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Abstract

Recently, a combination of non-invasive neuroimaging techniques and graph theoretical approaches has provided a unique
opportunity for understanding the patterns of the structural and functional connectivity of the human brain (referred to as
the human brain connectome). Currently, there is a very large amount of brain imaging data that have been collected, and
there are very high requirements for the computational capabilities that are used in high-resolution connectome research.
In this paper, we propose a hybrid CPU-GPU framework to accelerate the computation of the human brain connectome. We
applied this framework to a publicly available resting-state functional MRI dataset from 197 participants. For each subject,
we first computed Pearson’s Correlation coefficient between any pairs of the time series of gray-matter voxels, and then we
constructed unweighted undirected brain networks with 58 k nodes and a sparsity range from 0.02% to 0.17%. Next,
graphic properties of the functional brain networks were quantified, analyzed and compared with those of 15
corresponding random networks. With our proposed accelerating framework, the above process for each network cost
80,150 minutes, depending on the network sparsity. Further analyses revealed that high-resolution functional brain
networks have efficient small-world properties, significant modular structure, a power law degree distribution and highly
connected nodes in the medial frontal and parietal cortical regions. These results are largely compatible with previous
human brain network studies. Taken together, our proposed framework can substantially enhance the applicability and
efficacy of high-resolution (voxel-based) brain network analysis, and have the potential to accelerate the mapping of the
human brain connectome in normal and disease states.
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Introduction

In recent years, increasing attention has been paid to the

structural and functional connectivity patterns of the human brain,

i.e., the human connectome [1]. An important and promising way

to study the human connectome is to combine non-invasive

neuroimaging techniques (e.g., structural MRI, functional MRI,

and diffusion MRI) and graph theoretical approaches (for reviews,

see [2–5]). Under this framework, the brain is modeled as a

complex network that contains a large quantity of nodes and

connections. The brain nodes are usually defined by imaging

voxels or regions of interest (ROIs); the brain edges are defined by

measuring the structural or functional association between the

nodes based on neuroimaging data. Once the brain networks are

constructed, various graph-based metrics can be used to measure

the underlying topological properties of the networks, such as

small-worldness, network efficiency, modules, and hubs. To date,

graph theoretical analysis of neuroimaging data has been widely

used to study the topological architecture of the human brain

connectome in normal adults [6–13], during development [14–18]

and throughout the aging process[6,19–22]. Moreover, these

methods have also been used to reveal topological alterations of

neurological and psychiatric diseases such as Alzheimer’s disease

[23–25], schizophrenia [26–28], and depression [29].

In spite of these advances, there are many unresolved issues in

the human brain connectome field. One such issue is the required

high computational capability that results from the following

factors. 1) Network size. The size of the brain networks keeps

increasing with the spatial resolution of the imaging techniques.

This increase leads to an almost unacceptable running time for the

construction and analysis of voxel-based brain networks (the order

of 104 nodes) on a single CPU because the running time of most

graph theoretic algorithms increases super-linearly with the

network size. 2) Datasets. The increasing number and size of

datasets are generated in the community, for example, from the

1000 Functional Connectomes Project (www.nitrc.org/projects/

fcon_1000/). The increase in the number of subjects is important

for the statistical power of the analysis results but leads to an

increase in the running time. 3) Repeated experiments. To

investigate the effects of the empirical parameters (e.g., network
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thresholding) and the preprocessing steps (e.g., global signal

removal and head motion) on the network analysis results, brain

network construction and analysis processes are usually performed

many times. 4) Random network calculation. Some topological

parameters (e.g., small-world and modular analysis) involve the

characterization of many matched random networks, which

requires extra computation. All of these factors lead to the

computational intractability of high-resolution brain network

analysis.

Given the limitations of the available computational power,

several compromises have been widely used in human connectome

studies. For example, a number of researchers have employed a

small number of ROIs to define the network nodes [8–30] or have

down-sampled the imaging data into a coarse level [7,31,32].

Obviously, ROI-based networks are quite sensitive to the choice of

brain parcellation, which raises an extra issue for the ROI

definition [28,33]. Moreover, this type of low-resolution networks

also leads to the loss of some important connectivity information

[34], especially for regions that contain multiple sub-divisions (e.g.,

precuneus [35]). Notably, voxel-based networks have the highest

resolution and have naturally-defined brain nodes (i.e., voxels)

and, therefore, can overcome the above limitations of ROI-based

networks. However, voxel-based network analysis requires a very

large computing capability because of having a very large network

size (approximately 58 K). Thus far, very few studies have used

voxel-level brain networks; these studies mainly focused on graph

theoretical metrics that had a lower computational complexity

(e.g., nodal degree) [7,36,37]. The graph theoretic properties that

had high computational loads (e.g., small-worldness, modular

structure and network efficiency) are rarely studied in high-

resolution voxel-based brain networks.

Recent advances in Graphics Processing Units (GPUs) provide a

promising solution to the above-mentioned difficulties. GPUs were

originally intended for the fast manipulation and display of

graphics. Graphics processing has three key characteristics [38]: a

large amount of parallelism, little data reuse, and a high

computation-to-memory access ratio. Therefore, GPUs are

designed with a many-core architecture that favors massively

data-parallel computing but that has a small cache and simple flow

control. At the turn of this century, researchers proposed that

GPUs could also be applied to a broad range of general-purpose

applications other than graphics processing. Over the past decade,

GPUs have proven to be useful in many general-purpose

computing fields, such as scientific computation, video coding

and encoding and pattern recognition. Many graph theoretical

algorithms can benefit from GPU acceleration because of the high

degree of parallelism in these algorithms. Nevertheless, these facts

do not imply that GPUs always outperform CPUs in network

analysis. For example, a GPU is less efficient than a CPU when

calculating the clustering coefficients and the characteristic path

length for some sparse graphs. Therefore, it is desirable to

combine CPUs and GPUs to obtain better performance.

