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Abstract

Aluminum (Al) toxicity is a major limiting factor for plant production in acid soils. Wild barley germplasm is rich in genetic
diversity and may provide elite genes for crop Al tolerance improvement. The hydroponic-experiments were performed to
compare proteomic and transcriptional characteristics of two contrasting Tibetan wild barley genotypes Al- resistant/
tolerant XZ16 and Al-sensitive XZ61 as well as Al-resistant cv. Dayton. Results showed that XZ16 had less Al uptake and
translocation than XZ61 and Dayton under Al stress. Thirty-five Al-tolerance/resistance-associated proteins were identified
and categorized mainly in metabolism, energy, cell growth/division, protein biosynthesis, protein destination/storage,
transporter, signal transduction, disease/defense, etc. Among them, 30 were mapped on barley genome, with 16 proteins
being exclusively up-regulated by Al stress in XZ16, including 4 proteins (S-adenosylmethionine-synthase 3, ATP synthase
beta subunit, triosephosphate isomerase, Bp2A) specifically expressed in XZ16 but not Dayton. The findings highlighted the
significance of specific-proteins associated with Al tolerance, and verified Tibetan wild barley as a novel genetic resource for
Al tolerance.
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Introduction

Ionic aluminum (Al3+), highly toxic to plant growth, is a major

factor limiting crop productivity on acid soils [1]. The strategies

for maintaining production on acid soils include lime application

to raise soil pH and use of plants with high tolerance to acid soils.

Development and planting of Al tolerant cultivars is a cost-

effective and practically acceptable approach for full utilization of

acid soil [2].

Barley (Hordeum vulgare L.) is one of the most Al-sensitive species

among small grain cereals [3]. Al toxicity limits the growth and

productivity of barley on acid soils and its expansion as a crop into

many agricultural areas in the world [4]. In order to breed barley

cultivars tolerant to Al toxicity, it is especially important to identify

genetic resources with Al tolerance. Wild barley germplasm is rich

in useful genes for crop improvement [5]. Tibetan annual wild

barley from Qinghai-Tibet Plateau is regarded as one of the

progenitors of cultivated barley and is rich in genetic diversity [6].

We successfully identified Tibetan wild annual barley genotypes

with high tolerance to both low pH and Al stress [7]. However,

their underlying physiological and molecular mechanisms in Al

tolerance remain unclear.

Comparative proteomic analysis and bioinformatics techniques

provide powerful tools to identify proteins expressed under abiotic

stress [8]. Root proteomic analysis showed that proteins involved

in stress defense, metabolisms and signal transduction were

important for soybean [9], tomato [10] and Arabidopsis [11]

plants survival under Al toxicity. However, only limited informa-

tion is available on Al accumulation/translocation and Al

tolerance mechanisms in barley. Moreover, physiological and

proteomic responses to Al stress in Tibetan wild barley genotypes

have never been investigated and compared with elite Al-tolerant

barley cultivars. Thus, precise knowledge of the proteomic basis is

required to dissect the mechanisms underlying acid/Al tolerance

in wild barley. In the present study we examined stress-specific

proteins for acid/Al tolerance in wild barley by comparing the

proteomic responses of the two Tibetan wild barley genotypes

XZ16 (high acid/Al tolerant), XZ61 (acid/Al sensitive) and Al-

tolerant cv. Dayton using two-dimensional gel electrophoresis (2-D)

and mass spectrometry (MS). These results are useful to better

understand the mechanisms of Al tolerance in barley, and provide

an effective pathway for the exploration of Al-tolerant genes in

plants.

Materials and Methods

Plant Materials and Experimental Design
Hydroponic experiments were performed using two Tibetan

annual wild barley XZ16 and XZ61 (H. vulgare L. ssp. spontaneum),

acid/Al- tolerant and sensitive genotypes, respectively, and one Al-

tolerant-cultivar Dayton. Seeds were surface sterilized in 1%

H2O2 for 30 min, rinsed with distilled water, and then germinated
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in sterilized moist quartz sand in an incubator at 2061uC. Seven-
day-old uniform seedlings were transplanted into 5-L containers

filled with 4.5 L basal nutrient solution (BNS). The composition of

BNS was described in Wu et al. [12]. The container was covered

with a polystyrol plate with 7 evenly spaced holes (2 plants per

hole) and placed in a greenhouse. Solution was continuously

aerated with pumps and renewed daily after Al addition. The

solution pH was adjusted to 5.860.1 with NaOH or HCl, as

required.

On the day 7 after transplantation, seedlings were cultured for

1 d in 0.5 mM CaCl2 at pH 4.3, and then exposed to 0, 50 or

200 mM Al in 0.5 mM CaCl2 at pH 4.3 for 24 h. The plantlets

were kept in a growth room at 25/20uC with a 14/10 h (day/

night) photoperiod and irradiance of 340 mmols m–2 s–1 light

intensity. A split-plot design was adopted with treatment as the

main plot and genotype as sub-plot with five replicates in each

treatment. At 3 days after treatment, plants were harvested from

each treatment, and roots were washed with distilled water

thoroughly and collected for two 2-DE experiments and qRT-

PCR analysis. Dry weights of the plants were determined and used

for Al concentration.

Determination of Al Concentration and Root Al
Distribution
Al concentrations was determined after digestion in an acid

mixture (HNO3:HClO4= 4:1, v/v) at 150uC for 10 h, using

inductively coupled plasma atomic emission spectrometry (ICP/

AES) (Thermo Jarrel Ash, San Jose, CA).

Morin staining for Al in the root tip region was determined

according to Zheng et al. [13]. Briefly, 1-cm root tips were stained

with 100 mM morin (Sigma-Aldrich, St. Louis, MO, USA) in

10 mM MES buffer (pH 5.5) for 30 min. Images were acquired

using a Leica TCS SP2 confocal laser scanning microscope (Leica

Microsystems, Heidelberg, Germany) with excitation at 420 nm

and emission at 515 nm.

