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Abstract

To accurately predict protein conformations in atomic detail, a computational method must be capable of sampling models
sufficiently close to the native structure. All-atom sampling is difficult because of the vast number of possible conformations
and extremely rugged energy landscapes. Here, we test three sampling strategies to address these difficulties:
conformational diversification, intensification of torsion and omega-angle sampling and parameter annealing. We evaluate
these strategies in the context of the robotics-based kinematic closure (KIC) method for local conformational sampling in
Rosetta on an established benchmark set of 45 12-residue protein segments without regular secondary structure. We
quantify performance as the fraction of sub-Angstrom models generated. While improvements with individual strategies are
only modest, the combination of intensification and annealing strategies into a new ‘‘next-generation KIC’’ method yields a
four-fold increase over standard KIC in the median percentage of sub-Angstrom models across the dataset. Such
improvements enable progress on more difficult problems, as demonstrated on longer segments, several of which could
not be accurately remodeled with previous methods. Given its improved sampling capability, next-generation KIC should
allow advances in other applications such as local conformational remodeling of multiple segments simultaneously, flexible
backbone sequence design, and development of more accurate energy functions.
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Introduction

Predicting the structures of proteins in atomic detail is one of the

key challenges in computational molecular biology. There are two

basic difficulties: advancing sampling strategies to more efficiently

explore the vast space of possible conformations, and improving

energy functions to be able to consistently distinguish correct,

native-like from incorrect structures. Sampling and scoring

methods are developed under the general assumption that

native-like conformations are in the global energy minimum [1].

There are both important exceptions to this rule [2] and cases

where a given energy function used for modeling is not able to

identify native-like conformations as lowest-energy predictions

[3,4]. However, in the majority of cases native-like conformations

indeed have lower energies than non-native models [1]; then

sampling conformations close to the native structure becomes the

primary bottleneck [5].

Sampling methods need to improve on (i) efficiently searching

the vast conformational space, (ii) descending into native-like

minima in the rugged energy landscape, and (iii) traversing energy

barriers between minima. Strategies for diversification during

sampling help increase coverage of conformational space and

identify regions in which low-scoring conformations may be found.

Such strategies have successfully been applied in initial stages of

protein modeling protocols, when multiple different conformations

are collected for further exploration [6,7]. Intensification strategies

are instrumental for sampling low-energy conformations in the

extremely rugged all-atom energy landscape, where even small

deviations from the native structure can lead to drastic energy

penalties [5,8]. Many protein modeling protocols have an initial

exploration stage, and the lowest-energy intermediates are then

refined in multiple independent simulations in an intensified

search for native-like minima [7,9]. Narrow minima present an

additional challenge, particularly in local sampling and high-

resolution refinement, where only few conformations are compat-

ible with already tightly packed protein environments. Moreover,

different minima may be separated by large energy barriers. These

barriers must be traversed to reach near-native conformations

from intermediate steps during sampling [10]. Annealing can help

traverse such energy barriers by temporarily smoothing the energy

landscape and lowering barriers. Annealing strategies have long

been used successfully in molecular modeling, with the most well-

known application using changes in the simulation temperature

over trajectories (simulated annealing) [11,12].

In this work we test several strategies for diversification,

intensification and annealing in the context of conformational

sampling of local regions in proteins, an important yet relatively

tractable problem in high-resolution protein modeling in rugged

energy landscapes. We show that a combination of intensification

and annealing strategies synergistically increases the fraction of

near-native protein models generated by robotics-inspired sam-

pling [4] in the protein modeling and design program Rosetta
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[13]. Given the general nature of these strategies, we believe that

many of our conclusions are valid for other applications of

robotics-based sampling as well. In particular, the demonstrated

dramatic improvements in sampling conformations with sub-

Angstrom accuracy for local protein regions make these promising

strategies for use in design of new protein conformations and

functions [14,15,16,17,18].

Results

Rationale and Overall Strategy
We implemented and assessed diversification, intensification

and annealing strategies within the Rosetta kinematic closure

(KIC) protocol, a robotics-based method that calculates mechan-

ically accessible protein conformations of local protein segments

(Figure 1) [4]. A KIC move distinguishes ‘‘pivot’’ and ‘‘non-pivot’’

atoms in the protein segment to be modeled (Figure 1A). Torsion

degrees of freedom at non-pivot atoms are sampled according to

Ramachandran probabilities, which effectively opens the chain

and explores diverse conformations (Figure 1B). Analytical closure

then calculates six Q /y torsion degrees of freedom at the middle

and two outer pivot Ca atoms to exactly close the chain. This step

ensures a purely local conformational change only in the chosen

segment without affecting the rest of the structure (Figure 1C).

KIC moves are then combined with side-chain optimization

(‘‘repacking’’) and minimization steps into a Monte-Carlo mini-

mization protocol (Figure 1D). This method has previously been

shown to successfully sample and identify sub-Angstrom protein

conformations for many cases [4].

Here we assess the changes in sampling sub-Angstrom

conformations achieved by the different strategies (Figure 1E).

The first strategy we tested employs an initial diversification stage

(‘‘Taboo’’ sampling) to increase coverage of conformational space.

Taboo sampling records previously chosen backbone conforma-

tions and requires future moves to sample different regions of

conformational space. The second strategy aims to intensify

sampling of certain regions by sampling of neighbor-dependent Q/

y combinations (‘‘Rama2b’’ sampling) or of v angles (‘‘Omega’’

sampling). The third strategy uses annealing methods that

gradually ramp the weight of terms in the Rosetta energy function

to overcome energy barriers (‘‘Ramp repulsive’’ or ‘‘Ramp rama’’

sampling). The diversification and intensification strategies tested

here change non-pivot sampling, whereas annealing approaches

modulate the energy function.

We evaluated the performance of these strategies on an

established benchmark set of 45 12-residue protein segments

([19,20], Methods). In each case, the segment is deleted from the

protein structure and then ‘‘reconstructed’’ de novo; all side chains

within 10 Å of the segment are modeled at the same time from a

standard rotamer library not including the native conformations.