In this study, we proposed a heterogeneous platform comprising

multi-core CPUs and GPUs to accelerate the graph theoretical

algorithms that are used in high-resolution (voxel-based) functional

brain network analysis. The acceleration framework mainly

included the construction of voxel-based brain networks and

graph-theory analysis. To test our platform, we obtained a set of

high-resolution functional brain networks with ,58 K nodes and

a sparsity range from 0.023% to 0.151%. We then analyzed a

variety of global (e.g., clustering coefficient, shortest path length,

small-worldness, efficiency and modules) and regional (e.g., nodal

degree) network characteristics and compared them with the

average metrics of 15 random networks. The entire process for one

network was completed in 80,150 minutes, depending on the

network sparsity.

GPU Programming Model and Architecture
In this section, we briefly introduce the CUDA programming

model for GPUs and the hybrid CPU-GPU hardware platform

(illustrated in Fig. 1). When introducing the GPU architecture, we

take NVIDIA Geforce GTX 580 GPU as an example.

CUDA (Computing Unified Device Architecture) is a parallel

computing platform and programming model created by NVI-

DIA; it leverages the parallel compute engine in NVIDIA GPUs to

solve many complex computational problems in a more efficient

way than on a CPU (www.nvidia.com/object/cuda_home_new.

html). A typical GPU program includes three main steps: copying

data from CPU memory to GPU memory, GPU kernel

executions, and reading data back from GPU memory to CPU

memory. A kernel, representing a function running on a GPU, is

executed by a number of threads. The thread hierarchy - threads

are grouped into blocks, and blocks are organized into a grid -

enables efficient cooperation between threads and a hierarchical

mechanism of memory access. For example, threads within the

same block can share data through shared memory with low

latency and can synchronize their execution, while all of the

threads have their own register, and share the global memory.

Threads within a thread-block can be identified using thread

indices (called threadIdx).

A GPU consists of an array of Streaming Multiprocessors

(SMs,16 SMs for GTX 580), each executing one or more block(s)

concurrently. In a Streaming Multiprocessor, there are a number of

processing units (32 processing units for GTX 580), each executing

several threads concurrently. The Streaming Multiprocessors schedule

threads in an SIMD-manner (Single Instruction Multiple Data).

An on-chip local memory or shared memory, enabling local data shares,

and a register file are available on each of the Streaming

Multiprocessors. Using registers and local memory or shared

memory is typically an order of magnitude faster than accessing

global memory, which is one order of magnitude faster again than

accessing CPU memory. (CUDA Programming Guide from

http://developer.nvidia.com/).

With far more processing cores than CPUs, GPUs possess much

higher computational capability and also higher memory band-

width. However, even for an algorithm with considerable

parallelism, it is not always easy to achieve the full potential of a

GPU. A series of modifications must be made to adapt the

algorithms to the specific GPU architecture. Usually, two

considerations are crucial to the performance: 1) a sufficient

number of concurrent threads must be invoked to fully utilize the

numerous cores on the GPU; 2) the accesses must be minimized to

slow the memory and to use fast memory when possible.

Materials and Methods

Data Acquisition and Preprocessing
The dataset was downloaded from the 1000 Functional

Connectomes Project (www.nitrc.org/projects/fcon_1000/),

which is a worldwide multi-site project with fMRI data sharing

for the imaging community. The dataset we used was from Dr.

Yu-Feng Zang, Beijing. The resting-state images were acquired

from 198 healthy right-handed volunteers, comprising 76 males

and 122 females, age 21.263.3 years (ranging from 18 to 26 years

old). We excluded one subject’s data because of an orienting error

during scanning. Each participant signed a written informed

consent before the scanning. The study was approved by the

Hybrid Accelerated Framework for Brain Connectome
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Institutional Review Board of the Beijing Normal University

Imaging Center for Brain Research.

The acquisition was performed on a Siemens 3 T scanner. For

each participant, functional images were scanned using the

following parameters: time points = 225, repetition

time = 2000 ms, echo time = 30 ms, in-plane resolu-

tion = 3.125 mm63.125 mm, slice thickness = 3 mm, number of

slices = 33, section gap = 0.6 mm, flip angle = 90u, and field of

view = 200 mm6200 mm. The participants were instructed to close

their eyes and stay awake during the scanning.

All of the image preprocessing was conducted using DPARSF

[39] and SPM5 (www.fil.ion.ucl.ac.uk/spm/). The first 10 volumes

on each participant were removed because of signal equilibrium

and to allow the participants’ adaptation to the scanning noise.

The following preprocessing steps included slice timing, realign-

ment, normalization into standard MNI space with EPI as a

template and resampled to voxel size 3 mm63 mm63 mm, detrend,

and a band-pass filtering from 0.01 to 0.08 Hz. Furthermore,

several frequently used noise reduction strategies were utilized,

including the regression of white matter (WM), cerebrospinal fluid

(CSF), global mean signal time courses, and head-motion profiles.

To restrict subsequent functional analysis within gray matter

tissues, we generated a gray matter mask as follows. First, we

resampled the gray matter tissue probability map provided by

SPM5 into 3 mm63 mm63 mm resolution. Then we binarized the

resampled probability map by a threshold of 0.2, which resulted in

a gray matter mask of 58523 voxels.

The Proposed Hybrid CPU-GPU Framework
Our proposed CPU-GPU framework comprises two main parts:

network construction and network analysis (for the work flow, see

Fig. 2). The inputs of our system were the pre-processed fMRI

data in NIfTI format of each subject. In the network construction,

the first step was to calculate Pearson’s Correlation [40]

coefficients for every pair of voxels, to obtain a correlation matrix

for each subject. These correlation matrices were then ‘‘binarized’’

(details presented in the section on Network construction) into

Boolean adjacency matrices. In the network analysis, we computed

several graphic characteristics, including the nodal degree, the

clustering coefficient, the characteristic path length, the global

efficiency and the modular structure. The definition of these

network characteristics can be found in many studies [33,41].