Protein Extraction, Quantification, Visualization and
Image Analysis
Total root protein extracts were prepared essentially according

to phenol extraction method [14] with minor modification. Root

sample (3 g) of control and Al treated plants were grounded in a

mortar separately to a fine powder in liquid nitrogen and

homogenized in an extraction buffer containing 30 mg PVPP.

The homogenate was suspended in 7 ml ice-cold phenol

extraction buffer (0.7 M sucrose; 0.1 M KCl; 50 mM ED-

TA,0.5 M Tris-HCl, 1% w/v DTT, pH 7.5; complete protease

inhibitor cocktail (Roche Applied Science)) and immediately

added 7 ml ice-cold Tris buffered phenol and vortexed for 15 s.

The sample was then vortexed for 10 s every 5 min and repeated

for six times at 4uC. After centrifugation (30 min, 50006g, 4uC)
the phenolic phase was collected, and the sample was re-extracted

with 14 ml of extraction buffer (added with the same volume of

phenol extraction as collected items), and vortexed for 10 s every

5 min and repeated for six times at 4uC. After centrifugation

(30 min, 50006g, 4C) the phenolic phase was collected and

precipitated overnight with five volumes 100 mM ammonium

acetate in methanol at 220uC. After centrifugation at 50006g for

30 min at 4uC, the supernatant was removed and the pellet was

rinsed twice in ice-cold acetone/0.2% DTT. Between the two

rinsing steps, the sample was incubated for 60 min at 220uC. The
pellet was air-dried, resuspended in 200 ml lysis buffer (7 M urea,

2 M thiourea, 4% CHAPS, 20 mM Tris-HCl, pH7.4, containing

1% w/v DTT; Amersham Biosciences), and vortexed for 1 h at

room temperature. Protein concentration was determined by

Figure 1. Al localization in barley roots exposed to different Al levels for 24 h. (A) Al was monitored by morin fluorescence using confocal
laser scanning microscopy. Fluorescence intensity of image analysis was calculated using Image J software. (B) Seedlings were subjected to 0, 25, 50,
100 and 200 mM AlCl3, respectively, in 0.5 mM CaCl2 solution at pH 4.3 for 24 h, and then root tips (0–10 mm) were stained with morin. Images
shown in the Figures are representative of more than fifteen seedlings per treatment. Bar = 100 mm. Data are means 6 SD (n = 5).
doi:10.1371/journal.pone.0063428.g001
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standard Bradford assay using bovine serum albumin as standard

(Bio-Rad, Hercules, CA, USA). All chemicals used were, if not

further specified in the text, p.a. or electrophoresis grade. All

electrophoresis units employed were from Amersham Biosciences.

Protein visualization, image analysis and quantification were

determined according to Bah et al. [15]. For each sample, at least

three independent protein extracts were prepared after each

treatment and at least three 2-DE analyses were performed for

each protein extract. To analyze the expressed protein patterns,

stained gels were scanned and calibrated using a PowerLook1100

scanner (UMAX), followed by analysis of protein spots using GE

HealthCare Software (Amersham Biosciences). Spot detection was

Figure 2. Representative 2-DE maps of root proteins in XZ16 exposed to Al for 24 h. The proteins were isolated from the root of XZ16
exposed to 50 mM (A, upper) and 200 mM (B, below) Al for 24 h. Total proteins were extracted and separated by 2-DE. In IEF, 100 mg proteins were
loaded onto pH 4–7 IPG strips (24 cm, linear). SDS-PAGE was performed with 12.5% gels. The spots were visualized by silver staining. Differentially
accumulated protein spots are indicated by green sashes. Arrows indicate the differentially expressed protein spots whose expressions were
significantly induced (fold changes $1.5) or unchanged (21.50, folds ,1.5) in XZ16 but down-regulated (folds ,21.50) in XZ61; or up-regulated in
XZ16 but unchanged in XZ61, under 50 mM Al (U1–U24) and 200 mM Al (U25–U44) stress.
doi:10.1371/journal.pone.0063428.g002
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realized without spot editing. The protein spots were quantified

using the % volume criterion. Only those with significant and

reproducible changes (P,0.05) were considered to be differentially

accumulated proteins. The target protein spots were automatically

excised from the stained gels and digested with trypsin using a Spot

Handling Workstation (Amersham Biosciences). Peptides gel

pieces were placed into the EP tube and washed with 1:1 mixture

of 50 mL of 30 mM K3Fe(CN)6 and 100 mM NaS2O3 for 10–

15 min until completely discolored then washed with 200 mL bi-

distilled water (two times for 5 min each). The washed solution was

drained and washed with 50% ACN (acetonitrile, Fisher A/0626/

17) and 100% ACN rotationally, and then incubated in 25 mM

NH4HCO3 (ammonium bicarbonate, Sigma A6141) for 5 min at

37uC. After leaching out of the incubation solvent, 50% ACN and

100% ACN was rotationally added and dried at 40uC for 5 min

respectively. Trypsin digestion was carried out as follows:

sequencing-grade porcine trypsin (Promega, Madison, WI, USA)

was suspended in 25 mM NH4HCO3 at a concentration of

12.5 ng per ml to rehydrate the dried gel pieces. The trypsin

digestion was carried out for 16 h at 37uC. Peptides were extracted

from the digest as follows for three times: 10 mL of 50% ACN

containing 0.1% TFA (trifluoroacetic acid, GE HealthCare) was

added to each tube and incubated for 5 min at 37uC and the

supernatants were transferred to new EP tube. The extracts were

pooled and then vacuum concentrated for about 2 h. A solution of

peptides was filtrated via Millipore (Millipore ZTC18M096) and

mixed with the same volume of a matrix solution consisting of

saturated a-cyano-4-hydroxycinnamic acid (CHCA) in 50% ACN

containing 0.1% TFA. After the peptides were co-crystallized with

CHCA by evaporating organic solvents, tryptic-digested peptide

masses were measured using a MALDI-TOF-TOF mass spec-

trometer (ABI4700 System, USA). All mass spectra were recorded

in positive reflector mode and generated by accumulating data

from 1000 laser shots. The following threshold criteria and settings

were used: detected mass range of 700–3200 Da (optimal

resolution for the quality of 1500 Da), using a standard peptide

mixture (des-Argl-Bradykinin Mr904.468, Angiotensin I

Mr1296.685, Glul-Fihrinopeptide B Mr1570.677, ACTH (1–17)