Previous methods [19,20,21], including standard KIC sampling

[4], demonstrated considerable success in sampling and correctly

identifying near-native conformations on this benchmark, suggest-

ing that modeling 12-residue segments is a challenging but

relatively tractable problem. However, in almost half of the

benchmark cases, sub-Angstrom conformations were either not

sampled or not identified correctly by the energy function. This

benchmark therefore represents a difficult test where improve-

ments over current state-of-the-art approaches require non-trivial

advances.

We used two metrics to quantify performance of our tested

strategies: the root mean square deviation (RMSD) of the

backbone atoms in the remodeled segment between the lowest-

scoring model and the native conformation, using the median

value across the 45 benchmark cases, and the median percentage

of final models (trajectory endpoints) with ,1 Å RMSD to the

native (in the following denoted as ‘‘sub-Angstrom’’). The first

metric is commonly used and thus provides a comparison to

previous work. The latter measure allows observation of changes

in the distribution of models towards sub-Angstrom conforma-

tions, even if these conformations cannot be distinguished by the

current energy function as more native-like. For method

development purposes, the relative computational tractability of

simulations on 12-residue segments allowed us to test a number of

individual and combined sampling strategies and present a side-

by-side comparison of different approaches.

Implementation and Effects of Individual Sampling
Approaches

We first tested Taboo sampling as a strategy for diversification

of sampled conformations. Our implementation of Taboo

sampling was inspired by recent work on sampling bottlenecks in

protein structure prediction that described ‘‘linchpin’’ features.

These features, such as specific backbone torsion bins and

secondary structure elements, were only rarely sampled in random

trajectories but almost always led to low-scoring near-native

conformations when they were found [22]. Taboo sampling aims

to diversify proposed conformations such that linchpin features are

more likely to be sampled. As in [22], we divide Ramachandran

space into four bins that roughly correspond to preferred regions

of different secondary structure types (Methods). For each

proposed conformation, a torsion bin vector is recorded that

represents the Q/y values for each residue in the modeled

segment. To ensure that different conformations are tested, a list of

distinct torsion bin vectors then prescribes the bins the non-pivot

torsions must be sampled from (Figure 1A–C). When the list of

torsion bin vectors to be tested next is exhausted and needs to be

updated, the probability of each torsion bin at each position, based

on how likely it is given the respective amino acid, is adjusted

proportionally to how often the bin has been sampled so far

(Methods). Torsion bin vectors that have already been considered

are not tested again. This strategy promotes sampling of

combinations of multiple less likely torsion bins that may be

missed in history-independent sampling. As a result, Taboo

sampling may be able to reach conformations that are not

sampled by standard KIC despite having a low score (Figure 2A),

although finding these rare conformations may not be robust to

sampling variations (see also discussion below).

We next implemented and tested two intensification approach-

es, (i) sampling of v degrees of freedom (Omega) to explore

deviations from planar peptide bonds [23] and (ii) selection of Q/y
torsion angle combinations from neighbor-dependent Ramachan-

dran distributions (Rama2b) to consider the identities of adjacent

residues in sampling [24]. Figure 2B illustrates a case where

Omega sampling not only increases the fraction of sub-Angstrom

models (left), but also correctly discriminates sub-Angstrom

conformations from another set of models (see secondary ‘‘funnel’’

at 2 Å RMSD in the energy landscape, right) that scored similarly

in standard KIC sampling (center). This discrimination is

remarkable because the added variations in v do not change the

Rosetta energy function; instead, improved sampling is able to

generate lower-scoring, more native-like conformations. In con-

trast, Figure 2C illustrates a case where KIC with Rama2b

sampling shifts the distribution of models significantly towards

native-like conformations, but these conformations still score worse

than other non-native models. Here, clustering analysis would

reveal the sub-Angstrom conformation as one of the most

represented and thus likely correct conformations (Figure S1).

Improvements to Conformational Sampling in Rosetta
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Clustering is commonly used in ab initio structure prediction [25],

where the coarse-grained energy function is known to be less

accurate in discriminating near-native from other models, and has

also been applied after high-resolution modeling [5,26,27].

As a third strategy, we tested the effect of annealing approaches

already used in a number of existing Rosetta applications (e.g.

[28,29]). Here we ramp the weight of fa_rep (the repulsive

component of the Lennard-Jones potential in Rosetta, "Ramp

repulsive"), as well as the rama score (the likelihood of a Q/y
combination given the amino acid type, "Ramp rama"), over the

course of the outer cycles in the full-atom stage of the KIC

protocol (Figure 1D). Annealing allows clashes or unfavorable

torsions in remodeled conformations in initial stages of the

protocol. This strategy makes it possible to traverse energy barriers

that may otherwise be hard to cross. Figure 2D illustrates an

example where annealing shifts the population of models towards

the native conformation.

Overall Performance of Individual and Combined
Sampling Approaches

In spite of the improvements of the described sampling

approaches shown in Figure 2 for selected examples (as measured

by increases in how often sub-Angstrom conformations are

sampled), their overall effect when applied individually to the

entire benchmark set of 45 12-residue segments was only modest

(Figure 3A). Individual methods yielded a median value of 3.9–

6.3% sub-Angstrom conformations, compared to 4.3% for

standard KIC (Figure 3, Table 1). In particular, Taboo sampling

Figure 1. Overview of the Rosetta Kinematic Closure Protocol and New Sampling Strategies Tested Here. Kinematic closure for local
conformational sampling: (A) 3 Ca atoms in the segment to be remodeled are designated as pivots (orange), the remaining N-3 Ca atoms are non-
pivots (yellow). (B) Torsion angles at the non-pivot atoms are sampled from residue-specific Ramachandran distributions in standard KIC [4], opening
the segment. (C) Analytical closure calculates values for the pivot Q/y torsions that form a closed conformation (‘‘KIC move’’). Molecular
representations were rendered with PyMol [49]. (D) The Rosetta kinematic closure Monte Carlo Minimization protocol illustrating the low resolution
(centroid) and full-atom stages. A KIC move is followed by side chain optimization in the full-atom stage, and by minimization in both stages. A trial
conformation is accepted or rejected using the Monte Carlo Metropolis criterion [4]. Iterations in both centroid and full-atom stages are grouped into
inner and outer loops. The lowest-scoring model from each such trajectory is reported. (E) The sampling improvement strategies tested here are
active during different stages of the Rosetta kinematic closure protocol: Taboo sampling serves diversification and is used in the low-resolution stage
to improve coverage of the conformational space by rapidly testing many different conformations with the centroid energy function that simplifies
side chain details. The intensification strategies Omega sampling and Rama2b are applied in all stages. Ramping component terms of the energy
function as annealing strategies is only used in the high-resolution stage, to overcome large energy barriers in the rugged Rosetta full-atom energy
landscape.
doi:10.1371/journal.pone.0063090.g001