Pearson’s Correlation, modular detection and APSP were

accelerated with GPUs, and the other processes were accelerated

with multi-core CPUs (Fig. 2). For the CPU programs, we used an

Intel(R) Core(TM) i7-3770 quad-core CPU @ 3.4 GHz with

32 GB RAM. For the GPU programs, we used the NVIDIA

Geforce GTX 580, with the CUDA Toolkit v4.2 and the GPU

computing SDK v4.2 (http://developer.nvidia.com/cuda/cuda-

downloads). The operating system was Windows 7.

Network Construction
1) Pearson’s Correlation. For the voxel pair (vi, vj),

Pearson’s correlation [40] between the time series of the pair is

defined as follows:

r̂ri,j~

P
(vi{�vvi)(vj{�vvj)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

(vi{�vvi)
2P (vj{�vvj)

2
q

where column vector vi denoted the time series of voxel i, was the

average of the series of voxel i, and all of the S symbols denotedPL{1
t~0 , i.e., summing along the whole time series (L was the length

of the time series). First, we normalized the fMRI time series,

ui~
vi{�vvi

Dvi{�vvi D
, U = (u1, u2, …, uN) was the aggregate of the

normalized time series. The whole pair-wise correlation matrix

for the N voxels was computed by a matrix multiplication

R = UTU. Matrix multiplication is very efficient on a GPU, e.g.,

645 Gflop/s (Giga floating-point operations per second) on the

NVIDIA Fermi GPUs (e.g., the Geforce GTX 580) [42]. Because

the sizes of the voxel-based brain networks were very large, the

correlation matrix R sometimes exceeded the GPU memory. To

address this problem, we divided the matrix U into m blocks, using

a preset block size (e.g., 307263072) U = (U1, U2, …,Um), which

implies that

Figure 1. CPU-GPU hybrid hardware platform. The communication between the host (CPU) and device (GPU) is through a PCI-e bus.
doi:10.1371/journal.pone.0062789.g001
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In this way, our platform could handle networks of any size and

was not limited by the graphic memory. One block is calculated

each time. Once a block was transferred back to the CPU, the

GPU started calculating the next block. Considering the symmetry

of the correlation matrix, only the upper half of the matrix must be

calculated.

2) Adjacency matrix construction. The aim of this study is

to illustrate the contribution of many-core computing systems

(GPUs) to voxel-based brain network analysis. Instead of

investigating the discrepancy between subjects, we focused on

the brain network properties that people have in common. Thus,

we averaged the correlation matrices of the 197 subjects. Then, we

used a set of thresholds r̂r to binarize the mean correlation matrix

to obtain a set of sparse, unweighted networks, or adjacency

matrices. Specifically,

Aij~
1,if Rij§r̂r

0,if Rijvr̂r

�

where A was the adjacency matrix and R was the mean correlation

matrix. The range of thresholds controlled the sparsity of the

network S to satisfy S1, S,S2. The lower bound S1 was

determined by the average degree. To maintain estimable small

world properties of the network, the average degree k should satisfy

k.log(N), where N was the number of voxels in the network, and

in this case, N is 58523. Therefore, S1 could be calculated as

S1~
N: log (N)

N:(N{1)

The upper bound S2 was determined by the threshold r̂r, which

corresponds to the significance level of 0.05 (Bonferroni-correct-

ed). From the calculation, S1 and S2 were 0.019% and 0.174%,

respectively, and the corresponding threshold r̂r ranged from 0.43

to 0.73. For convenience, we chose the following six thresholds,

0.45, 0.5, 0.55, 0.6, 0.65, and 0.7, and thus obtained unweighted

networks with corresponding sparsities of 0.151%, 0.098%,

0.067%, 0.047%, 0.033%, and 0.023%.

Figure 2. The work flow of the proposed framework. There are four steps: data acquisition, image preprocessing, network construction and
network analysis. We accelerate the latter two steps (shown in detail in the two blocks at the bottom). In network construction, correlation matrices
for each subject are obtained by calculating Pearson’s Correlation coefficients. These correlation matrices are then ‘‘binarized’’ into adjacency
matrices. In network analysis, several characteristics are calculated. Procedures denoted in green (i.e., Pearson’s Correlation, Partition and APSP) are
accelerated with the GPU. Other procedures are implemented with multi-threads on a multi-core CPU.
doi:10.1371/journal.pone.0062789.g002
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Network Analysis
Here, we calculated the nodal degree, and the clustering

coefficient (Cp), the characteristic path length (Lp) for the

unweighted brain networks. These characteristics reveal interest-

ing properties of functional brain networks such as the small-world

property and the degree distribution. Notably, Lp relies on the

results of All-Pairs Shortest Path (APSP), one of the most time-

consuming steps in voxel-based brain network analysis. We

specifically introduce the acceleration for APSP into the section

on Network Analysis, in which different APSP algorithms were

adopted for networks of different sizes and sparsities. Another

time-consuming step in brain network analysis is modular

detection. Our GPU acceleration for modular detection is

presented in the section on Network Analysis.

1) All-pairs shortest paths calculation. There are two

main classes of APSP algorithms. One class is Johnson’s

algorithm [43], which is based on single-source shortest path

algorithms, such as the Dijkstra algorithm [44] and the

Bellman-Ford algorithm [45]. When applied to unweighted

graphs, Johnson’s algorithm reduces to Breadth-First Search

(BFS). Johnson’s algorithm and BFS are efficient with sparse

graphs but perform poorly with dense graphs. The other class is

the Floyd-Warshall (FW) algorithm [46,47], which, unlike

Johnson’s algorithm, has O(N3) time complexity (which is

irrelevant to the network sparsity) and favors dense networks.

The blocked FW algorithm [48] is an improved version of the

basic FW algorithm and is more suitable for parallelization.