Mr2093.087, ACTH (18–39) Mr2465.199; ACTH (7–38)

Mr3657.929) as an external standard calibration, with laser

Figure 3. Venn diagram illustrating the expression patterns of Al stress-responsive proteins in roots of XZ16, XZ61 and Dayton. The
numbers of differentially expressed spots up- or down-regulated are shown in the different segments. As to protein spots altered by 50 and 200 mM
Al stress, 450, 473, 392 spots (50 mM Al vs control) and 251, 447, 350 spots (200 mM Al vs control) were up-regulated in XZ16, XZ61, Dayton,
respectively; while 347, 306, 442, and 398, 334, 495 spots down-regulated. The abundance of 101, 31 spots increased in both of XZ16 and Dayton
under 50, 200 mM Al stress, respectively, and that of 49, 39 decreased.
doi:10.1371/journal.pone.0063428.g003
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Figure 4. ‘Spot view’ of the abundance of differentially expressed proteins in roots of barley seedlings under 50 or 200 mM Al for
24 h. The images of three genotypes: XZ16, XZ61 and Dayton (indicated with green circles) from control and 50 or 200 mM Al (pH 4.3) treated plants.
Protein spot ID refers to numbers in Figure 4 and Tables 1, 2.
doi:10.1371/journal.pone.0063428.g004

Proteomics of Al Tolerance in Tibetan Wild Barley

PLOS ONE | www.plosone.org 5 May 2013 | Volume 8 | Issue 5 | e63428



frequency of 50 Hz, repetition rate of 200 HZ, UV wavelength of

355 nm, and accelerated voltage of 20,000 V. Peptide mass

fingerprint data were matched to the NCBInr database using

Profound program under 50 ppm mass tolerance.

Peptide and Protein Identification by Database Search
Data were processed using the Data Explorer software (Applied

Biosystems) and proteins were unambiguously identified by

searching against a comprehensive non-redundant sequence

database (NCBInr) using the MASCOT software search engine

(http://www.matrixscience.com/cgi/search form.pl?FORM-

VER=2&SEARCH=MIS). Folds of increase and decrease in

Al exposed vs unexposed roots were calculated as treated/control

and -control/treated for up- and down-regulated proteins,

respectively. For single-peptide identified proteins, up- and

down-regulation were assigned when the regulation factors were

above 1.5 (p,0.05).

Table 1. Proteins whose expression were significantly induced (+) in XZ16 roots but down-regulated (2)/unchanged in XZ61, or
unchanged in XZ16 but down-regulated in XZ61 under 50 mM Al stress.

Spot ID Protein name
Accession
number MW Da pI AASC % MP Folds (Al vs control)

XZ16 XZ61 Dayton

Metabolism

U1 S-adenosylmethionine synthase 3 [Hordeum. vulgare subsp.
vulgare]

gi|122220777 43138 5.51 42 11 +2.39 22.44 0.00

U2 Methionine synthase [H. vulgare subsp. vulgare] gi|50897038 84794 5.68 35 19 21.34 23.39 22.23

U3 Methionine synthase [H. vulgare subsp. vulgare] gi|50897038 84794 5.68 22 12 21.24 22.68 +1.02

U4 Glutamine synthetase [Arabidopsis thaliana] gi|228456 47123 6.73 15 7 +6.50 2106 21.09

U5 c-glutamylcysteine synthetase [Triticum aestivum] gi|57903694 43079 5.30 20 9 +4.25 22.74 23.50

U6 Putative asparate aminotransferase [H. Vulgare subsp. vulgare] gi|89511843 45377 5.75 14 4 +1.80 21.34 +1.36

U7 Predicted pirin-like protein [Brachypodium distachyon] gi|357114735 41337 9.37 17 8 +1.32 21.72 +1.36

Energy

U8 Os06g0133800 [Oryza sativa japonica] gi|115466224 73973 5.44 16 10 +1.07 21.60 +1.04

U9 ATP synthase beta subunit [Triticum. monococcum] gi|525291 59326 5.56 19 7 +106 0.00 0.00

U10 Aconitate hydratase 3 [Citrus clementina] gi|285309967 98669 5.89 10 9 21.03 22.53 +1.04

U11 Fructose-bisphosphate aldolase [H. vulgare] gi|226316443 39071 6.08 29 7 +1.71 +1.10 +1.16

Cell growth/division

U12 Predicted proliferating cell nuclear antigen-like [Brachypodium
distachyon]

gi|357137519 29514 4.61 14 5 +1.69 +1.33 +1.04

Protein biosynthesis

U13 Putative elongation factor 1 beta [H. vulgare] gi|7711024 24716 4.52 34 7 +1.86 +1.29 +1.18

Protein destination/storage

U14 HSP organizing protein/stress-inducible protein [Dactylis
glomerata]

gi|281399029 64793 6.11 10 5 +1.07 21.81 21.10

U15 Heat shock protein 93-V [A. Lyrata subsp. lyrata] gi|297795893 103611 6.36 35 30 +1.06 21.94 +1.12

U16 Os01g0839700 [O. sativa japonica] gi|115440951 19059 5.34 21 3 21.03 21.93 21.12

U17 Heat shock protein [Spinacia oleracea] gi|425194 71231 5.15 22 12 +2.08 +1.01 +1.10

U18 Cytosolic heat shock protein 90 [H. vulgare] gi|32765549 80654 4.96 27 15 +1.21 21.99 +1.63

U19 Cytosolic heat shock protein 90 [H. vulgare] gi|32765549 80654 4.96 17 9 +1.01 21.81 +1.03

