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Abstract

This paper presents a new method of analysis by which structural similarities between brain data and linguistic data can be
assessed at the semantic level. It shows how to measure the strength of these structural similarities and so determine the
relatively better fit of the brain data with one semantic model over another. The first model is derived from WordNet, a
lexical database of English compiled by language experts. The second is given by the corpus-based statistical technique of
latent semantic analysis (LSA), which detects relations between words that are latent or hidden in text. The brain data are
drawn from experiments in which statements about the geography of Europe were presented auditorily to participants who
were asked to determine their truth or falsity while electroencephalographic (EEG) recordings were made. The theoretical
framework for the analysis of the brain and semantic data derives from axiomatizations of theories such as the theory of
differences in utility preference. Using brain-data samples from individual trials time-locked to the presentation of each
word, ordinal relations of similarity differences are computed for the brain data and for the linguistic data. In each case
those relations that are invariant with respect to the brain and linguistic data, and are correlated with sufficient statistical
strength, amount to structural similarities between the brain and linguistic data. Results show that many more statistically
significant structural similarities can be found between the brain data and the WordNet-derived data than the LSA-derived
data. The work reported here is placed within the context of other recent studies of semantics and the brain. The main
contribution of this paper is the new method it presents for the study of semantics and the brain and the focus it permits on
networks of relations detected in brain data and represented by a semantic model.
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Introduction

This paper presents a new method of analysis that assesses the

extent to which brain data are structurally similar to linguistic

data. It allows us to evaluate the relatively better fit of the brain

data with one semantic model over another. The first model is

derived from WordNet, a lexical database of English compiled by

experts in which words are grouped into sets of cognitive

synonyms called synsets, each set expressing a distinct concept,

with relations such as synonymy being defined between the synsets

[1], [2]. The second model is given by a statistical technique for

extracting from large document collections a measure of how

similar two words are to each other in terms of how similar their

contexts of use are within those documents [3], [4]. Such a

statistical method is said to reveal semantic relations latent in the

texts and is referred to by the acronym LSA (latent semantic

analysis). The brain data are drawn from experiments in which

statements about the geography of Europe were presented

auditorily to participants who were asked to determine their truth

or falsity while electroencephalographic (EEG) recordings were

made [5].

The theoretical framework for the analysis of the EEG data and

the semantic data derives from the axiomatization of theories such

as the theory of differences in utility preference or the theory of

differences in psychological intensity. Using brain data samples

from individual trials time-locked to the presentation of each word

and extracted from the EEG recordings, ordinal relations of

similarity differences are computed for the brain data and for

linguistic data derived from the two models of semantic similarity.

In each case those relations that are invariant with respect to the

brain data and the linguistic data, and are correlated with

sufficient statistical strength, amount to structural similarities

between the brain and linguistic data. Our results show that many

more statistically significant structural similarities can be found

between the brain data and the WordNet-derived data than the

LSA-derived data.

The work reported here builds on earlier work by Suppes and

colleagues in which machine learning was employed to recognize

brain representations of phonemes, isolated words, sentences,

words within sentences, and simple images and their names. That

is, the following question was answered affirmatively for EEG and,

in one instance, magnetoencephalographic (MEG) data. Can we

train a classifier of brain data so that we can predict which word or

sentence or word within a sentence the participant is seeing or

hearing [6], [7], [8], [9], [10], [11], [12]? Similarly, the following

questions were answered. Can we train a classifier on some

participants and use it to make predictions for other participants

[5], [13]? And, can we train a classifier using words and use that
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classifier to make predictions for pictures depicting what the words

refer to (and vice versa) [14]? A fundamental result that follows

from this work is that when brain wave recordings are time-locked

to the presentation of words in a sentential context, transforma-

tions of segments of those brain waves can be identified as

representations (or brain images) of those words. Furthermore,

these representations have approximate invariance across test

participants and across a variety of sentential contexts. These are

clearly representations not of the individuals’ idiosyncratic

perceptions of the orthography or sound of the words but of

something that could be called the meaning of the words or their

semantics.

There have been other recent attempts to study semantics and

the brain, also using machine-learning approaches. Many have

used functional magnetic resonance imaging (fMRI) data collected

while participants were presented with words or word-image pairs.

The semantics of a word was represented by its distributional

properties in the data set contributed by Google Inc., which

consists of English word n-grams and their frequencies in an

approximately 1-trillion-word set of web pages [15], [16].

Specifically, for nouns referring to physical objects, their semantics

was given by their co-occurrence patterns with 25 manually-

selected sensory-motor verbs in the corpus. Taking 60 such noun,

fMRI data were collected while participants paid attention to

consistent sets of properties of the objects. Using either 58 or 59

words in a training set, statistically significant predictions were

made for the semantic category (tool or mammal, for example) of

the held-back words relative to each other or to a larger set of

words outside the 60. This approach established that semantic

features of words could be learned from brain data, thereby

allowing a word outside the training set to be correctly classified in

terms of its semantic features. More recent work by Just and others

sought to reduce the 25-feature representation of the 60 words to a

small set of semantic features [17]. The reduction was through

factor analysis of the fMRI data to identify locations in the brain

that give the best classification of fMRI data for the 60 words.

Other corpora and other ways of selecting the co-occurrence

features have been investigated to see if they might offer improved

recognition of the Mitchell and others fMRI data [15]. Pereira and

others, [18], used semantic features obtained from a large text

corpus consisting of articles from Wikipedia pertinent to the

specific nouns. Latent Dirichlet allocation (LDA, [19]) gave the co-

occurrence features, with words being represented as probabilistic

distributions over topics and topics as probabilistic distributions

over words. LDA is one of several unsupervised methods that, like

LSA, find relations hidden or latent in the text. Kelly and others

used parsed data to identify three-part rather than two-part

associations, such as flute-produces-sound, rather than the simple flute-

sound [20]. They also included three-part associations involving

widely accepted computational and linguistic relations such as is-a

and part-of, as in Paris is a capital and Paris is part of France. Wikipedia

and the British National Corpus provided the language data. In a

companion paper, Devereux and others, [21], showed that their

semantic representation produces comparable predictions for the

fMRI activity of the Mitchell and others dataset [15].

In the work of Murphy and others we see semantics and the

brain investigated primarily with EEG data [22], [23], [24]. Using

the words in the Mitchell and others experiments as a starting

point, EEG data were collected from the presentation of 60 images

corresponding to the objects named by the 60 words [15]. These

EEG samples, both single-trial and averaged, were classified into

two categories (tools and mammals) using co-occurrence data

collected for the words describing the images. Several corpora

were tested, including a large corpus of newspaper texts that

included linguistic information such as part-of-speech tagging and

lemmatization. Patterns of co-occurrence were gleaned using

singular value decomposition applied to over 22,000 frequent

nouns and 5,000 frequent verbs to find the best 25 co-occurrence

candidates in place of the pre-selected 25 verbs [15]. Their work

also advanced understanding of the time latencies and intervals,

frequency bands and scalp locations that improve classification

rates, and of the relative advantage of MEG over EEG data.

Murphey and others systematically investigated several different

distributional models of semantics that could be applied to

arbitrary corpora [25]. Of particular interest was the linguistic

preprocessing that gave the best results, with dependency parsing

and relative position (which word came first in a co-occurrence)

proving most effective.

The work of Baroni and others represents efforts to build

corpus-based models of semantics that capture something of the

nature of the similarity between two words, not just a quantifi-

cation of that similarity [26]. Properties that could be typed 2

dogs have tails as parts, barking as behavior, for example 2 were of

interest and surface grammatical patterns were relied on to

pinpoint the potentially interesting co-occurrence patterns. The

corpus was a large part-of-speech tagged set of web pages. Outside

knowledge sources such as the information in a corpus of child-

directed speech and the hypernymy structure of WordNet were

used to further constrain co-occurrence candidates.