Considering that the brain networks are usually modeled at

different sparsities, both of these algorithms are useful. We

provide both of the algorithms in our toolbox to allow users to

be able to make an optimal choice according to the network

sparsity that they have. In this study, we implemented both the

multi-thread BFS on multi-core CPUs and the blocked FW

algorithm on GPUs, and we set aside the study of the GPU

acceleration for BFS for future work. The implementation of

the multi-thread BFS on CPUs was straightforward. All of the

threads traversed across all of the graph vertices as source

points. Each thread was responsible for its proportion of source

nodes and found the adjacent and unvisited vertices iteratively.

It is worth noting that sorting the vertices according to their

degree will benefit the load balance between different threads.

In the blocked FW algorithm, the whole adjacency matrix was

first converted to an N6N cost matrix C, where N was the number

of voxels. Cij was the distance from voxel i to voxel j, or ‘ if there

was no such path. Then, the cost matrix was divided into r n6n

sub-blocks, where r~qN=nr. The outer loop iterated over the r

primary blocks (the blocks along the diagonal of the matrix). Each

round was divided into three sequential phases. Fig. 3(a) shows to

which phase each block belonged. Each block was updated in a

similar fashion as in the basic FW algorithm [46,47], which is

Figure 3. The process of the blocked Floyd-Warshall algorithm in a round. (a) Illustration of which phase each block belongs to. In a certain
round, Phase 1 is a primary block. Blocks that share the same row or the same column with the primary blocks are in Phase 2. All of the other blocks
are in Phase 3. (b) Updating the dotted block requires two source blocks: 1) the block in the same column as itself and in the same row as the primary
block, denoted with vertical lines, and 2) the block in the same row with itself and in the same column with the primary block, denoted with
horizontal lines. Because we store only the upper block triangular matrix, some source blocks in Phase 3 do not exist, in which case we transpose the
corresponding existing blocks to serve as the source blocks.
doi:10.1371/journal.pone.0062789.g003
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specifically the following:

Cij~ min (Cij ,AikzBkj)

where element (k, k) was in the primary block. Updating a block

required two source blocks, as shown in Fig. 3(b), (1) the block in

the same column as itself and in the same row as the primary

block, denoted with vertical lines, and (2) the block in the same

row as itself and in the same column as the primary block, denoted

with horizontal lines. The basic operations in the blocked FW

algorithm is similar to matrix multiplication [49] or is referred to

as generalized matrix multiplication. Following the ideas of

generalized matrix multiplication (GEMM), the blocked FW

algorithm could also be implemented efficiently on GPUs.

Matsumoto implemented the APSP using blocked FW algorithm

on GPUs [50].

We further proposed two optimizations. First, Phase 1 in the

blocked FW algorithm was the basic FW algorithm. However, to

represent all of the computation with generalized matrix

multiplication, another algorithm with O(n3log2n) time complexity

was adopted in [50]. Actually, it is more efficient to apply the

blocked FW algorithm again for Phase 1. In this way, we did not

bring in any extra computation. Second, the brain has often been

modeled as a symmetric network. In this case, only the upper half

of the cost matrix must be updated, which means that only r(r+1)/

2 blocks must be updated in each round. However, if only the

upper half matrix was maintained, then some source blocks did

not exist (see Fig. 3(b)), and we needed to transpose the blocks at

the symmetric location.

2) Modular detection. There are currently several modular

detection methods that are applicable to un-weighted networks. A

random-walk-based method was introduced in [51], and was used

to identify modules in voxel-level brain networks in [52]. A greedy

algorithm was presented in [53], and was used to uncover the

modular structure in region-based brain networks in [12]. The

algorithm we chose for modular detection was the eigenvector-

based spectral partition method [54]. This algorithm was more

precise compared to the others but, at the same time, involved

much more computation than the above approximate algorithms.

Our GPU implementation greatly accelerated this algorithm and

made it applicable to very large graphs. The idea of modular

detection is to find groups of nodes that have many inner-group

connections and relatively few inter-group connections. A benefit

function Q was introduced to judge the network’s modularity,

which was defined as follows:

Q~
1

2m

X
i,j

(Aij{Pij)d(gi,gj)

where Aij was an element of the binary adjacency matrix; Pij

was the probability for an edge to fall between every pair of

vertices i, j; gi indicated the community to which vertex i

belongs; d(gi, gj) was 1 if gi = gi and 0 otherwise; and m was the

number of edges in the network. Pij could be defined as Pij = ki

kj/2m where ki was the degree of node i. The problem then

became finding the best division that maximized Q. Newman

has proven [54] that the best division could be obtained from

the eigenvector that corresponds to the most positive eigenvalue

of B, a real symmetric matrix called the modularity matrix,

with its elements Bij = Aij – Pij. Thus,

B~A{
kkT

2m
:

The power method [55] was used to obtain the most positive

eigenvalue of B and its corresponding eigenvector. In the power

method, we started with a random initial x0 and iteratively

multiplied it with B to obtain

xnz1~Bxn~Axn{
kTxn

2m
k:

Therefore, the core operations of Newman’s spectral partition

method were some basic matrix and vector operations, such as

sparse matrix multiplication and the vector dot product. These

operations had a high parallelism and were very suitable for GPU

implementation. We constructed a GPU runtime library of these

linear algebra algorithms to accelerate the power method on the

GPUs.

After the eigenvector computation, the networks were divided

into two groups according to the signs of each element in the

eigenvector. Brain networks, however, are unlikely to have only

two communities. A modified algorithm for handling the multiple

divisions is also described in [54]. We set up a division queue on

the CPU for the task scheduling. The whole partition flow is

illustrated in Fig. 4. First, the whole network was enqueued as a

single module. Then, we iteratively performed the following steps:

dequeued a module; used the power method on the GPU to obtain

the best division in this module, i.e., the eigenvector x of the most

positive eigenvalue b; if b .0, which meant that this division

would increase the benefit function Q, we divided the current

module and enqueued the two new modules and did nothing if b
,0. The entire division process finished when the queue became

empty. A detailed description of our workflow, GPU implemen-

tation for sparse matrix vector multiplication and power method as

well as more detailed optimization can be found in our previous

work [56].

