. The peak at
23 s is the manufacturer supplied internal marker (visually absent in B because of differences in the Y-axis scale). B. Bioanalyzer profiles of pre-existing
RNA are similar to typical K. brevis total RNA profiles with dominant ribosomal peaks at approximately 41 and 44 s.
doi:10.1371/journal.pone.0066347.g002

Figure 3. Karenia brevis mRNA half-lives. Following 2 h incubation with 0.2 mM 4-thiouracil, total RNA was biotinylated and bead purified. Total,
pre-existing, and newly synthesized RNA fractions were hybridized to a custom oligonucleotide microarray and mRNA half-lives were calculated for
7086 features using HALO. Following normalization by linear regression, newly synthesized RNA to pre-existing RNA ratios were used to calculate
half-lives.
doi:10.1371/journal.pone.0066347.g003
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the more highly expressed transcripts. With a genome size of

161011 bp, K. brevis is predicted to possess approximately 75,000

expressed genes [2]. Indeed, preliminary analyses of a deep

transcriptome sequencing of K. brevis using the Illumina sequencing

platform resulted in over 75,000 unique contigs (Van Dolah and

Morey, unpublished). Thus, the absence of extremely short-lived

mRNAs in this study may not preclude their occurrence in K.

brevis; rather those sequences may not be represented on the

microarray employed. A similar analysis using RNA-seq may

reveal a missing population of shorter-lived messages. It is also

plausible that the unusually long half-lives reported here reflect

another characteristic of dinoflagellate physiology: circadian

regulation. Many processes in dinoflagellates are under circadian

control, including bioluminescence [10], [11], [12], photosynthesis

[13], and the cell cycle [15], [16]. In Lingulodinium polyedrum,

translation also appears to occur almost exclusively during the

subjective night [54]. Thus, it is conceivable that messages are

stabilized throughout the day pending their translation at night.

Since the current study was carried out during the light phase of

the diel cycle, and the method of half-life calculation assumes

steady state, a nighttime turnover of mRNA would not be detected

and cannot be discounted.

An emerging pattern of mRNA half-lives in organisms studied

at the global level reveals that genes involved in regulatory/

response functions (e.g. regulation of transcription and signal

transduction) and stress responses are among the least stable

messages, enabling the cell to rapidly alter their abundance

through alternative synthesis and degradation. In contrast, genes

involved in housekeeping functions (e.g. energy metabolism,

cellular respiration, structure) are overall among the most stable

messages, alleviating the need to continually synthesize new

messages for constitutive processes [24], [27], [44], [45], [46]. To

Table 1. Significantly over-enriched gene ontology (GO) categories, assigned using the standard GO vocabulary, among features
with calculated half-lives of at least 3 days.

GO ID GO Term Categorya FDRb

GO:0045263 proton-transporting ATP synthase complex, coupling factor F(o) C 0.0253

GO:0033177 proton-transporting two-sector ATPase complex, proton-transporting domain C 0.0253

GO:0045259 proton-transporting ATP synthase complex C 0.0253

GO:0046933 hydrogen ion transporting ATP synthase activity, rotational mechanism F 0.0253

GO:0022804 active transmembrane transporter activity F 0.0253

GO:0046961 proton-transporting ATPase activity, rotational mechanism F 0.0253

GO:0055085 transmembrane transport P 0.0253

GO:0006091 generation of precursor metabolites and energy P 0.0272

GO:0016469 proton-transporting two-sector ATPase complex C 0.0332

GO:0005743 mitochondrial inner membrane C 0.0332

GO:0019866 organelle inner membrane C 0.0332

GO:0019829 cation-transporting ATPase activity F 0.0332

GO:0015405 P-P-bond-hydrolysis-driven transmembrane transporter activity F 0.0332