In Jelodor and others, [27] we find WordNet used as a

supplementary source of semantic information for the analysis of

the dataset [15]. Several WordNet similarity measures, individu-

ally and in combination, were used to compute the similarity of

each of the 60 nouns with each of the 25 sensory-motor verbs of

Mitchell and others [15]. This approach was handicapped by the

fact that in WordNet some similarity measures do not apply to

verbs, and some verb-noun comparisons were approximated using

noun-noun comparisons, which made sense only when the noun

and the verb had strongly consonant meanings. There was also no

attempt to limit the WordNet senses to those that were relevant to

the specific nouns and verbs, with the highest scoring synset-to-

synset similarity score simply being selected. In the end, the highest

classification scores obtained in this work were with a combination

of the WordNet similarity scores of the 60 nouns with the 25

sensory-motor words and the co-ocurrence features used originally

[15].

A move away from corpora is seen in the work of Chan and

others [28]. EEG and MEG data were collected during a large

number of trials (.1,000) involving a visual and auditory language

task in which participants were required to assess the relative size

of each of over 500 objects, which were equally divided between

living and non-living. The challenge was to learn a binary

semantic feature (living or non-living) from the brain data and

then correctly classify words in terms of this feature. The

amplitude at six time points, using all channels, provided the

brain data. The high temporal resolution of EEG and MEG

permitted to identify spatial and temporal features of the brain

data that improved classification rates and additionally allowed the

classification of individual words [28].

Sudre and others also took a corpus-free approach to learning

semantic features from brain data [29]. In their study of concrete

nouns, scaled values (0 to 5) for semantic features associated with

the objects and their names were obtained from a large number of

informants. Simultaneous EEG and MEG data were separately

collected from participants who were asked Yes/No questions

about 20 of these features for 60 objects and their names. Features

related to size, manipulability and animacy of the objects proved
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most effective in predicting MEG data, and these were associated

with different spatial and temporal features of the brain data.

In Huth and others we find the WordNet graph structure used

to map a large set of categories (1,705), reduced by principal

component analysis, onto fMRI data collected while subjects

watched videos featuring objects and actions in those categories

[30]. The surprising result in this work was how the brain activity

related to category responses was so widespread, with activity for

some categories localized and for others distributed.

The studies of language and the brain discussed above can each

be characterized by whether or not they relied on corpora,

specifically the distributional properties of words in corpora, to

provide semantic features of the words. For the corpus-based

studies, differences exist in the choice of corpus and the strategies

used to glean distributional properties, including whether or not

linguistic information such as part of speech or WordNet measures

were exploited. Those that did not rely on a corpus solicited

features either directly or indirectly from language users, relying

on a large set of categories and binary or graded membership of

categories to specify the semantic model.

Our work draws a comparison between the use of corpus-based

distributional properties of words, specifically those provided by

LSA, and the semantic information encoded in WordNet. Our

interest is not in which gives better predictions of the brain data. It

is in the ability of each semantic model – WordNet or the corpus-

based distributional semantics of LSA – to represent the network

of relations between a given group of words that a participant is

considering 2 {London, Moscow, Paris, north, south, east, west, Germany,

Poland, Russia}, for example. LSA and other corpus-based

distributional semantic models detect relations between words

that are latent or hidden in text. WordNet makes these relations

explicit based on the judgment of language experts. Ultimately,

our interest is in evaluating the extent to which the network of

relations we detect in the neural data corresponds to the network

of relations represented by LSA compared to WordNet.

The approach taken in this paper is briefly as follows. We use

machine learning to predict which word a given brain-data sample

is associated with. That is, we classify the brain-data samples into

classes that correspond to the words. We then use those

classifications to compile confusion matrices, to capture not only

which brain-data samples were classified correctly but also, for

those that were not correctly classified, the words they were

incorrectly associated with. This approach derives from the well-

known experiments in Miller and Nicely in which confusion

matrices were used to deduce important information about the

perception of phonemes [31]. In our analysis, the pattern of

mistaken predictions for the brain data is used to tell us something

important about the perception of words in the brain. We can then

compare what we learn about these perceptions with the two

semantic models, WordNet and LSA.

The main contribution of this paper is in the new method it

introduces by which structural similarities between brain data and

linguistic data can be compared at the semantic level. Included in

this method is a way to measure the strength of the structural

similarities found between the brain data and the linguistic data,

which allows us to assess the relatively better fit of the brain data

with one semantic model over another.

Materials and Methods

2.1 Brain Data
Brain data comes from the experiments described in Suppes and

others [5], [14]. In the experiment of interest, 48 spoken sentences

about the geography of Europe were presented to nine partic-

ipants in 10 randomized blocks, with all 48 sentences occurring

once in each block. The 48 sentences were statements about

commonly known geographic facts of Europe, with half of the

sentences true, half false, half positive, and half negative (e.g., The

capital of Italy is Paris and Paris is not east of Berlin). The possible forms

of these trigger sentences are: X is [not]W of Y, W of Y is [not]X, X is

[not]Z of X, Y is [not] Z of Y, where X {Berlin, London, Moscow, Paris,

Rome, Warsaw, Madrid, Vienna, Athens), Y {France, Germany, Italy,

Poland, Russia, Austria, Greece, Spain), W {the capital, the largest city}, Z

{north, south, east, west}, and [not] indicates the optional presence of

not. The maximum sentence length was 2.59 s and the minimum

1.35 s, with the interval from sentence onset to sentence onset 4.05

s. In a related experiment using the same sentences, the words

were visually displayed one by one on a computer screen. The

same timing was used in the auditory presentation of the

sentences, providing a start and end time for each word. The

sampling rate was 1,000 Hz and the data were down-sampled 16

times, giving an effective sample rate of 62.5Hz.

With our focus on individual words in their sentential contexts,

we extracted segments of the brain-wave data for each word of

interest from every trial in which that word appeared. For

classifying the wave-form segments, we needed to produce data

samples of equal length. We let each word’s data sample begin

approximately 160 ms after the auditory onset of the word, that is,

10 data points beyond the word’s initial start point. To determine

the end point, we extended each word’s data sample by 50 data

points (that is, approximately 800 ms) and calculated the average

length of the resulting data samples. This average length then

determined the end point of each word’s data sample. The data

samples from all fifteen channels were concatenated, producing a

single brain-data sample for each occurrence of a word. The

choice of start and end points was informed by work showing the

N400 component of the event related potential (ERP) to be

associated with semantic processing and integration [32], [33],

[34]. Furthermore, recent work by Brennan and Pylkkänen

confirmed the long-held assumption that since sentences appear

to be understood incrementally, word-by-word, brain activity

time-locked to the presentation of words in sentences can be

analyzed to tell us something about language processing [35].

They additionally found that the activity 250 ms after word onset

can be associated with the processing of words in sentences as

opposed to words in lists.

The 21 country names, city names, and the four directions or

relative locations are the words of interest for our analysis. We

selected three city names, three country names and the four

relative location words for classification as a group. The linguistic

data for the ten words {London, Moscow, Paris, north of, south of, east of,

west of, Germany, Poland, Russia} and the brain data for one subject

(S18) are used to illustrate the methods throughout the paper. We

chose S18 because that participant gave good classification rates.