Results

Speedup and Performance
Our GPU-based Pearson’s correlation, Floyd-Warshall algo-

rithm and modular detection on networks with ,58 K nodes and

,1.7 G possible edges were much more efficient than the

traditional single-thread CPU implementation (Table 1). Network

construction using Pearson’s correlation on GPUs was finished in

3 seconds, which was 116 times faster than the traditional single-

thread CPU implementation.

The blocked Floyd-Warshall algorithm was employed to

calculate APSP and Lp on the GPUs. This procedure cost

approximately 1019 seconds in all of the six sparsities, which was

at least 200 times faster than the single-thread CPU implemen-

tation. We also tested another algorithm for APSP calculations

called the BFS algorithm, on a quad-core CPU with 8 threads,

which cost 43.1, 51.5, 61.0, 75.1, 97.3 and 130.1 seconds for

networks with sparsities of 0.023%, 0.033%, 0.047%, 0.067%,

0.098% and 0.151%, respectively. Furthermore, the time com-

plexity of this method was O(M), where M was the number of

edges in a network, because the algorithm must access almost

every edge in the network, and thus, with the same number of

nodes, the sparsity of a network impacts the running time in a

Hybrid Accelerated Framework for Brain Connectome
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Figure 4. Flow Chart of our GPU implementation of Newman’s Modular Detection Algorithm. Each time, a module is dequeued. If b .0,
the module is divided and the two new modules are enqueued. Repeat the process until the queue becomes empty.
doi:10.1371/journal.pone.0062789.g004

Table 1. A comparison of the time consumed between our hybrid framework and a single-thread CPU implementation.

Sparsity 0.023% 0.033% 0.047% 0.067% 0.098% 0.151%

Pearson’s Correlation (for each subject)

GPU 2.88

single-thread CPU 335

Speedup 116

All-Pairs-Shortest-Path

GPU BFW 1018.43 1019.57 1018.46 1018.75 1018.60 1021.36

1-thread CPU BFW .2.306105

Speedup .200

8-thread BFS 43.10 51.52 60.97 75.06 97.34 130.14

1-thread CPU BFS 193.18 225.66 274.90 350.44 441.78 572.53

Speedup 4.48 4.38 4.51 4.67 4.54 4.40

Modular Detection

GPU 220.45 68.59 181.45 193.80 189.73 218.67

1-thread CPU 373.56 149.91 419.15 457.06 448.97 568.29

Speedup 1.70 2.19 2.31 2.36 2.37 2.60

Note: BFW, Blocked Floyd-Warshall; BFS, Breadth First Search;The running time is given in seconds.
doi:10.1371/journal.pone.0062789.t001
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linear way. On the other hand, the running time of the blocked

FW algorithm remained unchanged under different sparsities

(Fig. 5). The fitted curve of the running time verses the network

sparsity has suggested that for networks (on a scale of ,58 K

nodes) with a sparsity lower than 2%, 8-thread BFS on the quad-

core CPU was faster; otherwise, the GPU for the blocked FW was

faster.

Modular detection on the GPUs cost 220.45, 68.59, 181.45,

193.80, 189.73 and 218.67 seconds for networks with sparsities of

0.023%, 0.033%, 0.047%, 0.067%, 0.098% and 0.151%, respec-

tively. The speedup over a single-thread implementation on the

CPU ranged from 1.6 to 2.6 times, mainly depending on the

sparsity of the networks. Usually, the speedup was greater on the

denser networks because of the larger advantage of the GPU

against the CPU when multiplying vectors with a denser matrix

(sparse matrix vector multiplication is the most frequent operation

in Newman’s modular detection algorithm).

Because of the different advantages of the CPU and the GPU in

different procedures, we proposed a CPU/GPU hybrid framework

for brain network analysis (Table 2). Consider the network with a

0.151% sparsity, for example. First, the Pearson’s correlation was

performed on the GPU and cost 2.9 seconds to obtain a

correlation matrix on one individual. Then, a group matrix was

calculated by averaging the correlation matrix across all of the

subjects on the CPU. Next, 7.5 seconds were spent for the

calculation of Cp on the quad-core CPU. Additionally, Lp was

calculated on the quad-core CPU using 8-thread BFS, which cost

130.14 seconds because of the low network sparsity. (The GPU

FW algorithm would be employed instead if the sparsities of the

network were greater than 2%; See Fig. 5.) Finally, modular

detection was performed on the GPU, which cost 218.67 seconds.

In the calculation of Cp, Lp and modular detection for random

networks, Maslov random networks [57] were generated by a

single thread on the CPU (generation only, calculation excluded),

which cost approximately 18 seconds to generate one random

network. For the chosen hardware and the running time of each

procedure under other sparsities, see Table 2 for details.

Our framework has greatly accelerated the process of brain

network analysis. For a network with ,58 K nodes and ,1.7 G

possible edges, the total running time for the network construction

and characteristics analysis including small-worldness, degree and

modularity (comparing to 15 degree-matched random networks

when needed) were approximately 80,150 minutes, which

corresponded to sparsities from 0.023% to 0.151%. In contrast,

the same process executed by a single thread would cost

approximately 20 to 25 hours on a CPU. Our hybrid framework

saved a tremendous amount of time and energy for such a graph

theoretical network analysis method.

Network Characteristics
1) Small-world properties. We calculated the clustering

coefficient and characteristic path length of the voxel-based

functional brain networks under all six sparsities (the geometric

average of Cp was 0.41, ranging from 0.27 to 0.50, and the

geometric average of Lp was 13.47, ranging from 22.3 to 7.6) and

the corresponding nodes, mean degree and degree distribution

matched the random networks (the geometric average Lprand was

3.33, ranging from 4.29 to 2.73). The clustering coefficients of the

functional brain networks were much higher than those of the

random networks (the geometric average of c was 220.5, ranging

from 580 to 67). On the other hand, although the characteristic

path lengths of the functional brain networks were revealed to be

higher than those of the random networks in the extremely sparse

situation, Lp was approximately equal in both the functional brain

networks and the random networks across most of the sparsities

(the geometric average of l was 4.04, ranging from 5.21 to 2.79).

