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Abstract

The question of whether perceptual illusions influence eye movements is critical for the long-standing debate regarding the
separation between action and perception. To test the role of auditory context on a visual illusion and on eye movements,
we took advantage of the fact that the presence of an auditory cue can successfully modulate illusory motion perception of
an otherwise static flickering object (sound-induced visual motion effect). We found that illusory motion perception
modulated by an auditory context consistently affected saccadic eye movements. Specifically, the landing positions of
saccades performed towards flickering static bars in the periphery were biased in the direction of illusory motion. Moreover,
the magnitude of this bias was strongly correlated with the effect size of the perceptual illusion. These results show that
both an audio-visual and a purely visual illusion can significantly affect visuo-motor behavior. Our findings are consistent
with arguments for a tight link between perception and action in localization tasks.
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Introduction

In a seminal and influential study in neuropsychology [1], it has

been suggested that visual information for perception and for

action are processed separately through two independent streams

[2,3]. According to this dual visual system hypothesis [1], object

recognition is supported by projections from the primary visual

cortex to the inferotemporal cortex (ventral stream), while action

information is processed in a separate pathway that runs from the

primary visual cortex to the posterior parietal cortex (dorsal

stream). Crucially, the dual-streams proposal suggests that the two

systems rely upon independent neural representations. In support

of this proposal, experimental data has been reported in studies of

hand movements. For example, it has been shown that uncertainty

measures of visually guided grasping (just noticeable differences

across length estimates) do not follow the basic Weber law of

scaling with stimulus length [4] in sharp contrast with measures of

perceptual estimation (but see [5] for an alternative explanation).

In further support of this claim, it has been reported that some

visual illusions influence perceptual judgments while leaving hand

motor responses unaltered [6]. However, the interpretation of such

data has been strongly debated [7,8,9,10]. Using different methods

which carefully calibrate perceptual measures and motor tasks, it

has been shown that visual illusions can affect both perceptual

judgments and motor behavior [11,12]. Moreover, in the case of

visual illusions driven by moving stimuli, it has been shown that

the pattern of differences between action and perception depend

entirely on the stimuli and methods used [13], undercutting much

of the evidence which has been taken as support for the dual

system proposal.

In addition to studies of grasping and other hand movements,

the dual visual system hypothesis has also been tested using eye

movement measures. Importantly, saccadic eye movements differ

from hand movements in that they are stereotyped and ballistic in

nature [14]. Indeed, saccades provide information about visual-

spatial representations but also are typically outside of conscious

control and reflection (we normally make an eye movement

without thinking explicitly about where it will land). For this

reasons, saccades can be used to test where the oculomotor system

localizes a stimulus and compare this process with more explicit

perceptual judgments. Such studies, however, have yielded

contradictory interpretations.

Some studies of eye movements have been taken as evidence

supporting the dual-streams hypothesis. Near the onset of a

ballistic eye movement, the visual perception of the location of

briefly presented stimuli in the middle of eyes’ trajectory is grossly

distorted along with the direction of the movement itself, a

phenomenon known as peri-saccadic mislocalization. When the

screen darkens right after stimuli presentation (reducing visual

cues), rapid pointing remains accurate towards the real physical

target position. However, perception measured by verbal reports is

distorted by the incoming saccade [15].

In contrast, other studies of eye movements have been taken as

evidence against the two visual system hypothesis. In particular, a

meta-analysis of the effect of the Muller-Lyer illusion (ML) on eye

movements [16] provides evidence against a functional dissocia-

tion between visuo-motor and perceptual systems. In this case, the

experimental paradigm can influence whether the illusion

influences saccadic landing positions or not. It has been shown
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that the effect of the Muller-Lyer illusion on eye movements is

modulated by saccadic latency [17], with longer latency saccades

being less influenced by the visual illusion than shorter latency

saccades. Moreover, the predictability of target stimuli modulated

the effects of the ML on eye movement amplitude, with a stronger

illusion effect for unpredictable stimuli locations [17].

Previous studies of visual illusory context effects on perception

and action raise the question of whether auditory context will also

influence motor behavior. It has been reported that auditory

information affects visual motion perception in a variety of ways.

For example, ambiguous apparent motion configurations can be

strongly biased by the presence of a transient sound which

provides temporal capture [18]. Likewise, the presence of a

transient auditory stimulus at the point when two visual stimuli

move across each other can induce a percept of the stimuli

bouncing off of each other rather than crossing their paths [19].