We use the data from this subject and the one set of ten words

consistently throughout the paper to eliminate any possibility of

cherry-picking participant-word samples in each instance to

support our points. Results for all nine participants and all 21

words are reported in the paper, however, and form the basis for

our conclusions. The words occurred within the trials with the

frequencies here shown in parentheses: Berlin (70), London (80),

Moscow (90), Paris (80), Rome (80), Warsaw (80), Madrid (70), Vienna

(40), Athens (50), France (40), Germany (40), Italy (40), Poland (40),

Russia (50), Austria (40), Greece (40), Spain (50), north (60), south (70),

east (60), and west (70). Material S1 gives the trigger sentences and

the timing of the presentation of each word for each sentence.

Semantic Relations and the Brain
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2.2 Models and Methods of Analysis
2.2.2 Structural models. The first step in constructing

structural models for the brain data is to analyze the data using a

statistical model that predicts to which class a brain-data sample

belongs, where each class corresponds to one of the 21 word types.

In order to classify the segments of data obtained from the

individual trials, we use a linear discriminant model in a 5-fold

cross-validation loop. The dimensionality of the data was reduced

using a nested principal component analysis. Ocular artifacts were

removed from the brain-data samples using blind source

separation. The procedure is described in detail by Perreau-

Guimaraes and others [11]. This classifier resulted from 10 years

experimentation with different kinds of classifiers. It gave

consistently higher recognition rates and it was used to derive

the results that led to the current work [12].

For our 10 sample words, each of 640 brain-data samples is

classified as a representation of one of the 10 words. More

generally, the T brain-data samples s1, s2, …, sT are classified into

the N classes v1, v2, …, vN. In this process, we do not directly

compare the samples to each other to judge their similarity; rather

we use a set of N prototypes, and these are what are designated by

v1, v2, …, vN. If test sample si is classified as vi then si and vi

have a minimal similarity difference compared to the other

possible classifications.

Let M = (mij) be the confusion matrix for a given classification

task, where mij is the number of test samples from class vi classified

as belonging to class vj. By computing the relative frequencies mij/

Sjmij we obtain N-by-N estimates for the conditional probability

densities that a randomly chosen test sample from class vi will be

classified as belonging to class vj. Figure 1 gives the conditional

probability estimates computed from the confusion matrix

resulting from a single-trial classification of the brain data for

{London, Moscow, Paris, north, south, east, west, Germany, Poland, Russia}

from participant S18. Following the conventions for heat maps,

the higher the value of each element in the matrix the darker its

shading.

Let these conditional probability estimates be given by the

matrix P = (pij). For each class vi we then define a quaternary

relation R such that vi vj R vi vk if and only if pij ,pik, that is, if

and only if the probability that a randomly chosen sample from

class vj will be classified as belonging to class vi is smaller than the

probability that a randomly chosen test sample from class vk will

be classified as belonging to class vi. R is an ordinal relation of

similarity differences, a partial order that is irreflexive, asymmetric,

and transitive. It can of course be simplified to a ternary relation

R* (vi vj vk). For simplicity we continue to use R for this ternary

relation.

Along the lines of the approach for the axiomatization of the

theory of differences in utility preference or the theory of

differences in psychological intensity, we put forward the relational

structure (A, R), which is constructed from R and the finite set A of

classes vi together with the real-valued functions given by the

inequalities pij ,pik [36]. (Specifically, the function defined by

these inequalities is the function f defined on A such that xy R uv

iff f(x) 2 f (y ),f (u) 2 f (v ), with f(x) 2 f(y) represented by pxy.)

Note that an ordinal relation of similarity differences, a partial

order that is irreflexive, asymmetric, and transitive, is defined for

each class vi. We therefore have N partial orders and the notation

(A, R) will from here on be understood to refer to a structure with

N partial orders defined on the set A.

At this point we have a formal characterization of the brain data

from the experiment. What of the linguistic data? The focus was

on the recognition of phonemes and words [12]. Linguistic data

were provided by the well-known Miller and Nicely experiment in

which participants heard 16 English consonants under various

conditions of noise or other distortion and then reported their

perceptual judgments by classifying the consonants [31]. The

confusion matrix of phonemes arising out of these perceptual

judgments gives rise to a relational structure (A’, R’) constructed

from R’ (more precisely from N such relations) and the finite set A’

of classes v’i together with the real-valued function (more

precisely, the N such functions) given by the inequalities p’ij
,p’ik. The two relational structures (A, R) and (A’, R’) provide the

means by which comparison can be made between the brain data

and the linguistic data. For the Miller and Nicely experiments, the

linguistic data were provided by human judgments of similarity.

For the geography sentence experiments, the linguistic data are

provided by similarity measures derived from two models of

semantic similarity, as we describe in Section 2.3.

2.2.3 Comparing structural models of brain and semantic

data. Isomorphism between (A, R) and (A’, R’) would constitute

the strongest measure of similarity, but isomorphism is almost

certainly too strong a requirement for brain data obtained under

current experimental conditions. The confusion matrices of the

Figure 1. Conditional probability density estimates (shown as a heat map) computed from the confusion matrix resulting from the
classification of 640 brain wave samples from S18 for the set of words {London, Moscow, Paris, north, south, east, west, Germany,
Poland, Russia}. This table was taken from [12].
doi:10.1371/journal.pone.0065366.g001
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brain and linguistic data could be compared directly using a

statistical test such as the chi square, for example. And cluster or

similarity trees can be computed from these matrices, allowing

visual assessment of the congruence between the brain and

linguistic data. However, direct comparison of the confusion

matrices, whether visually or using a single measure of quantitative

fit, is both too strong under current experimental conditions and

too weak. It is too strong because data derived from electrophys-

iological measurements on the scalp almost certainly present an

incomplete picture of brain activity. Direct visual or single-

measure comparison is too weak because it tells little of the precise

nature and strength of any congruence there might be between the

brain and linguistic data. Instead we have devised a procedure that

compares the partial orders of the two relational structures

described in the previous section. This approach, we submit, has a

stronger theoretical basis and offers a more detailed view of the

similarities that do hold between brain data and perceptual or

linguistic data.

We derive from the NxN matrix of conditional probability

densities for the brain data N strict partial orders RB
i (i = 1,…,N)

of the similarity differences of the ordered pairs, one ordering for

each of the N classes into which the samples are classified.

Similarly for the perceptual data related to phonemes or, the focus

of this paper, the semantic data related to the words. We derive

from the perceptual or semantics matrix N strict partial orderings

RP
i (i = 1,…,N) of the similarity differences of the ordered pairs,

one ordering for each of the N classes into which the samples are

classified. For simplicity, we omit the index i in the description that

follows. RB and RP are understood to refer to the orderings for any

one of the N classes.

The question now is how to compare the two partial orders. For

each class vi, we first compare RB and RP to see if they are order

isomorphic. Order isomorphism is defined in terms of the partially

ordered sets (or posets) corresponding to the partial ordering

relations. Two partially ordered sets X and Y are order isomorphic

iff there is a one-to-one and onto mapping f from X to Y such that

for all x1, x2 M X, the ordered pair (x1, x2) M X iff the ordered pair

(f(x1), f (x2)) M Y. That is, the mapping f between the two posets is

bijective and both f and f 21 are order preserving. If f also

preserves the mapping between the classes in the relational

structure for the brain data and those in the relational structure for

the linguistic data, order isomorphism establishes a strong notion

of similarity [37].

Order isomorphism at the level of the individual classes is more

likely under current experimental conditions than isomorphism

between the two full relational structures. Nonetheless, what is

required to compare the brain and linguistic data is a generaliza-

tion of the notion of order isomorphism to the notion of invariant

partial order. An invariant partial order for the brain and linguistic

data is the intersection of the partial order for the brain data, RB,

and the partial order for the perceptual data, RP. Each intersection

RINV = RB RP, one for each of the classes into which the samples

are classified, is also a partial order that is irreflexive, asymmetric,

and transitive. We devise a way to judge the strength of the

structural similarity represented by these invariant partial orders.