GO:0015399 primary active transmembrane transporter activity F 0.0332

GO:0046034 ATP metabolic process P 0.0332

GO:0010608 posttranscriptional regulation of gene expression P 0.0332

GO:0006754 ATP biosynthetic process P 0.0332

GO:0015986 ATP synthesis coupled proton transport P 0.0332

GO:0015985 energy coupled proton transport, down electrochemical gradient P 0.0332

GO:0034220 ion transmembrane transport P 0.0332

GO:0006818 hydrogen transport P 0.0353

GO:0015992 proton transport P 0.0353

GO:0031966 mitochondrial membrane C 0.0358

GO:0031967 organelle envelope C 0.0402

GO:0015078 hydrogen ion transmembrane transporter activity F 0.0402

GO:0009206 purine ribonucleoside triphosphate biosynthetic process P 0.0402

GO:0009145 purine nucleoside triphosphate biosynthetic process P 0.0402

GO:0051246 regulation of protein metabolic process P 0.0462

GO:0008289 lipid binding F 0.0463

GO:0009201 ribonucleoside triphosphate biosynthetic process P 0.0483

GO:0009142 nucleoside triphosphate biosynthetic process P 0.0483

GO:0005740 mitochondrial envelope C 0.0500

aC: Cellular Component, F: Molecular Function, P: Biological Process.
bReported FDR values are from a Fisher’s Exact Test in Blast2GO.
doi:10.1371/journal.pone.0066347.t001

Karenia brevis mRNA Stability

PLOS ONE | www.plosone.org 6 June 2013 | Volume 8 | Issue 6 | e66347



assess if these conserved principles hold true for K. brevis, we

utilized Fisher’s Exact tests for enrichment in Blast2GO on the

binned K. brevis mRNA half-life data. Significant enrichment was

only observed among mRNAs with a half-life of at least 3 days

(Table 1). Indeed, we observed significant over-enrichment of

several GO functions and processes including energetic processes,

metabolism, and transport. Significant enrichment was not

observed among transcripts with shorter half-lives in K. brevis.

However, when the distribution of mRNA half-lives was compared

qualitatively between GO terms, it was apparent that the K. brevis

half-lives concurred with observations from other species. For

example, when querying biological process Yeast GO slim terms,

only 10% of features with an annotation of response to stress had a

half-life of at least 3 days (Figure 4a). In contrast, among other

biological process Yeast GO slim terms of cellular homeostasis,

generation of precursor metabolites and energy and cellular

respiration, 19–33% of features had half-lives of greater than 3

days. Likewise the distribution of K. brevis mRNA half-lives

involved in the molecular function Yeast GO slim terms of

transcription regulator activity and translation regulator activity

agreed with the observations in mammalian cells, wherein mRNAs

encoding for transcription regulation were less stable and half-lives

for transcripts involved in translation regulation were somewhat

longer [24]. In the current study 11% of features involved in

transcription regulator activity had at least a 3 day half-life,

compared to 30% of features involved in translation regulator

activity (Figure 4b).

Among the genes involved in RNA processing in K. brevis is a

highly represented family of pentatricopeptide repeat (PPR)

containing proteins. PPR proteins are sequence-specific RNA

binding proteins involved in post- transcriptional processing of

organellar RNAs, including editing, splicing, translation, and

Figure 4. mRNA half-life distributions for selected GO terms. Gene ontology terms were assigned using Blast2GO Yeast GO slim. mRNA half-
lives were binned on time and distributions are shown for selected GO terms. A. Biological Process GO terms. GO:0006950, response to stress;
GO:0019725, cellular homeostasis; GO:0006091, generation of precursor metabolites and energy; GO:0045333, cellular respiration. B. Molecular
Function GO terms. GO:0030528, transcription regulator activity; GO:0045182, translation regulator activity.
doi:10.1371/journal.pone.0066347.g004
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stability [55], [56], [57]. These transcripts are of particular interest