Signal transduction

U20 RNA-binding Ras-GAP SH3 binding protein [T. aestivum] gi|290579509 45493 4.95 18 7 +1.60 21.51 21.11

Unknown

U21 Hypothetical protein SORBIDRAFT_10g022570 [Sorghum
bicolor]

gi|242096224 47231 6.08 13 7 +1.80 21.57 21.03

U22 Hypothetical protein LOC100383520 [Z. mays] gi|293336836 77345 6.03 16 11 +1.59 +1.29 +1.26

U23 Predicted protein [H. vulgare subsp. vulgare] gi|326513540 58531 6.05 22 40 +2.19 +1.23 21.72

U24 Predicted protein [H. vulgare subsp. vulgare] gi|326513418 35914 5.06 22 9 +1.08 22.60 21.36

AASC, Amino acid sequence coverage; MP, Matched peptides.
Protein spot ID refers to numbers in Fig. 7. Accession number of top database match from the NCBInr database. ‘Al vs control’ referred to fold variation of Al exposed vs
unexposed plants. Fold increase and decrease were calculated as Al/control, and –control/Al for up and down -regulated proteins respectively. All ratios shown are
statistically significant (p,0.05).
doi:10.1371/journal.pone.0063428.t001
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qRT-PCR Analysis
Total RNA was isolated from roots with the TRIzol reagent

following manufacturers’ recommendation (Invitrogen, Karlsruhe,

Germany). cDNA samples were assayed by quantitative real time

PCR (qRT-PCR) in the iCycler iQTM Real-time PCR Detection

System (Bio-Rad, Hercules, CA, USA) using the SYBR Green

PCR Master Mix (Applied Biosystems). The PCR conditions

consisted of denaturation at 95uC for 3 min, followed by 40 cycles

of denaturation at 95uC for 30 s, annealing at 58uC for 45 s and

extension at 72uC for 45 s. Gene-specific primers (Table S1) were

designed using the Primer Express software (Applied Biosystems).

Barley actin gene was used as control (AY145451) fw-59-

GACTCTGGTGATGGTGTCAGC-39, rv-59-GGCTGGAA-

GAGGACCTCA-39.

Statistical Analysis
Statistical analysis were performed using the Data Processing

System (DPS) Software Package [16]. Statistical significance of the

data was evaluated by two-way ANOVA using Duncan’s multiple

range test (SSR).

Results

Tibetan Wild Barley XZ16 Is Highly Tolerant to Al Toxicity
Time of appearance and severity of Al toxicity symptoms

differed greatly among the three genotypes (Figure S1). XZ16 was

less affected by 24 h exposure to 50 or 200 mM Al (pH 4.3),

whereas XZ61 was obviously affected, as reflected by severe root

growth inhibition. No significant difference between control and

50 or 200 mM Al stressed plants was found in root DW (dry

weight) of XZ16, and the whole plant DW of XZ16 and Dayton.

However, root and the whole plant DW of XZ61 decreased by

Table 2. Proteins whose expression were significantly induced (+) in XZ16 roots but down-regulated (2)/unchanged in XZ61, or
unchanged in XZ16 but down-regulated in XZ61 under 200 mM Al stress.

Spot ID Protein name
Accession
number MW, Da pI AASC % MP Folds (Al vs controls)

XZ16 XZ61 Dayton

Metabolism

U25 (U6*) Putative asparate aminotransferase [H. vulgare subsp. vulgare]gi|89511843 45377 5.75 14 4 +1.71 21.34 +1.20

U26 (U7) Predicted: pirin-like protein [Brachypodium distachyon] gi|357114735 41337 9.37 17 8 21.25 22.05 +1.10

Energy

U27 (U11) Fructose-bisphosphate aldolase [H. vulgare] gi|226316443 39071 6.08 29 7 +2.06 21.22 +1.11

U28 Os09g0535000 [O. sativa japonica] gi|115480367 32715 6.96 34 9 +106 +1.29 0.00

U29 Bp2A protein [T. turgidum subsp. dicoccoides] gi|133872436 25759 5.86 27 5 +1.71 21.72 0.00

U30 Phosphoglycerate mutase [T. aestivum] gi|32400802 29615 5.43 52 14 +1.94 +1.38 +1.74

U31 Enolase (2-phosphoglycerate dehydratase) [O. sativa japonica]gi|780372 48299 5.42 18 7 +1.25 21.72 +2.53

U32 atp1 [Secale strictum] gi|166165274 53979 6.01 31 14 +1.15 24.10 +1.29

Cell growth/division

U33 (U12) Predicted: proliferating cell nuclear antigen-like [B. distachyon]gi|357137519 29514 4.61 14 5 +2.16 +1.08 21.15

Protein destination/storage

U34 Heat shock 70 kda protein [Z. mays] gi|226500540 72989 5.62 10 4 +1.21 21.97 +1.07

U35 (U17) Heat shock protein [Spinacia oleracea] gi|425194 71231 5.15 22 12 +1.92 21.25 21.01

U36 (U18) Cytosolic heat shock protein 90 [H. vulgare] gi|32765549 80654 4.96 27 15 +1.12 22.91 +1.15

U37 (U19) Cytosolic heat shock protein 90 [H. vulgare] gi|32765549 80654 4.96 17 9 +1.05 21.76 21.14

Transporters

U38 Vacuolar proton-atpase D subunit [T. aestivum] gi|108925894 41321 4.89 46 10 +1.05 21.66 +1.12

Signal transduction

U39 14-3-3D protein [H. vulgare subsp. vulgare] gi|83271056 28742 4.80 44 9 +1.31 21.58 +1.10

Disease/defense

U40 Phenylalanine ammonia-lyase [Phyllostachys edulis] gi|224998176 76278 6.15 19 12 +1.21 23.50 +1.96

Unknown

U41 Predicted protein [H. vulgare subsp. vulgare] gi|326496891 38099 4.83 25 7 +2.08 21.79 +1.22

