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Abstract

Background: Visual to auditory conversion systems have been in existence for several decades. Besides being among the
front runners in providing visual capabilities to blind users, the auditory cues generated from image sonification systems are
still easier to learn and adapt to compared to other similar techniques. Other advantages include low cost, easy
customizability, and universality. However, every system developed so far has its own set of strengths and weaknesses. In
order to improve these systems further, we propose an automated and quantitative method to measure the performance of
such systems. With these quantitative measurements, it is possible to gauge the relative strengths and weaknesses of
different systems and rank the systems accordingly.

Methodology: Performance is measured by both the interpretability and also the information preservation of visual to
auditory conversions. Interpretability is measured by computing the correlation of inter image distance (IID) and inter sound
distance (ISD) whereas the information preservation is computed by applying Information Theory to measure the entropy of
both visual and corresponding auditory signals. These measurements provide a basis and some insights on how the systems
work.

Conclusions:With an automated interpretability measure as a standard, more image sonification systems can be developed,
compared, and then improved. Even though the measure does not test systems as thoroughly as carefully designed
psychological experiments, a quantitative measurement like the one proposed here can compare systems to a certain
degree without incurring much cost. Underlying this research is the hope that a major breakthrough in image sonification
systems will allow blind users to cost effectively regain enough visual functions to allow them to lead secure and productive
lives.
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Introduction

The technology of sensory substitution has a relatively long

history of successfully assisting humans with sensory disabilities. A

sight-impaired person can recover some visual functionality by

learning how to interpret the information relayed by sensory

substitution systems. Probably the most successful system in the

field of sensory substitution is Braille [1] where the blind can learn

how to read through touch. Since then, the field of visual sensory

substitution has grown significantly. Many have tried to manip-

ulate haptic devices in order to convey more information to users,

e.g.: vibrating devices to indicate obstacles [2], force feedback for

the representation of virtual fences [3] and shape visualization

through 3D tactile displays [4].

According to the World Health Organization (WHO) [5], there

are 285 million people who are visually impaired worldwide with

39 million completely blind. These facts have become the main

driving force behind our research (i.e. Luminophonics [6]), where

the main aim is to further develop and improve the technology of

visual to auditory substitution. In visual to auditory substitution, or

image sonification as it is also known, visual information is

converted into interpretable sound patterns [7]. Visual to auditory

conversion systems are still relevant regardless of technologically

advanced techniques such as retinal implants, which are still

currently being developed. By applying this method, the blind can

partially reconstruct the visual world by interpreting audible

soundscapes. Cross-modality conversion between the visual and

audio domains has been an active area of scientific research and

various multimedia applications [8] attest to this. Examples

include vOICe [9], Raster scanning method [8], Hue Music

[10], teaching the blind to play video games [11] and recently

from our research, Swiping with Luminophonics [6]. As more and

more systems are developed, new measurement methods need to

be developed in order to evaluate and compare system perfor-

mances. In the past, there have been several attempts at

categorizing and measuring travel aid systems for the blind,

including a survey conducted by Dakopoulos and Bourbakis [12].

In spite of this history, there still seems to be no generally accepted

standard for performance measurement and comparison.
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The lack of universal performance measurements is a concern,

especially with the increasing similarity of the systems being

invented. As more systems are created, so are different kinds of

tests created along with them. There are several problems with

these tests. Most importantly these tests are crafted individually to

evaluate the features of the system. With these tests, we can know

the advantages and disadvantages of the system. For example,

SeeColOr invented by Deville et al is very good especially in

object manipulation and human navigation [13]. The authors

proposed to test their system by introducing experiments that

measured how users interacted with the system. It is easy to

evaluate the system from the reported experiments but it is not

possible to compare it with other systems. There is currently no

common experimental method that has been or can be used for all

systems.