We compute the Spearman rank correlation coefficient of the

two partial orders RB and RP that give rise to each invariant

partial order. Each invariant partial order for which the

contributing RB and RP partial orders have a statistically

significant correlation between them is counted as a significant

invariant partial order. It is these significant invariant partial

orders that constitute the structural similarity between the brain

and linguistic data, and the total number of such significant partial

orders is a measure of the strength of that structural similarity.

We have restricted ourselves to strict partial orders so far but it

can be the case that confusion matrices produced by the brain or

perceptual data contain ties in a row, that is, for any class vi. If

these equal numerical scores are permitted in the partial order, the

result is a strict weak ordering instead of a strict ordering and the

property of irreflexivity does not hold. Instead of permitting ties in

the data to give rise to weak strict orders, a possibly more realistic

response to equal numerical scores in the experimental context lies

with semiorders. A semiorder requires that two numerical scores

be within some threshold of each other before they are compared.

Introduced in mathematical psychology, semiorders are intransi-

tive and used as a model of human preference that permits

nontransitive indifference [38], [39]. If the threshold is allowed to

vary from one score to another, the order is an interval order.

Semiorders or interval orders can prove useful in comparing

relational structures for brain and perceptual data, [12]; in this

paper, however, Suppes and others restrict ourselves to strict

partial orders.

In summary, the procedure by which structural similarity

between brain and linguistic data is judged is as follows. The

similarity differences from the linguistic data and the brain data

respectively are presented in the form of two confusion matrices.

For each matrix, conditional probabilities are constructed from

which we define N strict partial orders for the brain data and N for

the linguistic data. For each N, the intersection of the brain and

language partial orders give rise to one or more invariant partial

orders with respect to the brain and linguistic data. Those

invariant partial orders for which the contributing brain and

language partial orders are significantly correlated, as measured by

the Spearman rank correlation coefficient, constitute the structural

similarity between the brain and perceptual data. The total

number of significant invariant partial orders gives a measure of

the strength of that structural similarity.

2.3 Semantic Data
2.3.1 WordNet-based model of similarity. WordNet is a

lexical database of English compiled by experts using lexicograph-

ic practices to identify word senses, define relations between those

senses, and compose glosses (or definitions) of those senses. In

WordNet, nouns, verbs, adjectives and adverbs are each grouped

into sets of cognitive synonyms (called synsets), each expressing a

distinct concept [1], [2], [40]. The synsets are related to each

other, primarily through the hypernymy and hyponymy relations

for nouns. Other relations in WordNet are part-whole (holonym),

member of (meronym), has instance, and so on. Hyponymy, often

referred to as the is–a relation in computational discussions, is

defined as follows: a concept represented by a lexical item Li is said

to be a hyponym of the concept represented by a lexical item Lk if

native speakers of English accept sentences of the form "An Li is a

kind of Lk." Conversely Lk is the hypernym of Li. A hypernym is

therefore a more general concept and a hyponym a more specific

concept. The WordNet database has the structure of a directed

acyclic graph, and the node for one concept cx is said to be an

ancestor of the node for another concept cy if cx can be reached

from cy by traversing one or more relational links, known as paths

or edges. In WordNet one root node subsumes all of the noun

concepts, and similarly for verbs, adjectives and adverbs.

The well-known example of canaries can fly, and others like it,

suggests that humans represent words and their semantic relations

to each other something like WordNet does. We can quickly verify

that canaries can sing because a canary is a songbird, with only one

level of hyponymy between. But to verify that canaries can fly, two

levels of hyponymy must be traversed and to verify that canaries

have skin several levels. These two judgments take correspondingly
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more time. Words as represented in WordNet have multiple

senses, each sense being part of one or more synsets. The WordNet

senses for the city names, the country names, and the four

direction or location terms (east, west, north and south) are listed in

Material S2. For each word, the senses relevant to the geography

sentences are listed first, with the non-relevant senses shown

indented beneath. There are two senses of London in WordNet, for

example. The first, designated London#1, concerns the capital of

Britain, the second, designated London#2, the writer. Only the

first sense of the word London is relevant to the geography sentences

of our experiment.

Several different WordNet-based measures have been proposed

to represent the degree to which two words are related. A detailed

discussion of such measures [41] and online access is given to a

program that computes these [42], [43]. (Pedersen, Patwardhan,

Michelizzi, 2004). Three main approaches have dominated. The

first uses path length between two synsets measured along

WordNet’s taxonomic (is-a) paths, the second uses the notion of

information content, a corpus-based frequency-related measure,

and the third is a vector-space-based approach that uses the words

in the definitions (or "glosses") of the synsets. We combined five

measures in our computations of similarity to take account of these

different approaches, averaging the results from measures based

on path-length, information-content, and vector-space, along with

hybrids of these. Each similarity measure captures something

important about the relations between words as represented in

WordNet. Many studies have compared these and other measures

of relatedness in WordNet, assessing their effectiveness for tasks as

varied as word-sense disambiguation, information retrieval,

indexing, and spelling correction, as done in Budanitsky and

Hirst [41]. However, none emerges as clearly superior as a general

measure of similarity-oriented relatedness. Recent work by

Ballatore and others, furthermore, specifically compared the

performance of several combinations of WordNet similarity scores

against individual scores and found a clear pattern of success (that

is, fidelity to human judgments) for combined scores [44].

Coincidentally, their work looked specifically at geography-related

word. Further details of the five individual measures we used are

given in Material S3. In Figure 2 we show the results for all 10

words averaged over all relevant senses. Figure 3 gives a

hierarchical cluster tree computed for the data in Figure 2 using

furthest (also known as complete) distance. It shows the expected

groupings of the city names, country names, and location or

direction names.

2.3.2 Statistical method for extracting latent semantic

relations. LSA is a statistical technique for extracting from

large collections of documents a measure of how similar two words

are to each other in terms of patterns of their co-occurrences

within those documents [4], [3], [45]. The underlying idea is that

if you take into account all the contexts in which a word does and

does not appear within a set of documents, you capture something

important about that word’s meaning in those documents. LSA

has a plausible interpretation as a psychological theory of similarity

and knowledge. The similarity judgments produced by latent

semantic analysis have been shown to correspond to some extent

to human judgments of similarity. For example, after training on

about 2,000 pages of English text, it scored as well as average test-

takers on the synonym portion of the Test of English as a Foreign

Language (TOEFL). LSA’s judgments of similarity are derived

from the specific document set used in the computations, a

restriction that can be of practical advantage. For example, after

training on a psychology textbook it achieved a passing score on a

multiple-choice exam. LSA as generally implemented does not use

syntactic information, which most likely limits what it can capture

about semantic similarity, but there is no reason such information

cannot be incorporated into an LSA-type model. We used the

application at http://lsa.colorado.edu/(accessed January 15, 2013)

to compute similarity matrices in term space for our set of words.

See Figure 4. The computation was based on texts of general

reading up to 1st year college level and a maximum of 300 factors

was permitted in the analysis. Figure 5 gives the similarity tree

computed from Figure 4. It shows the expected groupings of the

city names, country names, and direction terms except for a

displacement of Moscow into the country names.

2.4 Structural Models of Similarity between Brain Data
and Semantic Data

We now have two structural representations, one of the brain

data and the other of the semantic data. We compare them.