Improvements to Conformational Sampling in Rosetta
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and Ramp rama overall did not perform significantly better than

standard KIC; Omega, Rama2b and Ramp repulsive sampling

consistently improved the fraction of sub-Angstrom conformations

sampled over standard KIC (median across the dataset), but only

by a small margin.

However, combining all five methods showed a dramatic

improvement in sampling sub-Angstrom models (Figure 3A,

magenta bar), reaching a median value of 14.6% sub-Angstrom

models. This behavior appears to be due to synergistic effects of

the independent improvements, as the fraction of sub-Angstrom

conformations is higher than expected from addition of the

individual improvements. Error bars in Fig. 3 indicate the

variation between three independent simulation sets (each

containing 500 decoys for each of the 45 12-residue segments).

The observed variation is small compared to the overall increase

seen upon combining the different sampling methods.

We next asked whether each of the individual methods

contributes favorably to the increased sampling rate of sub-

Angstrom conformations by the ‘‘all five’’ method (Figure 3B) by

testing all possible combinations of four methods in a ‘‘leave-one-

Figure 2. Examples of Improved Sampling by Individual Strategies. RMSD distributions of selected examples for standard KIC (dark blue)
and individual sampling approaches tested here (left), along with energy-vs-RMSD plots for standard KIC (center) and individual strategies as
described in this work (right). Energies are given in Rosetta energy units (REU). 500 models (dots) were generated for each simulation. The lowest-
energy model is indicated by a diamond. (A) Taboo sampling (light blue) on PDB 1oyc identifies a sub-Angstrom model not found by standard KIC. (B)
Omega sampling (dark green) on PDB 1pbe enables correct identification of sub-Angstrom conformations by Rosetta energy. (C) Rama2b (bright
green) on PDB 1 m3 s and (D) Ramp Repulsive (yellow) shift the distribution towards more native-like conformations.
doi:10.1371/journal.pone.0063090.g002

Improvements to Conformational Sampling in Rosetta
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out’’ analysis. Without Omega sampling, Rama2b sampling or

either of the annealing strategies, the percentage of sampled sub-

Angstrom conformations clearly decreased. In contrast, leaving

out Taboo sampling increased sub-Angstrom sampling (Figure 3B,

red bar). The negative effect of Taboo sampling on overall

performance may be due to the fact that enforcing diversification

could bias against native-like conformations that would otherwise

be easy to identify in the current energy landscape. It is also likely

that the increased coverage of conformational space achieved with

the current parameters simply is not sufficient for a stable increase

in performance. The latter might be alleviated by longer

simulations with increased numbers of attempted Monte-Carlo

moves or by communication between different trajectories

sampling the same segment; such communication strategies have

been successfully applied in protein structure prediction [7,9].

Performance of an Improved Combined Protocol: ‘‘Next-
generation KIC’’

Given the results of the ‘‘leave-one-out’’ analysis above, we

combined four of the described sampling strategies (excluding

Taboo sampling) into an improved protocol, termed ‘‘next-

generation KIC’’ (NGK). NGK reached an overall median value

of sub-Angstrom conformations sampled in the 45 12-residue

segment set of 16.3% (Figure 3B). There is substantial synergy

between the different sampling approaches, as adding the

individual improvements over standard KIC only yields an

expected overall median value of 8.662.7% sampled sub-

Angstrom conformations (see Table 1 and Methods). The synergy

is also illustrated in an example in Figure 3C–G. Comparison of

NGK (Figure 3D) to standard KIC (Figure 3C), the effect of

selected individual approaches (Figure 3E,F) and the RMSD

distributions from each individual method (Figure 3G) show that

different strategies contribute to successful identification of sub-

Angstrom conformations, either by shifting the overall distribution

of models or by enabling sampling of rare but low-scoring

conformations. Moreover, the sub-Angstrom median RMSD

across the benchmark dataset (Figure 3H) shows that, for the

majority of the cases, the lowest-scoring conformation is very close

to the native. NGK tends to generate models closer to the native

structure than standard KIC (Figure 3I) and it has a slightly shifted

distribution of the RMSD percentiles (boxes in Figure 3H; see also

Table S1 for RMSDs of lowest-scoring models for all methods).

Although we only measure backbone RMSDs, remodeled

conformations with sub-Angstrom RMSDs usually also have

highly accurate side chain placements, as discussed further below.

Across the benchmark set, the distribution of the fraction of

sampled sub-Angstrom conformations is broad: for some struc-

tures many models are close to the native conformation, while for

other cases the fraction of the sampled conformations that are

close to the native is small (Figures 4 and 5). Remarkably, with the

combination of intensification and annealing strategies in NGK,

increases in the percentage of sub-Angstrom conformations are not

only observed for individual instances as illustrated in Figures 2

and 3, but for the vast majority of benchmark cases when

comparing to standard KIC (Figure 4).

In addition to these considerable improvements, NGK success-

fully generated sub-Angstrom conformations that were not

sampled at all by standard KIC for six of the 12-residue segments

(Figure 4 inset, Figure 5). For each of these cases, several of the

new methods individually enable sampling of sub-Angstrom

models, often with synergy in the combination (highlighted cases

in Figure 5), as also discussed above. Improvements in these rarely

sampled cases are especially important, as they allow more reliable

identification of sub-Angstrom conformations even for cases in

which sampling correct conformations is clearly limiting.