U42 Hypothetical protein Sb01g000380 [S. bicolor] gi|242032147 60974 5.20 21 9 +1.09 22.03 +1.36

U43 (U23) Predicted protein [H. vulgare subsp. vulgare] gi|326513540 58531 6.05 22 40 +1.84 21.11 23.17

U44 (U24) Predicted protein [H. vulgare subsp. vulgare] gi|326513418 35914 5.06 22 9 21.32 23.34 21.27

*, Spot U25 is the same protein spots as U6 identified in 50 mM Al stress.
Protein spot ID refers to numbers in Fig. 7. Accession number of top database match from the NCBInr database. ‘Al vs control’ referred to fold variation of Al exposed vs
unexposed plants. Fold increase and decrease were calculated as Al/control, and –control/Al for up and down -regulated proteins respectively. All ratios shown are
statistically significant (p,0.05).
doi:10.1371/journal.pone.0063428.t002
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10.7% and 7.8% (50 mM Al vs control) and by 19.1% and 13.5%

(200 mM Al vs control), respectively.

Al localization in barley roots exposed to different Al levels for

24 h was monitored by morin fluorescence using confocal laser

scanning microscopy (Figure 1A), and fluorescence intensity of

image analysis was calculated using Image J software (Figure 2B).

Root Al fluorescence showed that root Al concentration increased

with increasing external Al levels. XZ16 exhibited similar

fluorescent signal in root tips with Dayton, being significantly

(p,0.05) less than that of XZ61 in both Al levels.

As to root Al accumulation, there was no significant difference

between XZ16 and Dayton, but both exhibited significantly

(p,0.05) less accumulation than that of XZ61 in the two Al levels

(Figure S2A). Shoot Al accumulation, however, was significantly

lower (p,0.05) in XZ16 than in Dayton and XZ61 in response to

Al treatments (Figure S2B). The transferring rates from roots to

shoots among them were not differed significantly except that

Dayton showed 18.2% and 13.6% higher than XZ16 and XZ61

when exposed to 50 and 200 mM Al stress, respectively (Figure

S2C). The above results indicate that Tibetan wild barley XZ16 is

highly tolerant to Al stress.

Differential Al-induced Protein Expression in Roots of the
Three Genotypes
Approximately 2268 spots, ranging from 2038 to 2642, were

resolved in each of two reproducible SDS-polyacrylamide gels

(Figure 2). Protein spots altered by Al stress in Al-tolerant

genotypes XZ16 and Dayton and Al-sensitive XZ61 or differen-

tially accumulated among the three genotypes under Al stress were

further analyzed and shown in Figure 3. For the protein spots

altered by 50 and 200 mMAl stress, 398, 334, 495 spots (50 mMAl

vs control) and 251, 447, 350 spots (200 mM Al vs control) were up-

regulated in XZ16, XZ61, Dayton, respectively; while 347, 306,

442, and 398, 334, 495 spots were down-regulated. In XZ16 and

Dayton, the abundance of 101 and 31 spots increased and that of

49 and 39 decreased in response to 50 and 200 mM Al,

respectively,.

Al-responsive protein spots (44 spots, U1–U24, U25–U44;

Figure 4) were analyzed by MALDI-TOF/TOF MS, and

identified by MS/MS data with significant probability (p,0.05).

Twenty-four and 20 spots were up-regulated (fold change .1.50)

in XZ16 but unaltered/down-regulated in XZ61, or unaltered in

XZ16 but down-regulated in XZ61 under 50 (U1–U24, Figure 2A,

Table 1) and 200 mM Al (U25–U44, Figure 2B, Table 2),

respectively. The resulting spectra of the 44 protein spots (nine

spots overlapped at 50 and 200 mM Al, as shown in brackets in

Table 2, were identified using MASCOT software search engine

against H. vulgare and homologous proteins of other green plants in

the NCBI non-redundant (nr) protein database and barley ESTs

databases (Tables 1 and 2). These proteins were classified into nine

groups based on their biochemical functions [17]. The majority of

the protein profile was energy (spots U8–U11, U27–U32) and

metabolism (U1–U7), followed by protein destination/storage

(U14–U19 and U34–U37) and unknown (U21–U24, U41 and

U44). The other six minor groups included signal transduction

(U20 and U39), cell growth/division related proteins (U12),

protein biosynthesis (U13), transporter (U38) and disease/defense

(U40). Further comparison of the 44 identified spots with that of

Dayton revealed that 16 (Spots U1, U4, U5, U6 (U25), U9, U11

(U27), U12 (U33), U13, U17 (U365), U20, U21, U22, U23 (U43),

U28, U29 and U41; Tables 1 and 2) proteins up-regulated in

XZ16 were surprisingly down-regulated or unaltered in both

Dayton and XZ61. There were a protein uniquely expressed (U9,

ATP synthase beta subunit) in XZ16 and three proteins not

expressed in Dayton [U1, S-adenosylmethionine synthase 3

(SAMS); U28, a homologue of triosephosphate isomerase (TPI);

U29, Bp2A protein]. On the contrary, three proteins (U18, U31,

Figure 5. Three root proteins associated with low pH isolated from the root of XZ16. Representative 2-DE maps of root proteins isolated
from XZ16 exposed to pH 4.3 for 24 h (A). ‘Spot view’ of the abundance of differentially expressed proteins that were significantly higher expressed
(+) in XZ16 compared with Dayton roots under control condition at pH 4.3 (XZ16 vs Dayton) but suppressed (2) at pH 6.0 (B).
doi:10.1371/journal.pone.0063428.g005
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and U40) were slightly up-regulated in Dayton under Al stress, but

unaltered in XZ16.

Six chaperone-related proteins were identified: heat shock

protein (HSP, U17), HSP 93-V (U15), cytosolic HSP 90 (U18 and

U19), HSP organizing protein (U14) and HSP 70 kDa (U34).

These spots showed normal expression in XZ16 and Dayton, but

were down-regulated in XZ61 under Al stress (Tables 1 and 2),

indicating that these proteins are involved in Al detoxification in

both XZ16 and Dayton.