2.4.1 Invariant partial orders. We start with the condi-

tional probability density estimates in Figure 1 derived from the

brain data and the similarity scores derived from WordNet

(Figure 2) and LSA (Figure 4). Line graphs of the conditional

probability densities and the semantic similarities for each word

(that is, each row of the two tables) give a sense of how the

Figure 2. Semantic similarity matrix (shown as a heat map) derived from WordNet for the set of words {London, Moscow, Paris, north,
south, east, west, Germany, Poland, Russia} using senses relevant to the geography of Europe.
doi:10.1371/journal.pone.0065366.g002
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linguistic data and the brain data appear to track each other. See

Figure 6 for the example of London. (Data for the other words can

be found in Figure S1 a–j.) The Spearman rank correlation for the

brain data and the WordNet-derived data in Figure 6 is 0.99, with

one-sided significance of 1.84E-10. The Spearman rank correla-

tion for the brain data and the LSA-derived data in Figure 6 is

0.8758 with one-sided significance of 8.9494e-004. The Spearman

rank correlation, as an indication of the strength of the relationship

between two partial orders, is a statistic of interest. But what is of

primary interest based on the approach described in section 2.4

are the ordinal relations of similarity differences, partial orders that

are irreflexive, asymmetric, and transitive, that are invariant with

respect to the semantic and brain data. For London, the WordNet

partial order is given by the 10-element sequence {London Paris

Moscow Germany Russia Poland north south west east}. The brain data

yields two nine-element sequences {London Paris Moscow Germany

north Russia Poland east south } and {London Paris Moscow Germany north

Russia Poland east west} arising from the tie between the scores for

south and west. See Table 1. The partial orders that are invariant

with respect to the brain data and WordNet-derived data are the

three seven-element sequences {London Paris Moscow Germany Russia

Poland south}, {London Paris Moscow Germany Russia Poland west } and

{London Paris Moscow Germany Russia Poland east}. These three

invariant partial orders jointly constitute the similarity between the

brain and semantic data for London relative to the set of words

{London, Moscow, Paris, north, south, east, west, Germany, Poland,

Russia}. A graphical representation is given in Figure 7.

Looking now at the partial orders derived from the LSA

linguistic data and, again using London as an example, we find

the partial orders that are invariant with respect to the brain

data and these linguistic data. The LSA data yield eight seven-

element sequences. The brain data yield the same two nine-

element sequences as before. There are 16 partial orders that

are invariant with respect to the brain and LSA-derived data.

They jointly constitute the similarity between the brain and

LSA semantic data for London relative to the set of words

{London, Moscow, Paris, north, south, east, west, Germany, Poland,

Russia}. A representation of the graphical join of these invariant

partial orders is given in Figure 8.

Figure 3. Hierarchical cluster tree computed from the WordNet-based semantic similarity matrix for {London, Moscow, Paris, north,
south, east, west, Germany, Poland, Russia} given in Figure 2.
doi:10.1371/journal.pone.0065366.g003

Figure 4. Similarity scores computed using LSA for the words {London, Moscow, Paris, north, south, east, west, Germany, Poland, Russia}
shown as a heat map.
doi:10.1371/journal.pone.0065366.g004
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2.5 Computing Invariant Partial Orders
In this section we turn to the task of computing the invariant

partial orders for the brain and linguistic data. To illustrate we use

the semantic similarity matrix of Figure 2– that is, the Wordnet-

derived semantic data for {London, Moscow, Paris, north, south, east,

west, Germany, Poland, Russia} – and the conditional probability

density estimates presented in Figure 9 below. The estimates in

Figure 9 were computed using, as before, the linear discriminant

model of Perreau-Guimaraes and others to classify the 640 single-

trial data samples for the 10 geography words for participant S18

[11]. All computations described here were performed using the

MATLAB programming environment. We use this new classifi-

cation of the same ten words for the same participant to illustrate

an important computational point that is also an important point

about the brain data. We return to this point in section 2.6.

As stated earlier, for each word v we define a ternary relation

R’ such that R’(v, v1, v2 ) if and only if with respect to word v the

conditional probability for word v1 is smaller than the conditional

probability for word v2, that is if and only if v1’s similarity

difference with v is smaller than v2’s similarity difference with v,

or in terms of semantic similarities v1 is more similar to v than is

v2. R’ is an ordinal relation of similarity differences, a partial order

that is irreflexive, asymmetric, and transitive.

R’ can be represented computationally using a connection

matrix Cv where Cv(v1, v2) = 1 if and only if with respect to word

v the conditional probability for word v1 is smaller than the

conditional probability for word v2, that is if v1’s similarity

difference with v is smaller than v2’s similarity difference with v.

Similarly for the semantic similarity matrix of Figure 2. These

connection matrices can be computed automatically in a

straightforward manner from Figure 2 and Figure 9. The

connection matrix CB
London for London for the brain data is given

in Table 2. The connection matrix CS
London for London for the

semantic data is given in Table 3. Highlighted entries show where

the partial orders differ. A directed acyclic graph can be derived

from the connection matrix for a word v, with an arrow going

from node v1 to node v2 if and only if v1’s similarity difference

with v is smaller than v2’s similarity difference with v. Figure 10

shows the connection graph CGB
London for the brain data for

London, and Figure 11 the connection graph CGS
London for the

semantic data. These connection graphs may appear too complex

to be potential models of semantic relations as they are represented

in the brain. However, although these structures are visually

complex in graph form, the connection matrices to which they are

logically equivalent are structurally simple and amenable to simple

computations. More will be said in the Discussion about the role

such networks may play in accounts of how the brain processes

language.

To return to our task of computing the structural similarity

between brain and linguistic data, connection graphs allow

isomorphisms to be computed automatically using standard

functions in the MATLAB programming environment. In

MATLAB, biograph objects CGB
London and CGS

London are

constructed from connection matrices CB
London and CS

London

using the statements CGB
London = biograph(CB

London) and CGS
Lon-

don = biograph(CS
London). A graph isomorphism, a 1-to-1 mapping of

the nodes in the graph CGB
London and the nodes in the graph such

that adjacencies are preserved, can then be computed, if it exists,

using the isomorphism function in MATLAB. That is, the statement

[Isomorphic, Map] = isomorphism(CGB
London, CGS

London) is used,

Figure 5. Hierarchical cluster tree computed from the LSA
scores of similarity for {London, Moscow, Paris, north, south, east,
west, Germany, Poland, Russia} given in Figure 4.
doi:10.1371/journal.pone.0065366.g005

Figure 6. WordNet-based and LSA-based semantic similarities
and EEG conditional probability estimates for London relative
to London, Moscow, Paris, north, south, east, west, Germany,
Poland, and Russia. Data taken from Figure 1, Figure 2, and Figure 4.
doi:10.1371/journal.pone.0065366.g006

Figure 7. Joint invariant partial order for London relative to the
set of words {London, Moscow, Paris, north, south, east, west,
Germany, Poland, Russia}. Brain data derived from FIGURE 1 and
semantic data from the WordNet data in Figure 2.
doi:10.1371/journal.pone.0065366.g007
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which returns logical 1 (true) if the two N-by-N adjacency matrices

extracted from biograph objects CGLondon and CG’London are

isomorphic graphs and logical 0 (false) otherwise. When the

Boolean value Isomorphic is true, Map is a row vector containing the

node indices that map from CGB
London to CGS

London. When

Isomorphic is false, the worst-case time complexity is O(N!), where N

is the number of nodes. When Isomorphic is true, the row vector

Map must also be checked to see if the labeled nodes in the one

structure are mapped to their correspondingly labeled nodes in the

other structure. Without that, it is merely a structural isomorphism

without mapping that has been detected, which is of limited value

in comparing brain and perceptual data.