Analysis of Failures where no Sub-Angstrom
Conformations are Sampled by NGK

Despite considerably improved sampling in many of the

benchmark cases, NGK still failed to generate sub-Angstrom

models for six of the 45 structures in the benchmark (Figure 5). To

analyze these ‘‘sampling failure’’ cases, we developed a variant of

KIC that restricts sampling of non-pivot Q/y combinations to the

native torsion bin (defined as in Taboo sampling) for each residue.

This ‘‘torsion-restricted’’ method tests whether sub-Angstrom

conformations could be generated under much simpler conditions,

where sampling is intensified considerably in the vicinity of the

native regions. These regions may be difficult to find otherwise

because of rarely sampled linchpin features [22].

Torsion-restricted sampling generated low-energy sub-Ang-

strom conformations for only two of the six failure cases, 1cs6

and 2ebn. Both contain a cis-proline in the remodeled segment.

The frequency with which these – generally very rare –

conformations are sampled may be too low in the current

implementation (Methods), and increasing it may improve

identification of sub-Angstrom conformations for these structures.

In two other of the six failure cases, 1msc and 4i1b, sub-

Angstrom conformations were generated in torsion-restricted

sampling, but these are not the lowest-scoring models. Moreover,

when we relaxed the local segment starting from the native

Table 1. Median Percentage of sub-Angstrom Models for Individual and Combined Methods.

Method avg(m%sA) stddev Method avg(m%sA) stddev

standard KIC 4.3 1.0

CCD 0.0 0.0

Taboo sampling 3.9 0.1 no Taboo sampling 16.3 0.8

Omega sampling 5.4 0.2 no Omega sampling 8.4 0.6

Rama2b sampling 6.1 0.6 no Rama2b sampling 7.3 1.0

Ramp repulsive 6.3 0.5 no Ramp repulsive 9.1 0.4

Ramp rama 3.9 0.3 no Ramp rama 11.1 0.4

all five 14.6 1.2

Average and standard deviation of the median percentage of sub-Angstrom models across the 12-residue benchmark set, calculated from three independent
simulations with 500 models for each benchmark case in each simulation. This data is visualized in Figure 3A+B.
doi:10.1371/journal.pone.0063090.t001
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structure (‘‘relaxed-natives’’, see Methods), we found that these

conformations also score worse than non-native conformations

sampled by NGK. This behavior generally indicates energy

function deficiencies. In addition, analysis with MolProbity [30]

showed that both segments contain strained bond angle confor-

mations that may not be covered by the bond angle variation

NGK explores in the current implementation (Table S1). KIC and

NGK currently only introduce small variations in backbone bond

angles, 2.48u around the mean, as observed in high-resolution

structures (Methods). We also performed KIC and NGK

simulations in which all bond angles are idealized, which gave

similar results to sampling with small variations (Figure S2).

However, others [31,32,33] have successfully used larger varia-

tions, which may be beneficial in cases of strained conformations.

In the remaining two cases without sub-Angstrom conforma-

tions sampled by NGK (1cnv, 1ezm), even torsion-restricted

sampling did not generate sub-Angstrom models. Relaxed-native

1cnv segments score worse than the non-native conformations

identified by NGK, indicating energy function deficiencies, as

above. In contrast, for 1ezm the relaxed-native segment confor-

mation has a lower energy, indicating a sampling problem (i.e.

native-like conformations could have been identified by energy if

they had been sampled). MolProbity analysis shows that the

remodeled segment contains two bond angle outliers, which may

not be covered by the currently implemented bond angle

variation, as discussed above (see also Table S1, Methods).

Analysis of Failures where Sub-Angstrom Conformations
are Sampled, but not Correctly Identified: Sampling
Improvements Reveal Energy Function Deficiencies

For 15 of the 45 benchmark cases, although sub-Angstrom

conformations were sampled, these were not correctly identified by

the energy function, i.e. they were not the lowest scoring models

generated in the simulation (Figure 5). For six of these

‘‘identification failures’’, the relaxed-native segment scores lower

than the lowest-scoring NGK model; this behavior indicates that

sub-Angstrom conformations should be identifiable with further

sampling improvements (Table S1). Torsion-restricted sampling

identifies low-scoring sub-Angstrom models for these cases

(Figure 5), supporting the hypothesis that these can be reached

with sufficient sampling. In contrast, the nine other identification

failures may reflect energy function deficiencies, as the relaxed-

native structure score worse than the NGK models (Table S1).

A complicating factor in any simplified ‘‘sampling’’ versus

‘‘scoring problem’’ analysis, as above, is that scoring problems may

have been masked by less thorough sampling with previous

methods. This behavior can be seen in a comparison between

simulation results of NGK and another well-established method

for local conformational sampling in Rosetta, fragment insertion

Figure 3. Median Performance Across the 12-Residue Bench-
mark Sets and Illustration of Synergy. (A) Barplot showing median
percent sub-Angstrom (m%sA) across benchmark sets 1 and 2 for the
individual sampling strategies tested here as well as their combination
(‘‘all five’’), showing a clearly increased percentage of sub-Angstrom
models. Error bars are standard deviations from 3 independent
simulations (generating 500 models for each of the cases in the
dataset, repeated three times). Colors are as in Figure 2. The value for
CCD is 0 with this measure. (B) Barplots of ‘‘leave-one-out’’ trials in
which all combinations of 4 sampling improvement methods are tested:
without Taboo sampling (red, NGK), without Omega sampling (dark
green), without Rama2b (green), without Ramp repulsive (dark yellow),
and without Ramp rama (dark orange). These data are also provided in
Table 1. (C–F) Energy-vs-RMSD plots of remodeling PDB 1oyc with
standard KIC (C), next-generation KIC (D), Rama2b sampling (E) and
Ramp repulsive sampling (F). REU, Rosetta-energy units. (G) RMSD
distributions for the different methods. Colors are as in Figure 2, NGK in
red. Rama2b and Ramp repulsive sampling both contribute to enabling