Although we could in principle compare systems from the

results of the above experiments by running the same tests on

other systems, but the comparison would not be fair as most of the

experiments are specifically catered for SeeColOr’s features. As

such, if we would like to compare SeeColOr with the Raster

Scanning method by YeoBerger [8], the results would be skewed

as the method developed by YeoBerger and SeeColOr do not

share a common set of features. E.g. the Raster Scanning method

does not support colour features as proposed by SeeColOr. Our

group has developed several prototypes based on several different

ideas. After conducting several tests, we found that it is hard for us

to evaluate the prototypes internally based on the above

mentioned experiments. As the prototypes have unique charac-

teristics of their own, some of the tests using human subjects need

to be prototype specific. In order to improve the image sonification

technique, essentially we need to compare the systems. It is

important to make comparisons between systems in order to

identify their strengths and weaknesses. Without a standardized

performance measurement, it is hard to rank the systems fairly

only based on the results of human test subjects.

Another example of psychological experimentation for assessing

the performance of sensory substitution systems comes from a

team from University of Trier [14], who developed experiments to

evaluate the effectiveness of their system on representing colour

perception. Proulx MJ and team [15] have also conducted

psychological experimentation to examine the effect of learning

when using these systems. They have proved that psychological

experimentation provides more intrinsic data that can be

interpreted (i.e. learning effect and human reactions towards the

systems). Although psychological experimentation is ultimately

indispensable when evaluating the performance of a system, and

would always have to be done, eventually, before deploying the

system, it is still a very costly approach (in terms of time and

money) for the early exploratory phase of a project. A more

suitable approach for the testing, evaluation and filtering of

prototypes at the early developmental stage, would have to rely on

some kind of mathematical measurement of the conversion

process. If this measurement were to moreover avoid certain

biases, it could even be instrumental as a universal method for

comparing systems. Although it would never replace psychological

experimentation, it would allow for cheap and effective prototype

exploration and would add some objectivity to the comparison of

systems. In this paper, we are proposing a performance

measurement that addresses two main issues: information preser-

vation (i.e. How much visual information is preserved in

soundscapes?) and interpretability (i.e. How feasible is it for a

human user to interpret, or learn how to interpret, the generated

soundscapes?).

Results

Figure 1 to 4 show the Inter Image Distance (IID)/Inter Sound

Distance (ISD) correlation for each system while Table 1 shows the

correlation value for each individual system. From the results,

Prototype 1 (Table 1) and Prototype 2 (Table 2) have better

correlation values compared to Prototype 3 and vOICe. The

lowest correlation between Inter Image Distances and Inter Sound

Distances belongs to vOICe, i.e.: 0.164991. Both Prototype 3 and

vOICe have low correlations probably because they both

approach the conversion process with a similar segmentation

method whereby the images went through pixelation before being

converted into soundscapes.

As already mentioned, visual to auditory conversions entail

dimensionality reduction and therefore information loss is

unavoidable. From Table 2, we can see that the conversion

process loses about half of the information contained in input

images. Our results show that vOICe loses the largest amount of

information, which is most likely to be a consequence of it not

encoding colour information.

Table 3 summarizes the performance of the systems by ranking

them based on the correlation and information preservation.

Information preservation and the correlation between IID and

ISD are the two main measurement tools presented in this article.

We believe that it is better to use both tools rather than one in

isolation, because they address different aspects of the quality of

the conversion process (information preservation and putative

interpretability). As our results show both measurements rank

systems differently, and therefore a combined ranking is likely to

be more useful.

Discussion

In this article, we proposed tools to measure the information

preservation and correlation of inter image distances and inter

sound distances. These tools are a step towards the accurate and

automated prediction of the effectiveness of image sonification

systems when adopted by human subjects. These measurements

can still be extended and improved. Other measurements relevant

to the above mentioned prediction goal should be developed, e.g.:

measures of the naturalness of generated soundscapes and

estimates of the learning complexity of different conversion

processes.

One interesting consequence of having automated and reliable

predictors of image sonification performance in human subjects is

that we can develop new systems via optimization. If we

parameterize image sonification systems in a flexible way (e.g.

attentional dynamics, feature extraction steps, etc.), then we can

construct cost functions based on the performance predictors (e.g.

information preservation and IID/ISD correlation), and run

optimization methods (e.g. global stochastic optimization), until we

find solutions that maximize performance. Because of the large

solution space that can be explored in this cheap and efficient

manner we expect very interesting and effective solutions to

emerge from this approach.

In the interests of improving the IID/ISD measure it would be

useful to conduct a systematic study of what similarity measures

are more adequate from the human perceptual point of view. In

particular it would be interesting to use human measurements of

image or sound similarity and relate these results to automated

similarity measures. In this context it would also be pertinent to

further investigate the relative suitability of different pre-processing

and feature extraction methods.