Isomorphism between the brain and perceptual data in fact lies

simply in the two connection matrices being identical and this

identity can be determined by a straightforward element-by-

element comparison of the two connection matrices; for example,

for London, an element-by-element comparison is made of

CGB
London for the brain data and CGS

London for the semantic

data. Failing isomorphism, which in current experimental

situations is unlikely, it is useful to know what other structural

similarities may hold for the brain and semantic data. These are

best described in graph-theoretic terms. For two graphs G1 and

G2 we would like to know what is the largest induced subgraph of

G1 isomorphic to a subgraph of G2. However, this maximum

common subgraph isomorphism problem is an NP-hard optimi-

zation problem. The associated decision problem, namely, given

G1, G2 and an integer k, deciding if G1 contains a subgraph of at

least k edges isomorphic to a subgraph of G2, is NP-complete, with

no known polynomial-time solution guaranteed to work in general

[46]. However, the importance of these problems to bioinformatics

has given rise to other ways of approaching the problem – for

example, by finding cliques [47] – and such algorithms may have

application to the analysis of brain data.

What can be computed when isomorphism fails is a topological

sort of each connection graph, that is, an ordering of the graph’s

nodes such that if there is an edge from node x to node y, then y

appears after x in the ordering. These topological sorts are exactly

the partial orders of the relational structures (A, R’) presented in

Section 2.2. The intersection of these topological sorts reveals the

structural similarity between the language and the brain data. In

general, the node order produced by a topological sort is not

unique. Specifically, in the case of the brain or semantic data,

every tie in the similarity differences for a given word gives rise to

two distinct orderings. There is no efficient way in general to find

all topological sorts; it is an NP-complete problem. However, for

directed acyclic graphs it can be solved in polynomial time and a

simple brute-force generation of all topological sorts is easily done

for the limited number of words at play at any time in sentence

understanding. Once all topological sorts are available for the

brain and semantic data, the common orderings of maximal

length can be extracted, also in polynomial time. These

computations are easily implemented in MATLAB using its

topoorder function. Returning to the brain and semantic data for

London, we compute OrdB
London = topoorder(CGB

London) and Ord-
S

London = topoorder(CGS
London). We then find the longest common

subsequence of OrdB
London and OrdS

London. Suppose it has length

L. All subsequences of this maximal length L that are common to

both OrdB
London and OrdS

London jointly constitute the similarity

between the brain and the semantic data.

2.6 Evaluating Structural Similarity
Comparing Figure 7 and Figure 8 and the Spearman rank

correlation coefficients associated with these figures, it is hard to

form a clear judgment of which model of semantic similarity has a

better structural fit with the brain data. However, only one single-

trial classification of the brain data produced the results given in

these figures and the invariant partial orders were for London only.

If the results for all the words are examined over a sufficiently large

number of single-trial classifications, a different picture emerges.

We therefore performed the following computations. For each

of the nine participants and for each of four sets of 10 words (three

city names, three country names, four relative location words), we

computed 60 single-trial classifications of the brain data using

random resampling with replacement. For half of these classifica-

tions we found the partial orders that were significantly highly

correlated (rho = .6485, p,0.05) and invariant with respect to the

WordNet-based semantic data. We did the same for the LSA data.

Table 1. Partial orders for London derived from the WordNet
semantic similarities of Figure 2 and the conditional
probability estimates for the brain data of Figure 1.

London

Language data Brain data

London 1.000 London 0.275

Paris 0.466 Paris 0.133

Moscow 0.396 Moscow 0.108

Germany 0.322 Germany 0.075

Russia 0.303 north 0.042

Poland 0.299 Russia 0.033

north 0.106 Poland 0.025

south 0.103 east 0.008

west 0.078 south 0.00

east 0.076 west 0.000

doi:10.1371/journal.pone.0065366.t001

Figure 8. Joint invariant partial order for London relative to the
set of words {London, Moscow, Paris, north, south, east, west,
Germany, Poland, Russia}. Brain data derived from Figure 1 and the
LSA data from Figure 4.
doi:10.1371/journal.pone.0065366.g008
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By using the single set of observations (the brain data) repeatedly

we were engaging in a form of bootstrapping. That is, we were

estimating the property of interest – the conditional probability

densities – using an approximating distribution. The assumption

behind this approach is that the observed data for each participant

are from a population of identically distributed and independent

sets of such observations.

We used four sets of words to ensure that every word appeared

at least once in our computations. The sets were {London, Moscow,

Paris, north, south, east, west, Germany, Poland, Russia}; {Paris, Vienna,

Athens, north, south, east, west, Italy, Spain, Austria}; {Berlin, Rome,

Warsaw, north, south, east, west, France, Greece, Poland}; and {Madrid,

Rome, Vienna, north, south, east, west, Spain, Italy, Austria}.

The average classification percent rate overall was 20.81. The

average classification rates for individual participants were 16.76,

17.27, 16.97, 18.68, 16.26, 25.41, 24.69, 19.83, and 31.5. The

average classification rates obtained for each of the four sets of

words over the nine participants were 21.13, 21.14, 20.48, and

20.54. All rates are well above chance (10%). Furthermore, these

results are stable, as illustrated in Figure 12, which presents the

results of 120 single-trial classifications of the sample ten

geography words for S18. These repeated computations produced

consistent classification rates in the range 25% to 29%, with a

mean classification rate of around 24.5%, p,10E210. We also

examined specific conditional probabilities obtained over a set of

120 single-trial classifications for four sets of 30 single-trial

classifications at a time. Figure 13 shows for each set of 30

single-trial classifications (using S18) the probability that a test

sample is classified as belonging to the set Moscow when the sample

actually belongs to the set London (dashed line), Paris (double line),

or Germany (solid line). These conditional probability estimates

show similar constancy over time. As another test of the stability of

the successive single-trial classifications, we computed the cumu-

lative averages of the conditional probability estimates over two

sets of 60 single-trial classifications and examined the series of

similarity trees generated from these conditional probability

estimates. For the first set of 60 classifications, from the 7th to

the 23rd classification the similarity tree switched between the two

Figure 9. Conditional probability density estimates (shown as a heat map) from a new single-trial classification of the brain data
(S18) for {London, Moscow, Paris, north, south, east, west, Germany, Poland, Russia}.
doi:10.1371/journal.pone.0065366.g009

Figure 10. Ordinal relation of similarity differences represented as a directed acyclic graph CGB
London for London relative to the set

of words {London, Moscow, Paris, north, south, east, west, Germany, Poland, Russia}, derived from the probability density estimates for
the brain data in Figure 1.
doi:10.1371/journal.pone.0065366.g010
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configurations (left and right) in Figure 14. In both trees, Paris and

London are closely coupled and east, south, west, and north are

grouped identically. In the tree on the left, Russia, Moscow, Germany

and Poland are intermingled. In the tree on the right, Germany’s

grouping with the cities is the only anomaly. After the 23rd

classification the cumulative tree remained the same as the tree on

the right. This similarity tree in fact first emerged on the 2nd single-

trial classification. For the second set of 60 single-trial classifica-

tions, the stable configuration emerged after the 2nd classification,

shown in Figure 15, and never changed.

Results

For each of the nine participants (identified as S10, S12, S13,

S16, S18, S24, S25, 26 and S27) and each of four sets of words, we

computed two sets of 30 single-trial classifications of the brain data

as described above. One set of results from the brain data for each

participant was compared with the linguistic data derived from

WordNet and the other LSA. We then assessed the degree of

structural similarity between the brain data and the linguistic data.