sampling of sub-Angstrom conformations of the remodeled segment
(in 1oyc.pdb), while the other individual strategies do not change the
RMSD distribution for this case. Nevertheless, the combined perfor-
mance in NGK is higher than expected from the individual improve-
ments, indicating synergy. (H) Boxplots of median RMSDs for standard
KIC (blue), CCD (gray) and NGK (red), based on the lowest-energy model
for each benchmark case. Boxplots show the minimum and maximum
among the lowest-scoring RMSDs across the benchmark set (error bars),
the 25th and 75th percentile (box boundaries) as well as the median
(thick line). Both kinematic-closure-based methods have lower median
RMSDs than CCD. (I) Comparison of the lowest-scoring RMSD for each
benchmark case in simulations with standard KIC vs. with NGK. NGK
typically achieves lower RMSDs than standard KIC (red), while for some
cases KIC achieves lower RMSDs (blue). Cases with an RMSD change
,10% are shown in black.
doi:10.1371/journal.pone.0063090.g003
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followed by cyclic coordinate decent (CCD) [20,34]. CCD relies

on fragments extracted from PDB structures [35] and thus

performs well whenever sufficiently close fragments are available

(here, to ensure suitability of the benchmark for reconstruction of

segments in proteins of unknown structure, fragments from

homologs are excluded). Overall, CCD samples sub-Angstrom

conformations for fewer cases in the benchmark set, leading to a

median performance below that of KIC and NGK (Figures 3 and

5, Table 1). Because CCD and KIC use the same energy function

and similar numbers of Monte-Carlo evaluation steps in Rosetta,

we attribute this difference to the improved sampling afforded by

KIC [4]. In all but one of our benchmark cases, whenever CCD

identifies sub-Angstrom models, NGK samples these sub-Ang-

strom conformations as well (Figure 5). However, in four of these

18 cases, NGK generates even lower-scoring but non-native

conformations, revealing problems in the Rosetta energy function

that were not detected previously by CCD or standard KIC

(Figure 6). This suggests that sampling improvements can expose

shortcomings of the energy function used to rank modeled

conformations. Similar scoring problems have also been observed

with other recent sampling improvements [36].

Reconstructing Longer Segments
Given the improvements of NGK over standard KIC, we next

sought to apply NGK to a new dataset with increased difficulty in

conformational sampling. We chose 28 longer (14–17-residue)

segments from an independent dataset that we did not consider

during development of NGK (Methods). For 21 cases, or 75% of

the test set, NGK was able to sample sub-Angstrom models, six of

which could not be sampled by standard KIC (Figure 7, Table S2).

For 16 of these 21 cases, sub-Angstrom conformations were

correctly identified by the energy function. These correctly

identified conformations are very close to the native structure

(median backbone RMSD 0.63 Å, Figure 7D) including highly

accurate side chain placements (Figure 7A), which is a require-

ment for backbone remodeling protocols to be used in protein

design [1,16,37]. The fraction of cases in the benchmark for which

NGK successfully sampled sub-Angstrom conformations increases

to 87.5% (21/24) if one excludes the four of the 28 segments for

which even torsion-restricted sampling cannot generate sub-

Angstrom models (for these 4 cases, even dramatically improved

sampling methods are likely to fail).

In the long-segment set, five of the seven cases where no sub-

Angstrom models were generated as trajectory endpoints appear

to be due to sampling deficiencies because the native relaxed

conformations had lower energies than the best NGK models. In

contrast, four out of the five ‘‘identification failures’’ (sub-

Angstrom models sampled, but not lowest-scoring) can be

explained by native-relaxed conformations having a worse score

than the NGK remodeling results (Table S2).

Discussion

The sampling improvements in NGK clearly increase the

percentage of sub-Angstrom models (16.3%) over that generated

by standard KIC (4.3%) and CCD, current state-of-the-art

methods for local conformational sampling. In particular, NGK

enables reliably sampling sub-Angstrom conformations for six of

the 45 benchmark cases in an established 12-residue benchmark

set that were previously not found, plus six of 28 cases in a new

benchmark set of longer segments. Our results have important

implications for more complex protein modeling and design tasks:

for example, NGK sampling should help with problems with

higher (computational) complexity, such as remodeling multiple or

longer segments, by increasing the likelihood of generating native-

like conformations. NGK sampling should also lead to better

overall predictions in multi-step protocols that are used for

challenging design tasks [16,18,38,39], if the lowest-scoring

conformation for a given segment can be determined more

reliably.

The local conformational sampling benchmarks shown here

uses native take-off points for the remodeled loops. For use of KIC

or NGK in the context of homology modeling, where exact loop

start and end coordinates may not be known, further tests will be

necessary to quantify the influence of deviations in take-off points

on the accuracy of the modeled conformations. However, a major

intended use of NGK is local remodeling during the design of

active sites or protein interfaces. In these cases, it may be desirable

to only remodel local redesigned regions while leaving the

remainder of the known protein scaffold fixed.

Energy function deficiencies revealed by improved sampling

methods such as NGK will need to be addressed, and have

potentially wide-reaching effects on the overall performance and

predictive power of Rosetta. Accurate conformational sampling is

essential for developing and assessing improvements of energy

functions in high-resolution protein structure modeling and design.

For example, modeling the precise geometries of hydrogen

bonding interactions requires detailed sampling of both backbone

and side chain conformations. Due to its efficient coverage of the

local conformational space, NGK provides encouraging avenues

and suitable tests for modifications to the energy function.

Despite good overall performance, some cases remain that are

not sampled well; remodeling longer segments highlights how such

more complex problems are now possible, yet NGK does not

generate many sub-Angstrom conformations. To further improve

sampling and inspired by the successful application of neighbor-

dependent Ramachandran distributions, we intend to extend

sequence dependence beyond direct neighbors and extract Q/y/v
combinations from fragments. In this fashion, the improved

sampling capabilities of NGK and the advantages of fragments-

based methods for restricting degrees of freedom can be combined

in new, flexible backbone high-resolution modeling [40] and

design methods. Further, conformational space annealing, the

exchange of low-scoring sub-segments between different models, is

an established technique in protein modeling [41,42] that

efficiently exploits information from multiple parallel simulations

to identify good conformations. Both techniques may prove

especially helpful for remodeling longer segments and other more

complex problems, where sampling limitations are most apparent.