In general, our results from the network analysis suggested that

voxel-based functional brain networks exhibited significant small-

world properties when compared to those random networks that

had the same number of nodes, mean degree and degree

distribution (the averaged s was 54.5, ranging from 111.3 to

24.0; see Table 3).

2) Modularity. The modularity coefficients of the real brain

network were relatively stable for different sparsities, while those of

the random networks decreased monotonically when the sparsity

threshold increased. Furthermore, the real brain network showed

significant non-random modular structure over each sparsity

threshold when compared to random networks. The mean

modularity coefficient Q was 0.8160.064 in real brain networks

and the corresponding mean Z score was 13.7261.06. These

results demonstrated that there was significant non-random

modular organization of the voxel-based resting-state fMRI

functional human brain networks. We further visualized the

modular structure onto smoothed brain surfaces for every sparsity

threshold (Fig. 6). A total of 46 to 52 modules were detected at

most of the sparsities (only 22 modules detected in S = 0.033%).

Each of these modules was assigned a different color, with which

most of the brain regions in the classic atlas can be identified. The

characteristic areas included the medial prefrontal cortex, the

dorsal lateral frontal cortex, the sensory motor area, the

supplementary motor area, the dorsal and ventral precuneus, the

anterior and posterior inferior parietal lobule, the medial and

lateral temporal cortex and temporal pole, the visual cortex, and

the anterior and posterior insular.

3) Degree distribution and hubs. We further examined the

degree distribution of voxel-based functional brain networks. The

degree distribution of the brain networks (Fig. 7) fitted a power law

Figure 5. Performance of different APSP algorithms on
different platforms. The blue line corresponds to the 8-thread BFS
algorithm on the quad-core CPU, which is suitable for sparse networks.
Its running time is proportional to the sparsity. The black line
corresponds to the blocked FW algorithm on the GPU, which is suitable
for dense networks. Its running time is irrelevant to the sparsity. The
intersection point of the two lines is approximately where the sparsity
equals 2%. This criterion is guidance for making the choice.
doi:10.1371/journal.pone.0062789.g005
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scaling well, decaying as p(k) , ck2c on a log-log plot, with an

estimated exponent c ranging from 2.16 (S = 0.151%) to 4.16

(S = 0.023%). This power law indicated that the voxel-based

function brain networks were scale-free, with a small number of

brain regions having many connections with most other regions.

Aside from the degree distribution, we also pay close attention to

those nodes that have a high degree of connectivity, which are

often considered to be hub regions [7,58]. Here, voxels with a

degree that is one standard deviation above the average degree are

defined as hub-voxels. Several brain regions were identified stably

over all of the sparsity thresholds. These regions belonged mainly

to the default mode network (DMN), including the bilateral

precuneus (PCUN) and posterior cingulate cortex (PCC), the

medial prefrontal cortex (MPFC), the lateral prefrontal cortex

(LPFC), and the inferior parietal lobule (IPL) (containing the

angular gyrus and the supramarginal gyrus). Additionally, we

found a higher connecting degree in the medial visual cortex and

the sensorimotor cortex. Parts of the bilateral visual cortex were

also identified (Fig. 8).

Discussion

We have presented a CPU-GPU hybrid framework for

accelerating the construction and analysis of voxel-based func-

tional brain networks. Taking advantage of the super data-parallel

computing capability of GPUs, our hybrid framework greatly

reduced the computational time compared to the traditional CPU

platform, and finished the prohibitive computation in an

acceptable amount of time. With the proposed framework, we

analyzed the group brain networks that were constructed from 197

subjects and revealed small-world properties and modular

structure in the voxel-based functional brain networks. Further-

more, highly connected hubs were observed in the medial frontal,

parietal and occipital cortex regions.

CPU-GPU Hybrid Framework
Researchers are focusing more attention on brain network

analysis. At the same time, the computation budget of brain

network analysis is becoming heavier because of the growing

quantity of subjects in datasets and the increasing resolution used

when constructing brain networks from a coarse to a fine

granularity level. Therefore, an efficient, accessible and scalable

computational platform is required for brain network analysis.

Our hybrid framework was set up with multi-core CPUs and

GPUs. CPUs and GPUs have different design philosophies. A

large amount of CPU chip area is dedicated to caching and branch

prediction [59]. In contrast, GPUs devote more transistors to data-

parallel arithmetic operations and have far more processing

Table 2. Running time for computing each network metric on the CPU, GPU and CPU-GPU hybrid.

Network Metrics Hardware Sparsity

0.023% 0.033% 0.047% 0.067% 0.098% 0.151%

Correlation GPU ,2.88 (*197 subjects)

Degree CPU ,1023 ,1023 ,1023 ,1023 ,1023 ,1023

Cp CPU 6.3 6.2 6.3 6.3 6.7 7.5

Lp Hybrid 43.10 51.52 60.97 75.06 97.34 130.14

Modular detection GPU 220.45 68.59 181.45 193.80 189.73 218.67

Maslov rewiring CPU 204.9 211.8 214.9 224.7 238.9 270.0

Note: The running time is given in seconds. The running time of the Maslov rewiring represents the total time for constructing 15 random networks.
doi:10.1371/journal.pone.0062789.t002

Table 3. Small-world properties of brain networks, and a comparison with random networks.