The maximum number of significant invariant partial orders that

could be obtained in each set of single-trial classifications was 300

(30 classifications of 10 words). Figure 16, Figure 17, Figure 18 and

Figure 19 give the results for WordNet and LSA for each

participant for the four sets of words. A higher number of

significant structural similarities were found between the brain

data and the WordNet data than the LSA data. This pattern held

for all but two of the 72 experimental runs. It is interesting to note

that the difference between the number of structural similarities for

WordNet and LSA was smallest for the set of words that had for

each city the country of which it was the capital, namely the set

{Madrid, Rome, Vienna, north, south, east, west, Spain, Italy, Austria}.

Figure 11. Ordinal relation of similarity differences represented as a directed acyclic graph CGS
London for London relative to the set

of words {London, Moscow, Paris, north, south, east, west, Germany, Poland, Russia}, derived from the WordNet data in Figure 2.
doi:10.1371/journal.pone.0065366.g011

Table 2. Ordinal relation of similarity differences represented
as a connection matrix CB

London for London relative to the set
of words {London, Moscow, Paris, north, south, east, west,
Germany, Poland, Russia} shown by initial letters, derived from
the probability density estimates for the brain data in Figure 9.

L M P n s e w Ge Po Ru

L 0 0 0 0 0 0 0 0 0 0

M 1 0 0 0 0 0 0 0 0 0

P 1 1 0 0 0 0 0 0 0 0

n 1 1 1 0 0 0 0 1 0 0

s 1 1 1 1 0 1 1 1 1 1

e 1 1 1 1 0 0 1 1 1 1

w 1 1 1 1 0 0 0 1 1 0

Ge 1 1 1 0 0 0 0 0 0 0

Po 1 1 1 0 0 0 0 1 0 0

Ru 1 1 1 1 0 0 0 1 1 0

doi:10.1371/journal.pone.0065366.t002

Table 3. Ordinal relation of similarity differences represented
as a connection matrix CS

London for London relative to the set
of words {London, Moscow, Paris, north, south, east, west,
Germany, Poland, Russia} shown by initial letters, derived from
the WordNet data in Figure 2.

L M P n s e w Ge Po Ru

L 0 0 0 0 0 0 0 0 0 0

M 1 0 1 0 0 0 0 0 0 0

P 1 0 0 0 0 0 0 0 0 0

n 1 1 1 0 0 0 0 1 1 1

s 1 1 1 1 0 0 0 1 1 1

e 1 1 1 1 1 0 1 1 1 1

w 1 1 1 1 1 0 0 1 1 1

Ge 1 1 1 0 0 0 0 0 0 0

Po 1 1 1 0 0 0 0 1 0 1

Ru 1 1 1 0 0 0 0 1 0 0

doi:10.1371/journal.pone.0065366.t003
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Discussion

We start with some possible objections to the results presented

in this paper. First is the consideration that some other property of

the stimuli co-varies with the words of interest and is responsible

for the recognition rates and confusion matrices. Two possible

confounding variables are the length of the words and the number

of syllables. The relative location words north, south, east and west are

all one syllable and shorter than most of the city and country

names, only a few of which are one syllable. With the modified

sample lengths as described in section 2.1, however, the data

samples for these words correspond roughly to the two-word and

two-syllable utterances north of, south of, east of, and west of. The three-

syllable names – Vienna, Italy, Germany and Austria – are misclassified

relative to the other words at approximately the same rate as the

two-syllable words and so their possible confounding effect is taken

to be minor for this study. A third possible confounding variable is

that of grammatical class, which is typically highly correlated with

word meaning. In our geography sentences, the grammatical roles

of the country and city names are different from those of the

relative location terms (east, west, north, and south). It is not

immediately clear to what extent, if any, our analysis has been

affected by grammatical class. It is significant, however, that the

city names and country names are clearly differentiated despite

being from the same grammatical class. Furthermore, any

confounding effect would be present in the structural similarity

evaluation for both semantic models and so would not invalidate

the comparative conclusion we have reached.

Another possible objection to the results presented in this paper

is that the recognition rates and confusion matrices reflect the

probabilities of each word’s occurrence in the sentences. That is,

north and south and east and west are confused with each other

because of their expected occurrences in their given positions in

the sentences. Similarly for the country names and city names. In

this case, a probabilistic semantic grammar could perhaps explain

the confusion matrices, without any recourse to positing WordNet

or LSA as an underlying semantic model. The notion of a word’s

expected appearance at a particular point in a sentence is related

to the notion of cloze probability, which is defined as the

probability of a specific word completing a particular part of a

sentence. Kutas and Hillyard reported that the N400 ERP

amplitude for a word has a nearly inverse linear relationship with

its cloze probability [32]. The higher the expectation that a word

will appear in a given context, the lower its N400 is relative to

words with lower expectation. Generally for nouns, verbs,

adjectives, and adverbs, the N400 is also lower for words

appearing later in a sentence compared to earlier. Further

experimentation is needed to investigate the N400 components

for categories of words and their occurrences in different parts of

our geography sentences.

The new methods introduced in this paper have been illustrated

using two different semantic models. The stronger structural

similarity between the brain data and the WordNet-derived data

seems to support the claim that during sentence comprehension

the representation of words in the brain has a WordNet-like

quality. To evaluate what that may mean, we have to ask what the

crucial differences are between the two semantic models and the

measures of similarity afforded by each.

Wordnet was developed using human judgments about the

meanings of the words and relations between them. WordNet

encodes fine-grained sense distinctions, grouping two words into

the same synonym set if and only if in some context they can be

substituted for each other without changing the truth value of the

proposition. WordNet has been criticized for encoding sense

Figure 12. Single-trial classification rates over 120 trials for the
set of words {London, Moscow, Paris, north, south, east, west,
Germany, Poland, Russia}. 640 samples (S18) classified into 10 classes.
Chance accuracy is shown by the thick solid line.
doi:10.1371/journal.pone.0065366.g012

Figure 13. Probability that a test sample is classified as Moscow given that it is London (dash), Paris (double) or Germany (solid) over 4
sets of 30 single-trial classifications (S18) of the words {London, Moscow, Paris, north, south, east, west, Germany, Poland, Russia}.
doi:10.1371/journal.pone.0065366.g013
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distinctions that some think are too fine-grained even for humans.

For example, consider the following two senses of north used in our

work:

(n) north#3, due north#1, northward#1, N#2 (the cardinal

compass point that is at 0 or 360 degrees).

(n) north#5 (the direction corresponding to the northward

cardinal compass point).

However, a point is fundamentally different from a direction;

the two senses cannot be substituted for each other in all contexts.

There is an irreducible distinction between the two senses, even if

very few people could articulate it and it is most likely seldom at

work in people’s uses of the word. WordNet has been particularly

successfully applied computationally in word-sense disambigua-

tion, that is, in determining which of the candidate senses of a

word is most appropriate in a given context. WordNet senses have

been aggregated in some applications, as indeed they were in our

work here. In this way the fine-grained distinctions prevail in the

network of sense connections present in WordNet, but the

distinctions do not dominate.

The strongest criticism of WordNet has been related to its

inadequacies as an ontology [48]. For example, WordNet does not

distinguish between one thing being a subtype as opposed to an

instance of another thing, as with the Bronze Age, the Iron Age

and so on being instances, not subtypes, of time periods. Its

taxonomic organization is imperfect. Wordnet also has limited

coverage of specialized vocabularies. Another criticism is that

WordNet gives obscure senses the same prominence as more

frequent senses, as with Paris the city and Paris the character in

literature. The last criticism has no impact on our results as only

relevant senses were used. As to the ontological criticism, it would

be a surprise to discover that when it came to ordinary people,

brain representations met strict logical conditions. Only further

experimentation will tell.