because they are among the earliest transcripts to change in

abundance following nutrient addition to nutrient starved cultures

[18], consistent with their function in regulating organellar RNA

necessary for renewed photosynthetic activity. We queried the

mRNA half-lives calculated for 47 of the 93 features annotated as

PPR proteins on the microarray. The minimum half-life was 97 m

and the maximum 70 h, with a median half-life of 9.1 h. The

distribution is greatly skewed to shorter half-lives (Figure 5), with

64% of PPRs having half-lives ,12 h, in comparison to only 12%

of features in the complete data set. Thus, as observed in

Arabidopsis [46], PPRs in K. brevis have much shorter half-lives than

the transcriptome as a whole. These short half-lives for PPRs are

likely indicative of their essential roles in regulatory functions in

chloroplasts and mitochondria [46], [55]. As short-lived tran-

scripts, they are primed for immediate response to perturbations as

observed our previous microarray studies following N- and P-

addition [18].

To independently assess half-lives of selected RNAs, we used the

traditional approach of blocking transcription with actinomycin D

and following transcript levels over a time course of 12, 24 and

48 h by qPCR. We selected two cytoskeletal genes, a-tubulin and

b-tubulin, one cell cycle gene, PCNA, previously shown to be

regulated in K. brevis by post-transcriptional mechanisms [15], and

a PPR protein (Figure 6). The PPR protein transcript dramatically

declined in abundance by 12 h, relative to its abundance in time

matched controls, with almost a complete loss of transcript by 24 h

(undetected after 40 qPCR cycles in 2 of 3 replicates). The half-life

for this PPR protein (Contig 3257) was calculated to be just under

7 h in the microarray study, indicating a relatively short half-life

compared to the transcriptome as a whole. In contrast, none of the

other transcripts showed a decrease in abundance even after 48 h,

suggesting that the tubulin and PCNA transcripts are highly stable.

Three a-tubulin probes on the array reported a mean half-life of

38.4 h, four probes for b-tubulin reported a mean half-life of

64.1 h, while a PCNA probe reported a half-life of 27.4 h using

the biosynthetic labeling approach. Although not in precise

agreement, both methods identified long half-lives in the

cytoskeletal genes and PCNA. Furthermore, the qPCR results

lend support to the prediction that PPR repeat transcripts have

short half-lives, consistent with their regulatory roles. We are

aware of only one previous study that addressed message stability

in dinoflagellates, in which the half-lives of circadian GAPDH,

luciferin binding protein, and luciferase in Lingulodinium polyedrum

varied somewhat depending on the time of day at which the

transcription inhibitor thiolutin was added, but all were on the

order of several hours as assessed by northern blot analysis [58].

Increased de novo transcription does not mediate short
term changes in transcript abundance

The presence of the SL on all nuclear encoded gene transcripts

examined in dinoflagellates, along with the observation of post-

Figure 5. mRNA half-live distributions for pentatricopeptide repeat (PPR) protein transcripts. mRNA half-lives were calculated for 47 of
the 93 features annotated as PPRs on the array. mRNA half-lives were binned on time and distributions are shown for these PPR transcripts. The
distribution of 7086 features of the K. brevis transcriptome are re-plotted from figure 3 for ease of comparison.
doi:10.1371/journal.pone.0066347.g005

Figure 6. Stability of selected mRNAs following transcription
inhibition assessed by qPCR. Triplicate cultures were treated with
2 mg?mL21 actinomycin D for 12, 24, or 48 h and the transcript
abundance determined relative to DMSO carrier controls at each time
point. Means 6SD (n = 3) are plotted. The PPR transcript was
undetected in two of three replicates at 24 and 48 h following 40
PCR cycles, therefore SDs were not calculated. Dashed lines represent a
2-fold change.
doi:10.1371/journal.pone.0066347.g006
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transcriptional regulation of a number of processes studied, has led