Methods

Benchmark Datasets
Performance of all individual sampling strategies discussed here

as well as their combination was tested on two established 12-

residue segment benchmark datasets ([19,20]), with further

curation as described in [4]. For remodeling longer segments,

we searched the dataset provided in [43] for instances in which

there were at most five residues of the segment to be remodeled

within 6 Å of symmetry mates, to minimize the potential influence

of crystal contacts on segment conformations. 28 of the 89

segments in the dataset in [43] met this criterion (Table S2).

Rosetta Kinematic Closure (KIC) Protocol
The Rosetta KIC protocol applies kinematic closure moves

(Figure 1A–C) to the selected segment, followed by optimization of

the side chains (changing their rotameric conformations) on the

segment and within 10 Å of the segment in the full-atom stage.
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After minimization of the segment’s backbone and side chains

within 10 Å, each move is accepted or rejected according to the

Monte Carlo Metropolis criterion [4]. After initial closure is

achieved, sub-segments of length 3 or more are randomly chosen

for further remodeling using the same procedure of sampling non-

pivot torsions, closure, side-chain optimization and minimization.

Thus, the identity of the pivot residues changes over the course of

the protocol. In addition to torsion angle sampling, N-Ca-C-bond

angles are sampled from a uniform distribution in the [109.62,

112.1] range, based on bond angle variations observed in crystal

structures in the PDB with a resolution of better than 1 Å [4].

Rosetta command line with arguments for standard KIC for

PDB 1a8d (loop boundaries can be found in Table S1):

rosetta_source/bin/loopmodel.executable -database rosetta_da-

tabase/in:file:fullatom -loops:loop_file 1a8d.loop -loops:remodel

perturb_kic -loops:refine refine_kic -in:file:native 1a8d_MinPack-

ed.pdb -in:file:s 1a8d_MinPacked.pdb -ex1 -ex2 -extrachi_cutoff 0

-loops:outer_cycles 5 -corrections:score:use_bicubic_interpolation

false -kic_bump_overlap_factor 0.36 -legacy_kic false -kic_mi-

n_after_repack true.

To ensure that no information from native rotamers was used,

all starting structures were repacked using a fixed backbone

protocol that performs simultaneous rotamer placement (using

only a standard rotamer library expanded by one standard

deviation around the side chain x1 and x2 torsion angles

[44,45,46], but not including native side chain conformations),

followed by minimization of the side chain torsion degrees of

freedom for each residue [47]:

rosetta_source/bin/fixbb.executable -database rosetta_data-

base/s 1a8d.pdb -ex1 -ex2 -extrachi_cutoff 0 -min_pack -

ignore_unrecognized_res -packing:repack_only.

In the KIC protocol, all side chains within 10 Å of the segment

are initially discarded and rebuilt after the end of the low-

resolution stage, around the conformation at that point in the

protocol. As described above, over the course of the high-

resolution stage, side chain conformations within 10 Å of the

segment are optimized after each new closure step, as described

[4].

All data points shown in energy-vs-RMSD plots are trajectory

endpoints. Energies are given in Rosetta energy units (REU). For

12-residue segments, 500 models were generated for each

benchmark case and tested sampling strategy. For the longer

segments, 2500 models were generated per case. The backbone

RMSD is calculated by superimposition of the backbone of the

native structure and the model excluding the remodeled segment,

followed by calculation of the RMSD of the segment backbone’s

heavy atoms. Sub-Angstrom conformations are considered ‘‘sam-

pled’’ if there are any models with backbone RMSD ,1 Å among

the 500 or 2500 generated in the respective simulation. The native

conformation is considered ‘‘identified’’ by the Rosetta energy

function if the lowest-energy model has a sub-Angstrom RMSD.

All simulations were executed with Rosetta SVN revision r51851,

and the options implemented here will be available in release 3.5.

Implementation of Sampling Approaches
Diversification strategy: Taboo sampling. For Taboo

sampling, the Ramachandran space is split into four sections as

described in [22]:

A: Q #0 and –130# y #50,

B: Q #0 and (y,–130 or y .50)

E: Q .0 and (y,–90 or y .90)

G: Q .0 and –90# y #90

For each residue in the segment, the torsion bin as defined

above is determined. For each conformation closed by a KIC

move, the torsion bin vector (containing a Q/y combination for

each residue in the remodeled segment) is recorded in the

TabooMap. The torsion bin vector always covers the full segment,

even if only a subsegment was remodeled in the current trial.