In addition, expression of three proteins, classified as the energy

category (Figure 5 and Table S2) was significantly higher in XZ16

vs Dayton under control condition at pH 4.3, and simultaneously

suppressed at pH 6.0. They are predicted to be 6-phosphogluco-

nate dehydrogenase decarboxylating-like isoform 1 (6-PGDH)

(E1), plastid glutamine synthetase isoform GS2b (E2) and iron

deficiency specific clone no. 3 (IDS3) (E3). These proteins are

potentially responsible for the low pH tolerance in XZ16

compared with Dayton.

XZ16 Shows Higher Expression of Genes Corresponding
to Al Up-regulated Proteins
To determine whether the changes in protein abundance

detected by 2-DE were correlated with changes at the transcrip-

tome level, quantitative RT-PCR was performed using RNA

isolated from the roots of a separate set of plants treated with 0 or

50 mM Al for 24 h (Figure 6 and Table S2). Transcript levels of

five Al-regulated genes including SAMS3, MeSe, GS, c-GCS and

ATP synthase beta subunit (U1, U2, U4, U5 and U9) were chosen and

successfully detected. Among them, SAM3, MeSe, GS and c-GCS
were up-regulated in XZ16 and down-regulated in XZ61,

Figure 6. Effect of 50 mM Al on the transcript levels of gene expression encoding selected proteins of three barley genotypes
exposed to 50 mM Al for 24 h. (A) S-adenosylmethionine synthase 3 (SAMS3, spot U1); (B) methionine synthase (MeSe, spot U2); (C) glutamine
synthetase (GS, spot U4); (D) c-glutamylcysteine synthetase (c-GCS, spot U5) and (E) ATP synthase beta subunit proteins in roots (spot U9) of three
barley genotypes exposed to 50 mM Al for 24 h. Error bars represent SD values (n = 3).
doi:10.1371/journal.pone.0063428.g006
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following the expression trend detected by 2-DE (Table 1). Fifty

micromolar of Al significantly up-regulated ATP synthase beta subunit

by 3.2 folds in XZ16 compared to the control, but no change was

detected in XZ61 and Dayton (Figure 6).

For genome mapping, BLASTn and CAP3 were used to blast

the Brachypodium distachyon protein databases. The top hits were

then mapped to barley chromosome based on barley genome

zipper and sequence [18], [19]. Finally, 32 (including 30 of the 35

Al-tolerance related proteins, and 2 of the 3 low pH responsive

spots) out of the above 38 proteins were linked to their

corresponding candidate genes in barley genome (Table S3).

The mapping of these candidate genes provides a short cut for the

identification and transformation of Al responsible genes in future.

Discussion

The current study showed that Al-tolerant Tibetan wild barley

XZ16 is characterized by less Al accumulation both in roots and

shoots (Figure 1 and Figure S2). Our current data is the first study

to identify Al-responsive proteins in Tibetan wild barley (XZ16)

using a proteomic approach. Barley is one of the most Al sensitive

cereal species and responds to Al toxic ion immediately through

releasing organic acid in roots [3,35]. It is important to successfully

induce Al-tolerant-specific-proteins before visible morphological-

stress-symptoms for plants to achieve tolerance to Al toxicity. In

addition, the micro- and minor- elements, containing in the

nutrient solution for the long term Al exposure of 15 days, trends

to complicatedly react with Al ion compared to simplified adding

Ca2+ solution. Furthermore, after long term Al treatment, barley

roots (especially in sensitive genotype) is severely damaged, out of

vigorousness and partly death, thus not suitable for protein

extraction. Therefore, in this study, Al-tolerant-specific-proteins in

wild genotype XZ16 were verified under 50 mM or 200 mM Al

condition for 24 h. The treatment of 200 mM Al on the plants

could provide us the special mechanism (proteins) of Al tolerance

in XZ16 in comparison to Dayton or XZ61 under high Al

concentration condition. Because Tibetan wild barley XZ16 and

XZ61 are the two contrasting genotypes with different Al

tolerances, the Al-regulated proteins identified using comparative

proteomics will provide a good foundation to elucidate the

mechanisms involved in Al- tolerance/resistance in Tibetan wild

barley. Here we identified 35 proteins associated with Al-tolerance

in wild barley XZ16 (Figures 2, 5 and Tables 1, 2). There were 16

proteins, up-regulated in roots of XZ16 but down-regulated or

unaltered in both Dayton and XZ61, indicating their specificity

and importance for Al tolerance in XZ16. Among them, four

proteins (SAMS3, U1; ATP synthase beta subunit, U9;

Os09g0535000, U28; Bp2A protein, U29), were markedly induced

by Al stress in XZ16 but not in Dayton, while repressed in XZ61.

Obviously, XZ16 has different stress response and defense

mechanisms against Al stress as Dayton did. Further examination

of these proteins may elucidate the mechanism of Al tolerance in

XZ16 and provide new genetic materials for developing Al-

tolerant crops. The selected stress-responsive proteins are

discussed below according to their function.