to the hypothesis that gene regulation in dinoflagellates is

dependent largely on post-transcriptional processes [9]. Consistent

with this, a microarray study of the K. brevis transcriptome’s

response to nutrient addition found only 4.4% of array features

significantly changing over a 48 h time course following nitrate

addition to N-depleted K. brevis cultures [18]. However, minimal

changes were observed early in the time course with only 0.38% of

array features significantly changed in abundance 4 h post N-

addition. Intriguingly, among these early changers nearly 50% of

the annotated features were PPR proteins. This raised the question

as to whether PPR proteins are a class of genes that are under

transcriptional regulation. Typical microarray experiments cannot

resolve if changes in message abundance are due to de novo

transcription and or to changes mRNA stability. Therefore, in the

current study we examined de novo transcription by 4tU

incorporation into newly synthesized RNA over two 1 h periods

(0–1 h and 3–4 h) following N addition in comparison with that in

the N-depleted cultures This data has been deposited as GEO

Accession # GSE46175.

During the first hour post N-addition only 0.2% of array

features were significantly different in the newly transcribed RNA

pool when compared to the N-depleted cells similarly labeled for

1 h ($1.7 fold change and p-value #0.0001) (Table 2). However,

15 of the 21 significantly changing features were less abundant

than in the N-depleted cultures, suggesting their rate of

transcription decreased. The number of significantly different

genes increased to 0.34% of array features during the fourth hour

post N-addition (Table 3), a percentage very similar to that

reported in the previous whole transcriptome study [18]. By this

time 22 of the 36 significant array features had increased in

abundance. Overall, the small number of differentially expressed

array features among newly transcribed RNA queried in this study

suggests that there was limited transcriptional activation involved

in the early response to N-addition. No PPR protein transcripts

showed significant changes in abundance in the newly synthesized

RNA pool relative to the N-depleted controls at either time point.

Thus it appears that changes in transcription rate did not

contribute to the previously observed increase PPR protein

transcript abundance. This and the presence of the SL sequence

on these PPR repeat protein messages [18] supports the hypothesis

that their change in expression was achieved through differential

message stability.

Conclusions

Insight into mRNA stability is important to understanding gene

regulation, particularly in poorly characterized and divergent

eukaryotes. Here we demonstrate that the pyrimidine salvage

pathway of the dinoflagellate, K. brevis, is capable of incorporating

4-thiouracil into newly transcribed RNA, making it amenable to

studying RNA stability using biosynthetic labeling approaches. By

microarray analysis, K. brevis appears to possess highly stable

messages relative to other eukaryotic models. Further analyses

using deeper transcriptome surveys via RNA-seq may refine this

estimation of median half-life. In addition, the potential contribu-

tion of circadian accumulation and turnover of messages must be

addressed. Nonetheless, in keeping with conserved properties in

other eukaryotes, the dinoflagellate’s most stable messages are

largely involved in core processes such as energy generation and

Table 2. Array features with significantly different abundance during the first hour post-nitrate addition, relative to N-depleted
cultures.

Contig Description BLASTx e-value fold change p-value

10845 hCG1994859 1.80E201 33.97 3.70E209

5509 PREDICTED: hypothetical protein LOC100401915 8.98E205 21.55 2.24E205

1269 chloroplast light harvesting protein isoform 12 8.81E213 15.88 1.57E206

9771 membrane bound adenylate/guanylate cyclase with PAS domain 1.02E207 11.40 2.07E206