Initially, the list of torsion bin vectors to be sampled is solely based

on the probability of each torsion bin given the residue type at the

respective position. This list has a predetermined size (1000) and is

refilled whenever exhausted. For refilling the list, the residue type’s

preferences are compared with how often that particular bin has

already been sampled at this position, leading to an adjusted

frequency of each torsion bin. Vectors matching the TabooMap,

i.e., those that have already been tested, are removed from the

torsion vector list. To prevent near-deadlock situations, the

TabooMap is cleared when 95% of torsion bin space has been

covered. For 12 residue loops, this would correspond to 166106

successful loop closures, which is far beyond the 1200 closure trials

performed in our simulations (with 5 outer cycles and 20*12 = 240

Figure 4. Comparison of the Percentage of sub-Angstrom
Models Generated by KIC and NGK. Direct comparison of the
percentage of sub-Angstrom models (%sA) between standard KIC and
NGK for each of the 45 benchmark cases, grouped into those that are
better sampled with NGK (red), those that are better sampled with
standard KIC (blue), and those for which %sA did not change much
(,610%, black). Cases that were not at all or very rarely sampled by
standard KIC but are more often and consistently found by NGK are
specifically highlighted (orange box and bottom panel). %sA and the
rank of the lowest-scoring sub-Angstrom model for each individual
benchmark case are also given in Figure 5.
doi:10.1371/journal.pone.0063090.g004
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Figure 5. Performance of the different sampling strategies for the 12-residue benchmark set. Performance on all benchmark cases in
datasets 1 (A) and 2 (B) is shown in terms of percent sub-Angstrom models (%sA). In addition, the rank of the lowest-scoring sub-Angstrom (,1 Å
RMSD) model in a set of 500 is given; rank 1 indicates that the lowest-scoring model has a sub-Angstrom RMSD. As reference performance of existing
methods, standard KIC [4] and CCD [20] are also shown. Data for both methods were regenerated using the same Rosetta revision as for all other
methods (Methods). Torsion-restricted sampling serves as an additional control. Benchmark cases that do not generate high-ranking (, rank 20) sub-
Angstrom conformations either with NGK or in torsion-restricted sampling are grayed out. For six cases where sub-Angstrom conformations were
only sampled with NGK, but not standard KIC, the individual sampling strategies that help each particular case are highlighted. Due to synergy
between the different sampling strategies, the %sA of NGK often is higher than expected from the individual methods. * indicates that the starting
structure is a dimer, with residues in the dimerization interface within 10 Å of the remodeled segment.
doi:10.1371/journal.pone.0063090.g005
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inner cycles, Figure 1). Due to the fact that there are up to 2000

closure attempts in each of these trials, the list of torsion bin

vectors will be exhausted and refilled several hundred times over

the course of a typical trajectory.

In each KIC move, non-pivot torsions are sampled only from

the prescribed bin from the next torsion bin vector in the list. To

allow for fast sampling within a torsion bin, specific Q/y lookup

tables are generated for each bin. These tables are subsets of the

standard KIC lookup tables but only contain the part of

Ramachandran space matching the respective torsion bin. To

ensure the Taboo-criterion holds, each torsion bin vector is

compared to the current TabooMap directly before it is used for

sampling non-pivot torsions. In case this vector has already been

tested, it is discarded, and the next vector in the list is considered.

Taboo sampling is activated by adding –loops:taboo_sampling

to the Rosetta command line.

Intensification strategies: Rama2b and Omega

sampling. Neighbor-dependent Ramachandran distributions

[24] reflect preferred Q/y combinations depending on the local

sequence. For kinematic closure with Rama2b sampling, new

neighbor-dependent lookup tables for sampling non-pivot Q/y
combinations are generated. The current Rosetta Rama2b

implementation only contains probabilities for the left and right

neighbor independently; one side is chosen randomly. For use in

combination with Taboo Sampling, the probability of each torsion

bin at each position now also needs to consider its direct

neighbors. The left and right neighbor are integrated by taking

the minimum of both probabilities. As described above, in later

iterations of the protocol these probabilities are combined with the

frequency recorded in sampling so far.

Rama2b is activated by adding –loops:kic_rama2b to the

Rosetta command line.

Omega sampling is based on values observed in high-resolution

crystal structures [23]. In the current implementation sampling is

independent from the Q/y combinations in the remodeled

segment. v is sampled independently at each residue from a

Gaussian around the observed mean of 179.166.3. For pre-

prolines, cis conformations are sampled at a rate of 1/10,000. In

the standard KIC implementation [4], all v angles were assumed

to be planar.

Omega sampling is activated by adding –loops:kic_omega_-

sampling and –allow_omega_move true to the Rosetta command

line.
Annealing strategies: Ramp repulsive and Ramp

rama. Annealing is implemented in the high-resolution stage

of the kinematic closure protocol only. The incremental steps are

tied to the outer cycles of the protocol (see also Figure 1D), such

that a higher number of outer cycles leads to smoother annealing.

For n outer cycles, the weight is initially reduced to 1/n of the full

weight as defined by the chosen energy function. Each outer cycle

increases the weight by 1/n, reaching the full weight as defined in

the energy function in the last cycle. In this work we used 5 outer

cycles for all KIC and NGK simulations. In the original KIC

implementation [4], 3 outer cycles were used without ramping.

Ramp repulsive is activated by adding –loops:ramp_fa_rep to

the Rosetta command line, Ramp rama by adding –loop-

s:ramp_rama.

Note that, when using Ramp rama together with Rama2b, the

weight of the Rama2b term is ramped analogously to the

annealing scheme for rama, while the weight for the standard

rama term is set to 0.

Next-generation KIC (NGK)
NGK is a combination of Rama2b, Omega sampling, Ramp

repulsive and Ramp rama and is thus activated by adding the

following flags to the standard KIC command line:

–loops:kic_rama2b –loops:kic_omega_sampling –allow_ome-

ga_move true –loops:ramp_fa_rep –loops:ramp_rama.

The Protocol Capture accompanying this manuscript contains

the command line options for running NGK, as well as example

input files (Dataset S1).

Synergy is assessed by comparing the expected to the observed

median value of the fraction of sub-Angstrom models (m%sA).

The expected m%sA is calculated by adding the contributions

from each individual improvement (m%sA(respective method) -

m%sA(standard KIC)) to the m%sA of standard KIC, plus the

sum of their standard deviations.

Torsion-restricted Sampling
Torsion-restricted sampling utilizes the same torsion-bin-specific

Q/y lookup tables as Taboo sampling. However, unlike for Taboo

Figure 6. Energy Function Deficiencies Revealed by Sampling Improvements. Energy-vs-RMSD plots of the four benchmark cases for which
NGK (red) finds alternative, lower-energy conformations far from the native conformation that were not observed when sampling with the CCD
method in Rosetta (gray) [20]: 1cyo (A), 1ede (B), 1tib (C) and 3cla (D). REU, Rosetta-energy units.
doi:10.1371/journal.pone.0063090.g006
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sampling, the torsion bin vector is constant over the course of the

trajectory, so that Q/y torsions are sampled in every step from

their respective native torsion bin. Matching lowercase identifiers

are used to denote cis v angles, so that segments with cis-prolines

will always combine the bin-dependent Q/y torsion angle values

with an v of 0. One possible caveat with torsion-restricted

sampling is that it is ‘‘blind’’ to alternative funnels if those are in

conformations with a torsion bin vector that differs from the native

one. Thus, while torsion-restricted sampling reveals whether

intensive sampling yields near-native conformations, it cannot

determine whether this is the lowest-scoring funnel in the energy

landscape.