Recently, some studies have shown not only that auditory

stimulation modulates perception of a moving stimulus, but can

even evoke motion perception for an otherwise static stimulus.

One particularly interesting case, which we study here, is the

sound-induced visual motion illusion (SIVM: [20]). A flashing,

high contrast bar presented at a fixed location in the periphery of

the visual field is perceived as shifting in lateral motion when

synchronized with an alternating left and right sound. Moreover, a

measurable aftereffect can be obtained by this induced motion

[21]. One interesting aspect of this illusion, relevant for the current

study, is that sound causes a visual-spatial mis-localization,

whereas most previous studies of audio-visual illusions have used

vision to bias auditory location or audition to bias visual timing

[22,23,24].

The current study is the first attempt (to our knowledge) to study

the influence of an audio-visual illusion on eye movements. The

present experiment allows us to test and evaluate the dual-visual

systems hypothesis within the cross-modal domain (audio-visual

stimulation). With this goal in mind, we took advantage of the

aforementioned SIVM [20], testing its effect on saccadic landing

positions. Considering the previous work on the influence of

visually driven illusions on visuo-motor behaviour [25,10], we

hypothesized that the SIVM illusion would influence oculomotor

responses. To further test how closely the perceptual and action

systems were linked, we also used inter-subject variability in the

illusion magnitude and saccade landing positions to test whether

the magnitude of the perceptual illusion correlated with the

magnitude of the action (saccade) effect.

Strong independence between perception and visuo-motor

systems would predict a measurable SIVM for perception, while

leaving visuo-motor behaviour unaffected by the illusion. A weak

independence would instead predict an influence of the SIVM on

saccades, though with a different pattern than on perceptual

measures. In the case of overlapping spatial representations for

both the perceptual and visuo-motor systems, we would expect

perceptual and motor responses to be similarly affected by the

SIVM.

Materials and Methods

Participants
Thirteen participants took part in the study. Participants were

all students of the University of Trento (7 female, mean age of 25

years; range from 20 to 46 years), reported normal hearing and

had normal or corrected-to-normal vision. The experiment was

conducted in accordance with the ethical standards laid down in

the 1964 Declaration of Helsinki (most recently amended in 2008,

Seoul), as well as the ethical guidelines laid down by the University

of Trento ethics committee (Comitato etico per la sperimentazione

con l’essere umano). All participants were naı̈ve as to the purpose

of the experiment. Participants gave their written informed

consent to participate in this study. All the experiments were

conducted in the laboratories of the Center for Mind/Brain

Sciences of the University of Trento in Rovereto, Italy.

Apparatus and stimuli
Participants sat at a table in a dimly lit room (average

luminance 40 cd/m2) at a distance of 60 cm from a 22 inch LCD

screen (HP Compaq LA 2205 WG at 60 Hz, resolution:

168061024) used for presenting the visual stimuli. Participants’

head movements were restrained by an adjustable chin rest. The

visual stimulus was a stationary, flickering white vertical bar

(1060.4 degrees of visual angle) shown for a 100 ms duration

with an inter-stimulus interval (ISI) of 400 ms. The auditory

stimulus consisted in a white noise burst of 75 ms duration

presented through headphones (Sony MDR-XD200). On each

trial, the bar was presented at one of three different eccentricities

(15, 16 or 17 degrees of visual angle) with respect to the fixation

point. At the beginning of each trial the fixation point was

positioned either to the left or to the right of the display midline

at an eccentricity of 4 degrees of visual angle. The fixation point

and the flickering bar were always presented on the opposite sides

of each other in relation to the display midline. The eccentricity

of the bar and the position of the fixation point were varied

randomly across trials. The bar might flicker either 5 or 6 times

during each trial, in order to prevent participants from easily

predicting the end of the trial.

In separate blocks, the addition of the synchronous sound was

varied, so that the flickering bars were either shown alone (vision

only condition: V) or with the sound (audio-visual condition: AV).

The onset of the AV stimuli was synchronized using a digital

oscilloscope (Agilent Technologies MSO 6054A).

In AV trials, the sound switched between the right and left ear

synchronously with the onset of the flickering bar in order to

induce the visual illusion (i.e., the SIVM) in the direction of the

sound movement.