8807 COG2307: Uncharacterized protein 8.50E201 2.48 1.29E205

9812 glutamine synthetase 7.30E202 2.05 9.89E205

8060 PREDICTED: hypothetical protein 2.90E+00 21.70 2.72E225

6696 regulatory protein, putative 4.80E+00 21.72 3.99E208

6529 UOS5/S1 protein, putative 2.26E208 21.83 8.64E205

7967 COG3119: Arylsulfatase A 1.40E+00 21.85 2.76E205

10741 CPA1 family transporter: sodium ion/proton 7.80E201 21.85 2.68E205

3375 hypothetical protein Kpol_376p14 8.00E203 22.17 1.28E206

6519 h-caldesmon 4.00E205 22.84 1.91E206

11662 serine threonine-specific protein phosphatase 1.00E224 27.78 3.62E205

10272 60S acidic ribosomal protein P0 3.00E254 29.18 8.87E206

5289 von willebrand factor type a domain protein 1.84E223 211.03 9.50E206

2363 eukaryotic translation initiation factor 5A 2.55E220 212.20 6.72E206

9695 putative sugar transport membrane protein 1.80E+00 212.78 4.16E205

10482 hypothetical protein OsI_030791 1.80E201 216.20 7.56E205

7355 AChain A, Transposase Inhibitor 1.20E2168 216.21 2.35E207

2545 conserved hypothetical protein 1.40E+00 227.35 7.21E209

Contigs in bold are also significantly different during the fourth hour post-nitrate addition.
doi:10.1371/journal.pone.0066347.t002
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transport, whereas regulatory processes, including transcription

regulation and stress response, are more highly represented among

the shorter-lived transcripts. In particular, PPR repeat proteins

involved in organellar RNA regulation are highly represented

among the short-lived mRNAs, consistent with their rapid increase

in abundance following nutrient stimulation. However, their

apparent lack of transcriptional activation, along with the presence

of the SL on PPR protein messages, lends support to the growing

consensus of post-transcriptional control of dinoflagellate gene

expression.
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Table 3. Array features with significantly different abundance during the fourth hour post-nitrate addition, relative to N-depleted
cultures.

Contig Description BLASTx e-value
fold
change p-value

8061 hypothetical protein BoklE_05717 8.10E201 18.96 2.14E206

9812 glutamine synthetase 7.30E202 4.26 7.49E208

8807 COG2307: Uncharacterized protein conserved 8.50E201 2.98 1.57E205

10877 Peroxisomal catalase 2.50E+00 2.81 8.45E206

6074 Extracellular ligand-binding receptor 5.70E201 2.51 2.20E206

5893 Tetratricopeptide TPR_2 repeat protein 2.00E206 2.45 2.32E205

5722 putative arsenate reductase 2.20E+00 2.41 1.24E205

797 neuropilin 2.30E+00 2.37 3.12E205

3750 merozoite surface protein 3 (MSP3), putative 8.60E202 2.37 1.48E205

10903 type I polyketide synthase-like protein KB4825 3.31E2121 2.17 4.02E205

2927 Malonyl-CoA:ACP transacylase (ISS) 8.00E230 2.13 1.30E206

118 Malonyl-CoA:ACP transacylase (ISS) 2.00E251 2.07 1.33E205

8273 hypothetical protein CaO19.4072 1.70E202 1.97 1.27E210

8698 type I polyketide synthase-like protein KB6842 4.79E2177 1.95 1.55E206

851 hypothetical protein SSO2408 2.60E201 1.92 5.58E206

1739 heat domain-containing protein 1.69E214 1.90 2.18E205

964 PREDICTED: similar to 4633402D15Rik protein 1.90E+00 1.87 1.06E208

9237 type I polyketide synthase-like protein KB5361 9.56E2111 1.80 9.96E205

5784 Cupin 4 family protein 5.00E209 1.78 1.49E212

9799 protein arginine N-methyltransferase-like protein 4.00E212 1.77 2.44E208

3629 PREDICTED: similar to hypothetical gene 1.10E201 1.74 5.36E205

9473 chaperone protein 3.40E201 1.71 5.79E205

6529 3CCCH domain containing protein 4.00E206 21.77 4.72E208

10990 alpha-1,3-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase C 6.38E232 21.93 5.66E206