Measuring Visual to Auditory Conversion System
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Figure 1. Correlation of Prototype 1. Scatter plot that shows correlation between Inter Image Distance and Inter Sound Distance for Prototype 1.
doi:10.1371/journal.pone.0063042.g001

Figure 2. Correlation of Prototype 2. Scatter plot that shows correlation between Inter Image Distance and Inter Sound Distance for Prototype 2.
doi:10.1371/journal.pone.0063042.g002
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Figure 3. Correlation of Prototype 3. Scatter plot that shows correlation between Inter Image Distance and Inter Sound Distance for Prototype 3.
doi:10.1371/journal.pone.0063042.g003

Figure 4. Correlation of vOICe. Scatter plot that shows correlation between Inter Image Distance and Inter Sound Distance for vOICe.
doi:10.1371/journal.pone.0063042.g004
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Conclusions
The performance measures proposed in this paper are general

enough to be suitable for most if not all types of image sonification

systems. At their core (if we ignore pre-processing and feature

extraction) the measures make no assumptions about the systems

and therefore constitute a step towards a fair and efficient means of

comparison between systems.

If automated measurements can be applied to rank systems, this

will make system testing cheaper (time and money) which will

increase the number of proposed systems, and will allow for fair

comparisons, which will expedite scientific understanding and help

coordinate the research conducted by different groups, which

finally will increase the number of technology choices available to

the visually impaired. The performance measurements proposed

in this article not only serve to measure the effectiveness of existing

systems but also serve as a guideline for the improvement of future

systems. Even though the metrics proposed can’t be as detailed as

the psychological experiments custom built for individual systems,

they provide essential information pertaining to the characteristics

of image sonification systems.

Materials and Methods

Measuring Interpretability
Based on the results from users tested on our prototypes, it was

noted that the quality of soundscapes is significantly better with a

set of distinctive timbres. To select the most distinctive set of

timbres, we decided to measure the inter-soundscape differences

between timbres in our library. By generating a distinctive sound

signature for each timbre and measuring the differences between

these signatures, we could map the differences between all timbres.

As already hinted at, this approach became an instrumental

stepping stone towards developing a method for measuring

interpretability (i.e. correlation between inter image and inter

sound distance).

Inter image distance (IID) is the similarity metric between two

images. Similarly, inter sound distance (ISD) measures the

similarity between two soundscapes. Measuring the relationship

between IID and ISD started from the idea of timbre selection.

During the process of measuring the distance between audio

signals, we found out that there was a strong connection between

input image distances and the distances between corresponding

output soundscapes and the interpretability of soundscapes. More

intuitively, if the soundscapes generated by a system are to have

the property of interpretability, then if two images are similar then

their corresponding soundscapes should be similar, and conversely

if two images are different then their corresponding soundscapes

should be different. This property can be easily captured by a

correlation measure. This work hypothesizes that the correlation

between IIDs and corresponding ISDs, measures to a significant

degree the interpretability of the soundscapes generated by image

sonification systems.

Research into image similarity measures has been very active in

recent decades. With the rise of the Internet, data generated by

users has grown exponentially. As a result, search engines continue

to develop algorithms for the efficient and accurate retrieval of

data. One example of this advancement is the ability to search for

images using other images. Partly as a consequence of this a

significant number of image similarity measures are being

developed and applied for image retrieval purposes.

Although there are several readily available algorithms to

choose from, we chose to work with the Earth Mover’s Distance

which was first proposed by Peleg, Werman and Rom [16]. The

Earth Mover’s Distance (EMD) describes the minimum cost to

change a probability distribution to another probability distribu-

tion. In our case, a representation scheme was created based on a

pair of probability distributions for both images. EMD measures

the lowest cost to transform image A to image B with the

representation scheme.

In our work, we use an advanced form of EMD for image

retrieval by Rubner, Tomasi and Guibas [17]. Instead of using

probability distributions, vector quantization is used as the basic

representation scheme. This improves the result by taking into

account perceptual similarity. Because of this, the approach is well

suited for applications that involve colour and texture information.