Since Lund and Burgess, distributional corpus-based models,

ranging from simple co-occurrence vectors to probabilistic topic-

based approaches such as LDA, have increasingly gained

acceptance [49]. LSA and other distributional models do not in

Figure 14. Hierarchical cluster trees computed from the accumulated average conditional probability density estimates obtained
after 22 and 23 classifications of 640 brain wave samples (S18) for {London, Moscow, Paris, north, south, east, west, Germany, Poland,
Russia}.
doi:10.1371/journal.pone.0065366.g014

Figure 15. Hierarchical cluster tree computed from the
accumulated conditional probability density estimates ob-
tained after 2 classifications of 640 brain wave samples (S18)
for {London, Moscow, Paris, north, south, east, west, Germany,
Poland, Russia}. For all successive runs, the accumulated similarity tree
did not change.
doi:10.1371/journal.pone.0065366.g015

Figure 16. Significant structural similarities (partial orders of
similarity differences invariant between the brain data and the
linguistic data) for the set of words {London, Moscow, Paris,
north, south, east, west, Germany, Poland, Russia} from 60 single-
trial classifications for each participant.
doi:10.1371/journal.pone.0065366.g016
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any obvious way connect all words and all senses of all words via

semantic relations. Nor do they systematically represent fine-

grained distinctions between different words and different senses of

a word. There are, however, many ways in which one

distributional model differs from another, some of which were

discussed in the Introduction. The size and content of the corpus

vary, as do the normalization techniques, dimensionality reduction

strategies, and measures of similarity. When we point out the

greater structual similarity of the WordNet-derived data with the

brain data over the LSA-derived data, our conclusions have to be

circumscribed. LSA cannot function as a proxy for all distribu-

tional models. What we can say is that the WordNet model seems

to have an advantage over corpus-based distributional models,

particularly when it comes to looking at the network of relations

between words in a sentence comprehension task.

One important point about distributional models is that they

require validation. Typically, validation entails seeing how well a

given model correlates with the semantic judgments of native

speakers. When speakers’ predictions diverge from a model,

questions arise as to whether that divergence points to limitations

in the model or inadequacies in how those judgments were

solicited, whether they were fine-grained enough, for example.

Judgments obtained directly from neural activity would potentially

be more accurate, an approach considered in the work of

Devereux and others discussed in the Introduction [21].

At this point it is useful to explore what differentiates our work

from that of Kriegeskort et al. [50]. In both cases, representational

models of brain activity are constructed and compared with

representational models of some aspect of the experimental

situation, whether the stimuli that elicited the neural activity or

the behavior exhibited in response to the stimuli, for example.

There are, however, important differences between the Krieges-

korte approach and ours. Kriegeskorte and others, two relational

structures are compiled, one a representation of brain activity and

the other a representation of some aspect of the experimental setup

[50]. Their relational structures are in fact representational

dissimilarity matrices, one constructed for measures of neural

activity and the other for the stimuli eliciting the neural activity or

the behavior accompanying the neural activity. Dissimilarity

matrices, like our conditional probability density estimates and

semantic similarity matrices, offer a general way to characterize

the information carried by a given representation, whether it is a

representation of the brain activity or a representation of the

stimuli, such as words in their sentential context. But the methods

they use to compare their representational dissimilarity matrices

differ from the methods we use to compare the invariant partial

orders of our representational structures. Kriegeskorte and others

argue against a linear match between dissimilarity matrices;

instead, like us, they use the Spearman rank correlation coefficient

[50]. However, we go a fundamentally important step further and,

for those similarity matrices that are significantly strongly

correlated, we construct the partial orders that are invariant with

respect to the brain data and the experimental data. These

invariant structures give a detailed assessment of where the

similarities between the brain data and the linguistic data actually

lie. These invariant structures will be invaluable in future work,

such as when we take into account more information in the

experimental setup, for example, the participants’ responses –

namely whether they judged a statement true or false and whether

they were right or wrong. Formulating and testing complex

hypotheses about brain activity become possible with the methods

presented in this paper.

In considering how the brain as a system processes language, the

idea of an associative network has long held appeal. The work on

associative networks by Collins and Loftus [51] and the

investigation of the semantics of associative networks by Woods

Figure 17. Significant structural similarities (partial orders of
similarity differences invariant between the brain data and the
linguistic data) for the set of words {Paris, Vienna, Athens, north,
south, east, west, Italy, Spain, Austria} from 60 single-trial
classifications for each participant.
doi:10.1371/journal.pone.0065366.g017

Figure 18. Significant structural similarities (partial orders of
similarity differences invariant between the brain data and the
linguistic data) for the set of words {Berlin, Rome, Warsaw, north,
south, east, west, France, Greece, Poland} from 60 single-trial
classifications for each participant.
doi:10.1371/journal.pone.0065366.g018

Figure 19. Significant structural similarities (partial orders of
similarity differences invariant between the brain data and the
linguistic data) for the set of words {Madrid, Rome, Vienna, north,
south, east, west, Spain, Italy, Austria} from 60 single-trial
classifications for each participant.
doi:10.1371/journal.pone.0065366.g019
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[52] are early contributions. Associative networks for ambiguity

resolution have received a lot of attention, beginning with Hirst

[53]. Associative networks for information retrieval and web

search have gained increasing attention, starting with Crestani

[54]. Activation and spreading activation, the principal operations

proposed for associative networks, have been characterized in

various ways over time, but no specific method or algorithm has

yet emerged as definitive. What is still missing from discussions of

associative networks in language processing is a coherent, general

account of how associative networks are used in complex tasks

such as answering a question or determining the truth or falsity of

an assertion. In this paper, associative networks such as those in

Figure 10 and Figure 11 have been presented as the brain’s

dynamic representation of a set of words during the response to a

sentence such as Rome is not the capital of Spain. Such associative

networks are not static, but are configurations that change under

different stimulus conditions and under the operations of

activation and spreading activation. However, these changes are

not unconstrained. The associative networks are approximately

invariant across language users and across different occasions on

which the words are used. What this paper suggests is that the

associative networks underlying sentence comprehension, partic-

ularly for the task of determining the truth or falsity of an assertion,

are possibly more like the associative networks of WordNet than

those obtained by statistical methods from large corpora.

WordNet is far from the end of the story, however. Binary,

ternary and quaternary relations are generally missing from

WordNet, but are common in ordinary language. The sentence

Rome is a capital may be represented with some ease using WordNet

and its is_a relation, and the truth or falsity of the assertion

determined by the simple test: is there an is_a relation between

Rome and capital? But Rome is the capital of Italy, expressing a binary

relation, has no straightforward representation in WordNet, and

none that permits its truth or falsity to be determined directly.

Similarly for ternary relations such as those expressed in the

sentence Sue gave Bill a book or, using our geography words, Paris is

more north of Rome than west of Berlin. Associative networks that

include binary and higher-order relations, along with definitions of

activation and spreading activation for each order, are still needed.

Large enough or focused enough corpora could potentially

provide such associations We noted earlier the work of Kelly

and others who used parsed data to identify three-part associations

involving the well-known taxonomic relations of is-a and part-of in

Wikipedia and the British National Corpus [20]. The recognition

of higher-order relations, such as those in Paris is the capital of France

and Paris is further west of Moscow than Berlin is, would be a natural

progression from that work. The methods of relative structural

similarity developed in this paper can be used to assess the extent

to which any network of semantic relations is structurally similar to

brain data collected during a language task.
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