Metabolism Category
In the root proteomic analyses, seven of the identified proteins

are involved in metabolism: SAMS3 (U1), methionine synthase

(MeSe, U2 and U3), glutamine synthetase (GS, U4), c-glutamyl-

cysteine synthetase (c-GCS, U5), putative aspartate aminotrans-

ferase (AST, U6) and predicted pirin-like protein (U7). SAMS, as

an essential enzyme in cellular metabolism, has been long

regarded as a ‘housekeeping’ function and it catalyzes the

nucleophilic substitution reaction between methionine and ATP

into SAM (S9-adenosyl-L-methionine) (Figure 7). SAM serves as an

aminopropyl and methyl donor for ethylene and polyamine (PAs)

[20], [21], [22]. It is well documented that ethylene and PAs are

involved in response to biotic and abiotic stresses in plants [23],

[24]. Thus SAMS plays an important role in Spd and Spm

biosynthesis and stress response in plants [25], [26]. Qi et al. [27]

Figure 7. Two of indentified SAM cycle-related enzyme proteins SAMS and MeSe (green oval-shaped box) associated with Al-
tolerance in Tibetan wild barley XZ16. SAM regeneration and utilization reactions of the SAM cycle are depicted. Enzymes of SAM cycle are:
MeSe, methionine synthase; SAMS, SAM synthetase; BSMT, benzoic acid/salicylic acid: S-adenosyl-methionine carboxyl methyltransferase; SAM
hydrolase. SAH, S9-adenosyl-homocysteine; ACC, 1-aminocyclopropane-1-carboxylate. ACCS, 1-aminocyclopropane-1-carboxylic acid synthase.
doi:10.1371/journal.pone.0063428.g007
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Figure 8. Some of indentified proteins (green oval-shaped box, cycle-related enzymes) associated with Al-tolerance involving in
the metabolic pathways of glycolysis (purple box), pentose phosphate pathway (yellow box), and citric acid cycle (blue box) in
Tibetan wild barley XZ16 (A). Searching via the KEGG (Kyoto Encyclopedia of Genes and Genomes), ATP synthase beta subunit
(spot U9), atp1 (F-tyep ATP synthase a subunit, spot U32) and V-ATPase (V-type ATPase AC39, spot 38) were represented by
‘‘3.6.3.14’’ in oxidative phosphorylation (B). Glucose 6-P either proceeds through glycolysis (participated by FBA, TPI, PGM and ENO) or the PPP
(participated by TK) to produce pyruvate, which is converted to acetyl-CoA, entering the TCA cycle and producing citrate and malate (participated by
Aco3). atp1 belongs to mitochondrial membrane ATP synthase generates ATP from ADP in the presence of a proton gradient across the membrane.
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found that over-expression of Suadea salsa SAMS2 in transgenic

tobacco plants leads to an increase in polyamine (PAs) content and

enhancement of salt tolerance. In the present study, SAMS3 was

up-regulated in XZ16 but not expressed in Dayton and repressed

in XZ61 under 50 mM Al stress, highlighting the function of this

protein in Al tolerance of XZ16. Although SAM is the precursor of

ethylene, the key enzyme of ethylene synthesis is ACCS [28]

(Figure 7). Since ACCS was not identified in this study, further

research is required to determine whether up-regulation of SAMS

is involved in ethylene-mediated inhibition of root growth and/or

the alteration of cell wall and polymer structures in roots under Al

stress. On the other hand, SAMS3 was expressed normally in

Dayton under Al stress as determined by qRT-PCR (Figure 6).

Therefore, Al-induced expression of SAMS3 is likely to be

regulated at the post-transcriptional or translational level in

Dayton.

In addition, we also observed that MeSe was depressed in XZ61

(U2 and U3), but not altered in XZ16 under Al stress. Higher

MeSe levels would increase the amount of methionine for SAM

synthesis (Figure 7). Enhanced accumulation of MeSe contributes

to increase PAs biosynthesis, which is critical to plant survival in

many environmental stresses [29]. The decreased accumulation of

MeSe in XZ61 indicates that Al stress triggered damages in barley

roots may be associated with the modification of amino acid

metabolism and synthesis of other amino acids derived metabo-

lites. The next important questions is how SAMS3 and MeSe

elaborate to cope with Al toxicity and which metabolism factors,

e.g., SAM, ethylene, PAs (spermidine or spermine), are responsible

for Al detoxification in conjunction with SAMS3 and MeSe.

Therefore, it is necessary to investigate the accumulation of related

metabolite and enzymatic activities of the SAMS family for a

better understanding of their functions in the Al stress response.

Two glutathione (GSH) synthesis proteins c-GCS and GS (U4

and U5), play a pivotal role in various metabolic processes

involved in plant growth and development and stress responses

including Al toxicity [30], [31]. The pirin-like protein (U7 and

U26) plays important roles in a number of different biological

processes, however, its physiological role in plants remains unclear

[32]. Aspartate aminotransferase (AST, U6 and U25) is a key

antioxidative enzyme for detoxifying reactive oxygen species

(ROS) under abiotic stresses [33]. Similarly, up-regulation of

AST expression was reported in Arabidopsis in response to Al

stress [34]. Under Al stress, c-GCS (U5), GS and AST were

significantly increased in XZ16, whereas dramatically decreased in

XZ61 and Dayton (Table 1), again indicating that there a unique

mechanism in Al tolerance for the Tibetan wild barley genotype.

Energy Category
Similar to the proteomic results of Zhou et al. [10], ATP

synthase beta subunit (U9) was only detected in XZ16 after 24 h of

50 mM Al stress (Table 1), indicating that the energy provided to

ATPase for active Al efflux and detoxification in XZ16 was

increased when exposed to Al stress. qRT-PCR of ATP synthase beta

subunit confirmed a remarkable increase in XZ16 but not in X61

and Dayton under 50 mM Al (Figure 6). Therefore, we conclude

that ATP synthase beta subunit significantly contributes to the

ATPase-mediated active Al efflux and detoxification, and is

regulated at both transcriptional and translational level in XZ16 in

response to Al.

In addition to ATP synthase beta subunit, we also identified

another type of ATPase, atp1 (U32), which was markedly down-

regulated in XZ61 after Al stress, but remained unchanged in

XZ16 and Dayton (Table 2). The efflux of Al-induced citrate and

malate is usually mediated by anion channels and ATPase-driven

active co-transporters [35], [36]. Interestingly, a significant

increase in ATP synthase beta subunit and unchanged levels of

atp1 in XZ16 were consistent with higher root citrate and malate

efflux, whereas the lack of ATP synthase beta subunit expression

and the Al-induced severe inhibition of atp1 in XZ61 were

associated with lower citrate and malate secretion. These results

firmly suggest that high level of ATP synthase beta subunit and

atp1 in XZ16, unlike that in Dayton, may partly contribute to the

active OA transport and secretion during protection from Al-

toxicity. Thus, we may speculate that a novel protein synthesis of

ATP synthase beta subunit may be involved only in Al inducing

organic acid secretion in Tibetan wild barley XZ16. Obviously, it

deserves a more detailed investigation in the future.