Sparsity (S) 0.023 0.033 0.047 0.067 0.098 0.151

Clustering Coefficient

Cp 0.27 0.37 0.43 0.46 0.48 0.50

Cprand

6 std
4.7261024

62.061025
8.0761024

61.361025
1.4161023

62.161025
2.4461024

61.661025
4.2861023

61.661025
7.4761023

61.561025

c 580 458 305 189 112 67

Characteristic Path Length

Lp 22.32 18.77 15.28 12.29 9.94 7.64

Lprand

6 std
4.29
66 1024

3.80
62.361024

3.42
61.561024

3.10
62.261024

2.90
61.661024

2.74
65.861024

l 5.21 4.94 4.47 3.96 3.42 2.79

Small-worldness

s 111.3 92.7 68.2 47.7 32.7 24.0

Note: Cp, the average clustering coefficient of all of the nodes in the brain network; Cprand, the average clustering coefficient of all of the nodes in the Malslov rewiring
random networks; c = Cp/Cprand, Lp, the characteristic path length of the brain network; Lprand, the characteristic path length of the Maslov random networks; l = Lp/
Lprand; and s = c/l. All of the results of the random networks are the average of 15 random networks, with the standard deviations given in brackets.
doi:10.1371/journal.pone.0062789.t003
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elements and a higher memory bandwidth. We accelerated the

correlation calculation, the APSP calculation and modular

detection with GPUs because these algorithms have a large

amount of parallelism and do not require complex flow control

which is suitable for using GPU calculations. For these three

procedures, we achieved promising speedups (1.6,2.6x for

modular detection, above 100x for the other two) over a single-

thread C/C++ implementation on a CPU. It is worth mentioning

that CPU vendors provide high-performance math libraries, such

as Intel MKL and AMD ACML. Routines in these libraries are

highly optimized and can be up to 10 times more efficient than our

C/C++ implementation. These routines can assist during some of

the brain network analysis procedures, e.g., Pearson’s correlation

and modular detection, because they can be expressed as basic

linear algebra subprograms (BLAS). With the aid of high

performance math libraries, CPUs can achieve similar perfor-

mance to GPUs in modular detection; however, for Pearson’s

correlation, the CPU implementation is still slower than the GPU

implementation. Other procedures, such as APSP and the

calculation of betweenness, cannot take advantage of the math

libraries, and it is extremely difficult for typical developers to

achieve the best performance for CPUs (such as the vendor-

provided libraries).

Another possible solution to the very large amount of

computation required is large-scale clusters. However, large-scale

clusters often reside at computing centers and are not easily

accessible to most researchers. In contrast, the hardware used in

our framework is a personal computer equipped with a GPU as an

accelerator. Our framework also has the advantage of having a

low cost, a small size and low power consumption, and can be

integrated into future MRI machines because of these advantages.

At the same time, our framework is also useful if one would like to

use clusters for brain network analysis. In the state-of-the-art high-

performance clusters, individual nodes often have both CPUs and

GPUs (http://www.top500.org/), which is exactly the architecture

our framework is intended to target.

In the section on Speedup and Performance results, we have

presented a performance comparison between our hybrid frame-

work and a single-thread CPU implementation, involving two

different algorithms for the calculation of the characteristic path

length (Lp) and the modular detection algorithm. It is worth noting

that the modular detection and blocked FW algorithms imple-

mented on the GPU were not as fast as we expected because of the

low range of sparsities in our experiments (the highest sparsity is

0.151% lower than 2%). As shown in table 1, we can find the

gradual trend that the modular detection of networks with a higher

sparsity can obtain a higher speedup on a GPU compared to a

CPU. Also shown in Fig. 5, the GPU blocked FW algorithm is

more suitable for denser networks that have a sparsity higher than

2%. The low range of sparsities in our experiments could be

caused by the regression of the global signal and by averaging the

correlation coefficient matrix across the subjects. As described in a

recent study [60], the removal of the global brain signal rendered

the correlation coefficient rij (elements from the average correlation

matrix of the group of subjects) centered close to zero. Therefore,

compared to conditions without any global signal removal and

with the same level of threshold r̂ corresponding to the same level

of p-value, we would obtain a lower sparsity. In short, the GPU

blocked FW algorithm will have a better performance and help

Figure 6. The modular structure of brain networks under six sparsities. The brain is divided into 48, 22, 46, 46, 46, and 52 modules with
Q = 0.88, 0.72, 0.86, 0.84, 0.81, and 0.74 in real networks and with a sparsity of 0.023%, 0.033%, 0.047%, 0.067%, 0.098%, and 0.151%, respectively. This
figure was visualized with the BrainNet Viewer (http://www.nitrc.org/projects/bnv/).
doi:10.1371/journal.pone.0062789.g006
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substantially when we analyze brain networks that have high

sparsities in future work.

Our framework is also scalable to a larger network size. For

example, in Pearson’s Correlation and the APSP calculation on a

GPU, the network is divided into blocks to allow the handling of

arbitrarily large networks as long as there is sufficient memory for

the CPU to access. In modular detection, although it is difficult to

handle networks by each block during the process, only sparse

networks, which require little memory, are stored on the GPU,

which ensures the scalability of our platform.

Voxel-based and Region-based Brain Network Analysis
Voxel-based human brain functional networks were constructed

and analyzed in this paper. Compared with ROI-based brain

networks, voxel-based brain networks have several advantages.

First, recent studies have demonstrated that network properties,

such as small-worldness, network efficiency and degree distribu-

tion, were influenced by the definition of a node [33,61].

Constructing brain networks based on voxels overcomes the

difficulties of anatomically or functionally defined brain regions.

Second, the low resolution of region-based brain networks might

lead to the loss of some important connectivity information [34],

especially for regions that contain multiple sub-divisions. Many

associated cortices involved in multi-functions can be further

divided into functionally discrete subdivisions, such as the

hippocampus and amygdala region [62], the motor cortex [63],

the lateral parietal cortex [64], and the medial parietal cortex [35].