Another reason why Earth Mover’s Distance (EMD) is used for

calculating inter image distance is because EMD can be used for

calculating the differences between two audio signals. By using the

same algorithm for calculating both input (image) differences and

output (soundscape) differences, we save on the need of

normalizing the results so that they are suitable for each other.

The task of computing inter sound distance between two

soundscapes was completed using an existing MATLAB Toolbox

to compute music similarity from audio by E.Pampalk [18].

Soundscapes were converted into Mel Frequency Cepstrum

Coefficients (MFCC) before using the EMD measurement. MFCC

is very important and popular in the domain of sound analysis

especially speech processing. MFCC consists of a group of

coefficients formed by Mel Frequency Cepstrum (MFC) which is

a representation of the sound spectrum on a non-linear mel scale

frequency. Most importantly, MFCC records the features of the

soundscapes while EMD can compute the distance between two

Table 1. Pearson Correlation of IID & ISD.

Pearson Correlation Value

Prototype 1 0.52087

Prototype 2 0.454596

Prototype 3 0.214192

vOICe 0.164991

doi:10.1371/journal.pone.0063042.t001

Table 2. Average Information Lost During Conversion.

Average Information Lost (%)

Prototype 1 49.359

Prototype 2 51.03441

Prototype 3 45.34453

vOICe 57.55295

doi:10.1371/journal.pone.0063042.t002

Table 3. Ranking of the Systems.

Systems Correlation Information Preservation

Prototype 1 1 2

Prototype 2 2 3

Prototype 3 3 1

vOICe 4 4

doi:10.1371/journal.pone.0063042.t003
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soundscapes through the features in MFCC.

After getting both IIDs and ISDs, a graph can be plotted to

show the correlation between the IID and ISD. We proposed to

use Pearson Correlation to measure the correlation between IID

and ISD with the formula as shown below:-

r~

Pn

i~1

(Xi{ �XX )(Yi{ �YY )

(n{1)SXSY

ð1Þ

As already mentioned, we hypothesize that the higher the

correlation between IIDs and ISDs is, the more interpretable are

the soundscapes generated by a particular system. In other words,

we expect that a good image sonification system (i.e. that allows

easy interpretation of soundscapes) will exhibit a relatively large

IID/ISD correlation.

Measuring Information Preservation
Converting information from a visual to an auditory form is a

process of information reduction. During the conversion, infor-

mation is lost primarily through dimensional reduction (i.e.

conversion of a 2D signal into 1D signal). The degradation of

information can be represented by calculating the difference

between the entropy of input images and the entropy of

corresponding output soundscapes. For the blind to make sense

of the soundscapes generated, a sufficient amount of visual

information must be preserved in soundscapes.

Najjar suggested in his article Multimedia and Learning [19]

that spatial and recognition information are better represented

with pictures. The amount of information contained inside a

picture allows very rich cognitive encoding that allows high

recognition rates. Similarly, Stoneman and Brody [20] found out

that children subjected to visual or audiovisual commercial

presentations could recognize advertised products more effectively

than children subjected only to audio presentations.

In order to make use of the spatial information encoded in an

auditory signal, blind individuals need to reconstruct mental

images from listening to the soundscapes. For the image

sonification to be effective, the reconstructed mental image needs

to be sufficiently similar to the real image. Ultimately, although the

soundscapes generated by image sonification have gone through

severe information reduction, certain aspects of the visual signal

such as spatial information need to be retained. Over time, users

can learn how to reconstruct the spatial information embedded in

soundscapes.

The amount of information preserved needs to be moderately

controlled. In most cases, the more visual information that is

preserved in soundscapes, the better. With more information,

there are more features that can be interpreted by users. For

example, if we preserve enough information the user might be able

to interpret spatial relationships, shape, colour, shade, texture,

motion and so on. However, an excessive amount of information

encoded in soundscapes may lead to overwhelming and/or

confusing the user.

One of the setbacks of excessive information pertains to

difficulties in system adoption. The more visual features are

converted into auditory features, the more information needs to be

interpreted. This can lead to the problem of cacophony (i.e.

confusing mixture of sounds). Moreover, as the number of visual

features increases, so does the challenge of finding suitable

auditory features to map onto (e.g. what types of sounds should

represent which features). As a result, for systems with excessive

information, there is a huge learning curve required from users

before they can use the system in their daily routines. New users

will tend to avoid using the system if it is hard to learn.