A BLAST search revealed that Os09g0535000 (U28) is a

homologue of triosephosphate isomerase (TPI). TPI was reported

to be induced in rice [37] and maize [38] under drought stress,

indicating the importance of cellular homeostasis maintenance and

emphasizing the role of this protein in energy production. Enolase

(ENO, U31) is responsive to salt, low and high temperature and

anaerobic stresses [8], [39]. Spot U10, identified as aconitate

hydratase 3 (Aco3), plays a role in regulating resistance to

oxidative stress and cell death in Arabidopsis and Nicotiana

benthamiana [40]. Spot U29, the Bp2A protein, was first identified

in the wheat genome [41]. The present study is the first to examine

Bp2A (U29) expression under Al stress. However, the function of

this protein and its direct involvement in Al tolerance are poorly

understood. Therefore, the mechanisms underlying the differential

expression of this protein in different barley genotypes should be

further explored.

In the glycolytic pathway, the levels of other Al stress responsive

proteins fructose-bisphosphate aldolase (FBA, U11 and U27) and

phosphoglycerate mutase (PGM, U30) were increased in XZ16

under Al treatments, consistent with the findings of Fukuda et al.

[42] in rice under Al stress and Yan et al. [43] in the rice response

to chilling. Down-regulation of Os06g0133800 (U8), a homologue

to transketolase (TK), in XZ61 may reversibly inhibit ribose 5-

phosphate, which is a substrate for nucleic acid synthesis

associated with the synthesis of RNA under Al stress [42].

Taken together, up-regulation of FBA, PGM, TPI, Bp2A, and

ATP synthase beta subunit (U11, U27, U30, U28, U29 and U9)

and maintaining the normal expression levels of the other four

energy proteins in XZ16 might help to produce more energy

needed in the defense processes under Al stress conditions. The

higher abundance of all these enzymes catalyzing various reactions

in glycolysis, pentose phosphate pathway, and citric acid cycle in

roots of Al resistant genotypes, suggest less Al-triggered disruption

Glutamine and other amino acids also feed by the TCA cycle; for example, a-ketoglutarate can converte glutamate, which is converted to glutamine
by GS; malate can be converted oxaloacetate, which is coverted to aspartate through AST. Abbreviation: HK, hexokinase; PGI, phosphateisomerase;
PFK, phosphofructokinase; BP, bisphoshate; FBA, fructose-bisphosphate aldolase; TPI, triose phosphate isomerase; GAPDH, glyceraldehyde-3-
phosphate dehydrogenase; PGK, phosphoglycerate kinase; PGM, phosphoglycerate mutase; ENO, enolase; PK, pyruvate kinase; G6PDH,
glyceraladehyde 6-phosphate dehydrogenase; 6-PDL, 6-phosphogluconolactone; GL, gluconolactonase; 6-PG, 6-phosphogluconate; 6-PGDH, 6-
phosphogluconate dehydrogenase; PPE, pentose phosphate epimerase; PRI, phosphoriboisomerase; TK, transketolase; TA, transaldolase; PDH,
pyruvate dehydrogenase; CoA, coenzyme A; Aco3, aconitate hydratase 3; GS, glutamine synthetase; PEPC, phosphoenolpyruvate carboxylase; MDH,
malate dehydrogenase; NADP-ME, NADP-malic enzyme; AST, asparate aminotransferase.
doi:10.1371/journal.pone.0063428.g008
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of energy metabolism in XZ16 (Figure 8). Up-regulation of ATP

synthase beta subunit, Bp2A, TPI and FBA is of particular

importance to XZ16 relative to Dayton.

Cell Growth/Division and Protein Biosyntheses Category
Proliferating cell nuclear antigen (PCNA) is an essential

component in eukaryotic DNA synthesis [44]. PCNA interacts

with many proteins and participates in a variety of metabolic

processes, such as cell cycle control, nucleotide excision repair and

post-replication mismatch repair [45]. Translation elongation

factor 1b (EF1B, U13) is a highly conserved protein that catalyzes

the exchange of bound GDP for GTP on EF-1a, a required step to

ensure continued protein synthesis. In our study, PCNA (U12 and

U33) and EF1B (U13) were up-regulated in in roots of XZ16, but

were unchanged in XZ61 and Dayton. It suggests that XZ16

might possess a high actitity of DNA replication machinery in

response to Al stress, and EF1B may play an important role in

maintaining the root elongation rate of XZ16 under Al stress.

In addition, the other specific protein up-regulated in XZ16 is

the RNA-binding Ras-GAP SH3 binding protein (G3BP, signal

transduction category, U20). Zhou et al. [46] reported that the

expression of the G3BP gene was associated with fertility

conversion in male-sterile wheat. However, the exact function of

G3BP in RasGAP-dependent signaling remains to be defined.

These results provide a starting point for further investigation into

the functions of these proteins using genetic and other approaches.

In conclusion, the response and defense mechanisms of Al stress

in XZ16 appear different from those of Dayton, as reflected by the

different expressions of these specific proteins associated with Al

tolerance under Al stress between XZ16 and Dayton or XZ61.

There are four proteins (i.e. SAMS3, ATP synthase beta subunit,

TPI, Bp2A protein), which are exclusively expressed in XZ16 not

in Dayton and XZ61 under Al stress, indicating their crucial role

in development of Al stress tolerance in XZ16, and novelty of

genetic resource for Al-tolerance. In addition, as the functions of

some differentially expressed proteins and their direct involvement

in stress tolerance are poorly understood, further studies are

warranted to elucidate the underlying molecular and metabolic

pathways for better understanding the mechanisms involved in Al-

tolerance of wild barley and providing new genetic resources in Al-

tolerant crop breeding.
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