10449 Putative membrane protein 1.60E201 22.16 1.97E205

11834 *No hits found* - 22.27 1.55E205

8815 DNA-binding protein 1.30E201 22.86 2.44E207

4388 alanine aminotransferase 8.25E260 22.94 9.76E205

7379 putative formate dehydrogenase 3.90E202 23.56 5.55E205

5143 Kynurenine 3-monooxygenase and related flavoprotein monooxygenases (ISS) 6.32E210 23.75 3.18E205

6738 ATP-binding component of molybdate transporter 3.00E201 26.94 8.49E213

4218 glycoside hydrolase family 3 domain protein 4.01E226 213.28 8.57E209

7355 AChain A, Transposase Inhibitor 1.20E2168 214.15 4.94E205

2363 eukaryotic translation initiation factor 5A 2.55E220 218.93 1.74E207

4062 proteophosphoglycan ppg4 2.00E205 219.21 1.04E207

6079 calcium-dependent protein kinase 33 4.17E207 224.25 4.79E206

Contigs in bold are also significantly changing during the first hour post-nitrate addition.
doi:10.1371/journal.pone.0066347.t003
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Supporting Information

Figure S1 Regression plots used for normalization in
HALO. Following 2 h incubation with 0.2 mM 4-thiouracil, total

RNA was biotinylated and bead purified. Total, pre-existing, and

newly synthesized RNA fractions were hybridized to a custom

oligonucleotide microarray. Linear regressions of the ratios of

newly synthesized RNA to total RNA and pre-existing RNA to

total RNA are conducted in HALO prior to half-life calculations.

The regression of the raw uncorrected data (A) and regression-

normalized data (B) used for half-life calculations are shown.

(TIF)

Figure S2 Karenia brevis mRNA half-lives calculated
from additional ratios. Following 2 h incubation with 0.2 mM

4-thiouracil, total RNA was biotinylated and bead purified. Total,

pre-existing, and newly synthesized RNA fractions were hybrid-

ized to a custom oligonucleotide microarray and mRNA half-lives

were calculated for 7086 features using HALO. Following

normalization by linear regression, newly synthesized RNA to

total RNA (A) or pre-existing to total RNA (B) ratios were used to

calculate half-lives.

(TIF)

Table S1 Primers used for quantitative real-time PCR.
(XLSX)

Table S2 Half-lives for 7086 features passing quality
filters based on newly synthesized RNA to pre-existing
RNA ratios.
(XLSX)

Author Contributions

Conceived and designed the experiments: JSM FVD. Performed the

experiments: JSM. Analyzed the data: JSM. Contributed reagents/

materials/analysis tools: JSM FVD. Wrote the paper: JSM FVD.

References

1. Van Dolah FM (2000) Marine algal toxins: Origins, health effects, and their

increased occurrence. Environ Health Perspect 108: 133–141.

2. Hou Y, Lin S (2009) Distinct gene number-genome size relationships for

eukaryotes and non-eukaryotes: Gene content estimation for dinoflagellate

genomes. PLoS ONE 4: e6978.

3. Bachvaroff TR, Place AR (2008) From stop to start: Tandem gene arrangement,

copy number and trans-splicing sites in the dinoflagellate Amphidinium carterae.

PLoS ONE 3: e2929.

4. Beauchemin M, Roy S, Daoust P, Dagenais-Bellefeuille S, Bertomeu T, et al.

(2012) Dinoflagellate tandem array gene transcripts are highly conserved and not

polycistronic. P Natl Acad Sci USA 109: 15793–15798.

5. Lidie KB, Van Dolah FM (2007) Spliced leader RNA-mediated trans-splicing in

a dinoflagellate, Karenia brevis. J Eukaryot Microbiol 54: 427–435.

6. Zhang H, Hou Y, Miranda L, Campbell DA, Sturm NR, et al. (2007) Spliced

leader RNA trans-splicing in dinoflagellates. P Natl Acad Sci USA 104: 4618–

4623.

7. Murphy WJ, Watkins KP, Agabian N (1986) Identification of a novel y branch

structure as an intermediate in trypanosome mRNA processing: Evidence for

trans splicing. Cell 47: 517–525.