On the other hand, systems might lose some of their usefulness if

they do not preserve the right amount and type of visual

information. For instance, vOICe [9] only encodes grayscale

pixels into sound frequency. As a result, it loses colour information

during the conversion process, when there might be many

situations where colour is essential for decision making.

In conclusion, information preservation needs to strike a

balance between sufficiency (too little leads to debilitated decision

making) and excessiveness (too much leads to cacophony).

A rough measure of information preservation can be obtained

by estimating the ‘‘quantity of information’’ of images and

corresponding soundscapes and then calculating the difference

between these quantities. For this purpose we make use of a

common measure in information theory introduced by Shannon

C.E. which is entropy [21]. Entropy is used to measure the

unpredictability and uncertainty of a random variable [22]. The

easier the variable is to predict, the lower its entropy is. In this

case, an assumption is made so that entropy is directly related to

the information contained/encoded within the signal. The basic

equation for entropy is:-

H(X )~{
XN{1

i~0

pi log2 pi ð2Þ

By computing the entropy of input images and corresponding

soundscapes, we get pairs of values that overall represent the

information preservation capabilities of particular image sonifica-

tion algorithms. Because of the dimensionality reduction aspect of

the conversion process, the entropy of a soundscape should

generally be lower than its image counterpart. Averaging the

differences for every matching input (image) and output

(soundscape) entropy, we can obtain the relative effectiveness of

a system in terms of information preservation. The lower the

difference between the entropy of the output and its input, the

higher the ability of the system in retaining information during the

conversion process. The results of this calculation on several

prototypes and an external image sonification system are included

and explained in detail in a later section. With this method as a

measurement standard, the means for comparing systems in terms

of information preservation are made possible.

Prototypes
The automated measurements as already mentioned were

applied to four different systems. The systems include three

prototypes from our Luminophonics research and one external

system which is vOICe by PBL Meijer [9]. One advantage of this

selection is that all of the systems are significantly different from

each other. More importantly, the whole conversion process of

these systems is well understood. Before we can examine our

proposed metrics in the context of the mentioned prototypes, we

need to have a clear understanding of how the latter work.

The first Luminophonics prototype is based on swiping as

presented in [6]. This was our first attempt to represent colour

information via different timbres. Image shapes and objects are

converted into segmented blobs. By swiping down from top to

bottom, a combination of sounds (with different timbres) is

generated. The soundscape produced captures not only colour

information but also the vertical position and size of every blob in

the image.

Measuring Visual to Auditory Conversion System
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The second Luminophonics prototype is a slight departure from

the first prototype. Both prototypes include the colour information

of blobs, but the swiping method is slightly different in the second

case. In the second prototype swiping is also done from top to

bottom but different ‘‘attentional fields’’ are provided for the left

and right sides of the image. These attentional fields are mapped

to the left and right sound channels producing a stereo sound effect

capable of providing horizontal positional information. In other

words, the horizontal location of blobs is represented using

differential volumes in the left/right sound channels. If the blob is

situated closer to the middle, the sound of the blob can be heard in

both of sound channels with approximately equal volume.

Whereas if the blob is situated further to the right side, the sound

of the blob can be heard mostly from the right sound channel, and

conversely for a blob located mostly on the left side. Prototype 2

makes use of the stereo sound properties of soundscapes to provide

information on horizontal positioning.

The third prototype is a combination between the first

prototype and traditional frequency-based image sonification

methods. Detailed experimentation with the first two prototypes

revealed they performed modestly when situations demanded

more detailed feature information. This modest performance is

due to the blobbing techniques used in both prototypes. Because of

this, prototype 3 eliminated the blobbing technique and focused

on raw pixels of scaled-down images. Prototype 3 generates a

sound from each pixel by swiping from left to right and matching

colours to timbres (as with the previous prototypes).

The only external conversion system included in our test was

vOICe by PBL Meijer [9]. This approach is simple yet efficient in

conveying visual information in the form of soundscapes. Basically,

image pixels are converted into different sound frequencies based

on their intensity. The sounds generated are then played from left

to right (column by column). Although there are other differences,

the major distinction between the Luminophonics prototypes and

vOICe is that the latter does not consider colour information.
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