Torsion-restricted sampling with automatic derivation of the

appropriate torsion bin vector for the native conformation is

enabled by adding -derive_torsion_string_from_native_pose -

kic_omega_sampling -allow_omega_move true to the standard

KIC command line.

Fragment Insertion Followed by Cyclic Coordinate
Descent (CCD)

Local conformational sampling by fragment insertion and CCD

was carried out as described [34], but with 5 outer cycles for

comparability to the KIC and NGK simulations in this work as

opposed to the 3 default outer cycles:

rosetta_source/bin/loopmodel.executable –database rosetta_-

database/s 1a8d_MinPacked.pdb -in:file:fullatom -loops:loop_file

1a8d.loop -loops:remodel quick_ccd -loops:refine refine_ccd -

in:file:native 1a8d_MinPacked.pdb -loops:frag_sizes 9 3 1 –

loops:frag_files 1a8dA.200.9mers 1a8dA.200.3mers none -ex1 -

ex2 -extrachi_cutoff 0 -loops:outer_cycles 5.

Fragments were generated as described in [35].

Locally Relaxed Native-like Conformations
To assess whether sampling and identification failures are more

likely to be problems with sampling or with scoring, we applied

Rosetta’s FastRelax protocol [28] within the RosettaScripts

Figure 7. Remodeling Longer Segments. Panels A–C illustrate NGK remodeling results for four selected 14–17 residue segments. (A)
Superimposition of the lowest-energy NGK model (red) onto the native structure (gray). Side chains are shown for sub-Angstrom models to illustrate
atomic reconstruction accuracy. (B, C) Rosetta energy and backbone RMSD to the native conformation from standard KIC (blue) and NGK (red)
simulations generating 2500 models. Diamonds indicate the lowest-energy model. (D) Boxplots with RMSDs of the lowest-scoring models of the KIC
(blue) and NGK (red) simulations, respectively. (E) Comparison of the percentage of sub-Angstrom models (%sA) for KIC and NGK across all 28 cases,
with specific focus on the cases that could previously only rarely or not at all be reconstructed but are now feasible targets (colors as in Figure 4).
Individual RMSDs, %sA and rank for all 28 cases can be found in Table S2.
doi:10.1371/journal.pone.0063090.g007
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framework [48] on the starting structures used for KIC and NGK

simulations. The FastRelax protocol applies iterative repacking

and minimization on the segment’s backbone Q,y and v torsion

degrees of freedom and on the side chain torsions in the entire

structure, while ramping the weight of the repulsive component of

the Lennard-Jones potential, applying uniform constraints to the

native coordinates. Five such iterations are carried out to generate

low-scoring native-like models.

rosetta_source/bin/rosetta_scripts.executable -database roset-

ta_database/ex1 -ex2 -extrachi_cutoff 0 -constrain_relax_to_s-

tart_coords -parser:protocol fastrelax_1a8d_segment.xml -s

1a8d_MinPacked.pdb.

With fastrelax_1a8d_segment.xml as follows:

,ROSETTASCRIPTS..

,TASKOPERATIONS..

,InitializeFromCommandline name = read_cmdline/..

,/TASKOPERATIONS..

,MOVERS..

,FastRelax name = fastrelax_loop task_operations = -

read_cmdline ..

,MoveMap name = mm..

,Chain number = 1 chi = 1 bb = 0/..

,Span begin = 155 end = 166 chi = 1 bb = 1/. remodeled

segment.

,/MoveMap..

,/FastRelax..

,/MOVERS..

,PROTOCOLS..

,Add mover = fastrelax_loop/..

,/PROTOCOLS..

,/ROSETTASCRIPTS..

Supporting Information

Figure S1 Clustering of Sampled Conformations Iden-
tifies sub-Angstrom Conformations Contained in the
Largest Cluster. Applying the Rosetta clustering application

[25] with a cluster radius of 1 Å on the remodeled segment yields

four clusters with at least 30 models. The largest of those clusters

(red) contains many sub-Angstrom conformations, which were

considerably enriched by Rama2b sampling. (A) Energy-vs-

RMSD plot from Rama2b sampling as in Fig. 2C, colored by

cluster. (B) The lowest-scoring model from each cluster. Colors as

in (A).

(PDF)

Figure S2 RMSD and percentage of sub-Angstrom
conformations with fixed Ca bond angles. (A) RMSDs

observed for standard KIC (blue, as in Fig. 3), KIC with fixed Ca
bond angles (green), NGK (red, as in Fig. 3) and NGK with fixed

bond angles (orange). Boxplots show minimum and maximum

among the lowest-scoring RMSDs across the benchmark set (error

bars), the 25th and 75th percentile (box boundaries) as well as the

median (thick line). (B) Barplots of median percentage of sub-

Angstrom models. Colors as in (A).

(PDF)

Table S1 RMSDs for the 12-residue Benchmark Set and
Analysis of Scoring/Sampling Failures. PDB identifiers,

loop boundaries, RMSD of the lowest-energy model for standard

KIC, CCD and NGK, respectively, bond angle outliers as

determined by MolProbity [30] and, in the case of sampling

failures or identification failures, an indication for whether the

native like-relaxed model scores lower than the lowest-energy

NGK model generated in our simulations (‘‘energy gap’’).

(XLSX)

Table S2 Details for Long Remodeled Segments. PDB

identifiers, loop boundaries, percentage of sub-Angstrom models

(%sA) and rank of the lowest-energy model for the 28 long

segments remodeled in this work for standard KIC, torsion-

restricted sampling and next-generation KIC (NGK) simulations.

For KIC and NGK, the RMSD of the lowest-scoring model is also

provided. 2500 models were generated with standard KIC and

NGK, 500 with torsion-restricted sampling.

(XLSX)

Dataset S1 Protocol Capture. The protocol capture de-

scribes all command line options required for running NGK, as

well as example input and output files.

(GZ)
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