Mixed connectivity information might be involved and lead to

confusion when a low resolution atlas is used. Third, voxel-based

brain networks provide better spatial localization ability. When a

highly connected node is identified, the region-based network can

only identify the whole cortex region as a hub; in contrast, a voxel-

based network can tell exactly which parts of the cortex serve as

hubs [7,58,65]. With the above advantages and the progress of

computing power, high-resolution brain network analysis will

bring a more detailed perspective to human connectome studies.

Biological Findings
Our results identified the small-world property, modular

structure and highly connected hubs in voxel-based functional

brain networks during the resting state. The small-world model

characterizes the architecture of a network that has both well-

connected local neighborhoods (a high clustering-coefficient) and a

short topological distance between two long-range nodes (a short

characteristic path length). Such a structure is observed in a series

of structural and functional connectome studies, in which brain

Figure 7. Distribution of the nodal degree under 6 sparsities (log-log plot). Panel (a),(f) are the degree distribution and the fitting result of
the network with a sparsity of 0.023%, 0.033%, 0.047%, 0.067%, 0.098%, and 0.151%, respectively. The spot lines reflect the probability of finding a
node connected to a given number of neighbors; the red solid lines indicate the curve fitted results of the power law P(k)ec � k{c . The estimated
exponent c under 6 sparsities are 4.16, 3.21, 2.80, 2.61, 2.46 and 2.16, respectively.
doi:10.1371/journal.pone.0062789.g007
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networks were constructed based on regions [6,13] and based on

voxels [34,58]. These findings indicate that the human brain

possesses both local functional specialization and high global

communicational integration, which is an optimized organization-

al pattern of evolution.

Strongly interconnected sub-networks corresponds to the

significant modular structure of brain networks. The modular

architecture contributes to various aspects of the functional

organization of the human brain, such as efficient local

information processing within modules [66,67], the balance of

functional segregation and integration, and high resilience to

network node or edge damage [12]. We identified several modules

combined from brain areas based on voxel-wise functional brain

networks using the classic Newman’s spectral method. The

segmented brain regions possessed similar but not identical

patterns, corresponding to those parcellated cortex areas that are

in charge of diverse functions in classical brain anatomy atlases

[68,69]. Recent studies, along with the graph theoretical

modularity analysis method, also attempted to learn functional

brain organization in a voxel-wise way and demonstrated detailed

functional segment results in comparison with ROI-based studies

[52,70]. Voxel-based modularity studies might provide a view of

the fine-grained scale in the functional network topological

organizations, and might offer precise parcellation over the cortex

and subcortex.

The nodal degree is the most common metric that reflects the

importance of nodes in terms of direct connections [7]. In our

study, we used the nodal degree to measure the importance of

each voxel in the functional brain network. We identified several

brain regions as network hubs, which mostly belonged to the

DMN, including PCUN and PCC, MPFC, LPFC, and IPL. These

DMN regions, especially the PCUN, the PCC, and the MPFC,

have already been demonstrated to be core regions in studies of

metabolism [71], anatomical networks [8,9,72], and functional

networks [65,73]. Our finding verified the inference that the DMN

regions play a key role in brain function integration by their

various communications with other dispersed brain regions.

Our results showed that the degree distribution of voxel-based

functional brain networks followed a clear power law scale decay,

which is indicative of a scale-free network with the existence of

richly connected hubs and is coincident with previous voxel-based

functional brain network studies [58,74,75]. However, truncated

power law degree distributions have also been reported from many

other brain network studies performed on region-based network

constructions, including both the functional networks [33,73] and

structural networks [8,11]. The truncated power law networks are

less vulnerable to attack than scale-free networks; nevertheless,

both networks are robust to random attacks compared to random

networks [73]. The reasons for the reports of these two types of

network embedded in the human brain network are currently

Figure 8. The degree of voxels near the cerebral cortex under different sparsities. Nodes that have a much higher degree than average are
considered to be potential hub-voxels. We mark the voxels with degrees that are one standard deviation above the mean. Voxels with a higher
degree are in yellow, and voxels with a lower degree are in red. Across different sparsities, some hub-areas are stable, including the bilateral
precuneus (PCUN) and posterior cingulate cortex (PCC), the medial prefrontal cortex (MPFC), the lateral prefrontal cortex (LPFC), and the inferior
parietal lobule (IPL) (containing the angular gyrus and the supramarginal gyrus). This figure was visualized with the BrainNet Viewer (http://www.
nitrc.org/projects/bnv/).
doi:10.1371/journal.pone.0062789.g008
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unclear; however, the scale-free degree distributions were reported

only in high spatial resolution network studies [58,74,75].

Furthermore, a recent voxel-based functional network study [34]

reported truncated power law degree distributions under a

complimentary cumulative distributions fitting. Therefore, we

infer that the network degree distribution might be influenced

methodologically by the spatial resolution of the nodal definition

and the curve-fitting method.

Furthermore, the above network properties of functional

networks in those individuals who have neuropsychiatric disorders

often changes [76,77]. However, because of computational

limitations, most of the present studies defined network nodes in

the ROI-based level using multifarious atlas or custom-defined

ROIs; voxel-based network analyses have rarely been performed.

There are still many controversial results in these studies, such as

in Alzheimer’s disease [25,78]. Considering that the ROI-defined

brain regions often comprise functional heterogeneous voxels, the

voxel-based network analysis could eliminate the potential

methodological confounding factor that arises from the various

nodal definitions.

Conclusions
In this work, we propose a hybrid CPU-GPU framework for

human connectome studies. Utilizing the computation power of

both types of hardware, the whole process for one network finishes

much faster than with traditional methods and takes an acceptable

amount of time. The main purpose of our work is to stress that the

advancement in parallel computing technologies can make

revolutionary contributions to neuroscience research. In the

future, we will continue to demonstrate our platform and integrate

new modules and methods, such as DTI modeling and fiber

tractography [79]. We have published our toolbox online at

http://www.parabna.weebly.com/. A website is also under

construction to provide our results on the 197 subjects’ functional

brain networks.
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