8. Palenchar JB, Bellofatto V (2006) Gene transcription in trypanosomes. Mol

Biochem Parasit 146: 135–141.

9. Wisecaver JH, Hackett JD (2011) Dinoflagellate genome evolution. Annu Rev

Microbiol 65: 369–387.

10. Mittag M, Li L, Hastings JW (1998) The mRNA level of the circadian regulated

Gonyaulax luciferase remains constant over the cycle. Chronobiol Int 15: 93–98.

11. Morse D, Milos PM, Roux E, Hastings JW (1989) Circadian regulation of

bioluminescence in Gonyaulax involves translational control. P Natl Acad Sci

USA 86: 172–176.

12. Fagan T, Morse D, Hastings JW (1999) Circadian synthesis of a nuclear-encoded

chloroplast glyceraldehyde-3-phosphate dehydrogenase in the dinoflagellate

Gonyaulax polyedra is translationally controlled. Biochemistry 38: 7689–7695.

13. Le QH, Jovine R, Markovic P, Morse D (2001) Peridinin-chlorophyll a-protein is

not implicated in the photosynthesis rhythm of the dinoflagellate Gonyaulax

despite circadian regulation of its translation. Biol Rhythm Res 32: 579–594.

14. Okamoto OK, Robertson DL, Fagan TF, Hastings JW, Colepicolo P (2001)

Different regulatory mechanisms modulate the expression of a dinoflagellate

iron-superoxide dismutase. J Biol Chem 276: 19989–19993.

15. Brunelle SA, Van Dolah FM (2011) Post-transcriptional regulation of s-phase

genes in the dinoflagellate, Karenia brevis. J Eukaryot Microbiol 58: 373–382.

16. Van Dolah FM, Lidie KB, Morey JS, Brunelle SA, Ryan JC, et al. (2007)

Microarray analysis of diurnal- and circadian-regulated genes in the Florida red-

tide dinoflagellate Karenia brevis (dinophyceae). J Phycol 43: 741–752.

17. Lidie KB (2007) Characterization and regulation of gene expression networks in

response to acute environmental stress in the Florida red tide dinoflagellate,

Karenia brevis [PhD thesis]. Charleston, SC: Medical University of South

Carolina. 249.

18. Morey JS, Monroe EA, Kinney AL, Beal M, Johnson JG, et al. (2011)

Transcriptomic response of the red tide dinoflagellate, Karenia brevis, to nitrogen

and phosphorus depletion and addition. BMC Genomics 12: 346.

19. Moustafa A, Evans AN, Kulis DM, Hackett JD, Erdner DL, et al. (2010)

Transcriptome profiling of a toxic dinoflagellate reveals a gene-rich protist and a

potential impact on gene expression due to bacterial presence. PLoS ONE 5:

e9688.

20. Johnson JG, Morey JS, Neely MG, Ryan JC, Van Dolah FM (2012)

Transcriptome remodeling associated with chronological aging in the dinofla-

gellate, Karenia brevis. Mar Genomics 5: 15–25.

21. Yang I, Beszteri S, Tillmann U, Cembella A, John U (2011) Growth- and

nutrient-dependent gene expression in the toxigenic marine dinoflagellate

Alexandrium minutum. Harmful Algae 12: 55–69.

22. Dölken L, Ruzsics Z, Radle B, Friedel CC, Zimmer R, et al. (2008) High-

resolution gene expression profiling for simultaneous kinetic parameter analysis
of RNA synthesis and decay. RNA (New York, NY) 14: 1959–1972.

23. Manful T, Fadda A, Clayton C (2011) The role of the 59–39 exoribonuclease
xRNA in transcriptome-wide mRNA degradation. RNA (New York, NY) 17:

2039–2047.

24. Friedel CC, Dölken L, Ruzsics Z, Koszinowski UH, Zimmer R (2009)

Conserved principles of mammalian transcriptional regulation revealed by

RNA half-life. Nucl Acids Res 37: e115.
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