However, a preliminary pilot study revealed that although the

sound did induce perceived motion, there was not a clear one-to-

one matching between sound direction and bar illusory motion

direction. That is, on the majority (,65%) of the trials a left-to-

right sound direction could induce a coherent left to right bar

motion, while on other trials the same left-to-right sound could

induce an opposite right-to-left bar motion. This randomly

alternating direction of the illusion could not be controlled a priori

and thus would have posed a serious problem in the analysis

phase. In our experiment, unlike earlier studies of the SIVM, the

direction of the illusory motion was as important as whether or not

it occurred. To overcome this problem, a physical displacement of

the bar (henceforth, ‘‘physical inducer’’) was presented at the start

of each trial to match the direction of the apparent motion of the

sound. More precisely, from the first to the second bar onset, the

spatial position of the bar was physically displaced by 1 degree of

visual angle towards the side where the first sound would have

been presented. It is important to note that subsequent repetitions

of the bar were presented always in the same spatial position,

without any further displacement. This starting physical inducer

prevented the stochastic coupling between sound direction and bar

illusory motion direction, with participants reporting a consistent

illusory bar motion direction in the direction of the sound. The

same physical inducer was present in both the AV and V

experimental conditions. The number of repetitions of the

flickering bar (5 or 6) together with the direction of the initial

Cross-Modal Illusion Affects Eye Movements
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physical inducer (when the sound was either present or absent)

allowed for a clear prediction for the direction of physical

displacement produced by the SIVM illusion on each trial (see

figure 1).

Procedure and experimental design
Perceptual and oculomotor tasks were tested in separate blocks.

Participants were required to undergo a calibration procedure for

the eye tracker system at the start of each block. The trial started

after acquiring a stable fixation for 500 ms (expressed as the mean

fixation position during a 500 ms time window). All bar repetitions

(5 or 6), except for the first physical inducer presentation (see

‘‘Apparatus and Stimuli’’) were presented in the spatial position

corresponding to the eccentricity condition value (i.e., 15, 16 or 17

degrees) of that trial with respect to the fixation position.

In the perceptual task, after the offset of the last repetition of the

flickering bar participants were cued to press a left or right mouse

button to report the last perceived movement direction of the bar

by using their dominant hand. Participants were requested to press

either the left button, if the bar was perceived to shift towards left,

or the right button, if the bar was perceived to shift towards right.

If no clear shift was perceived participants were requested to guess.

In the visuo-motor task participants were instructed to move their

eyes towards the last perceived position of the bar at the offset of

the fixation point which occurred 50 ms before the offset of the last

presented bar. A gaze contingent display paradigm was imple-

mented to check whether participants correctly followed the

instructions during the required time period. The trial was

repeated whenever participants moved their eyes before the

fixation offset, or before the presentation of the last bar in the

perceptual task. This on-line gaze control was based on a

confidence rectangle of 363 degrees visual angle around the

initial fixation point on each trial. The experimental design

comprised 12 different conditions: 3 eccentricity positions of the

bar (15, 16, or 17 degree), 2 fixation positions (4 degrees to the left

or right from the screen midline) and 2 flickering repetition values

(5 or 6 repetitions). Within each response modality (i.e., each

experimental block), these 12 conditions were repeated 4 times.

Each block contained 48 trials. Overall, there were four blocks

with a perceptual response and four blocks with visuomotor

response in each session.

Figure 1. Visual and auditory stimuli used during the experiment. Panel A: stimuli presentation and typical percept for an audio-visual (AV),
5 bar repetition trial; between the first and second bar presentation a physical shift was introduced (see Procedure and Experimental Design), the
remaining bars were presented always in the same position. Panel B: ‘‘far’’ and ‘‘close’’ trial coding based on the expected percept. Responses were
coded as ‘‘far’’ and ‘‘close’’ as well. During the analysis phase the proportion of ‘‘far’’ responses for the visual-only and audio-visual condition and the
expected response were analyzed (see ‘‘Data Analysis’’ section). Panel C: trial procedure for the visuo-motor and perceptual tasks for an audio-visual
stimuli condition, along with typical eye movement traces. The visual-only condition was identical except that the sound was not provided. Each bar
was presented for 100 ms with an ISI of 400 ms. In the visuo-motor task participants were instructed to perform an eye movement after the fixation
point disappeared (50 ms before the last bar offset). In the perceptual task participants reported the perceived direction of the last bar (leftward vs.
rightward).
doi:10.1371/journal.pone.0062131.g001
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Each participant underwent V (visual) and AV (audio-visual)

sessions on two different days. Both response modalities (i.e.

perceptual and visuo-motor) were tested within the same day.

Response modality and experimental conditions order were

counter-balanced across participants. Before each experimental

session of each day (perceptual and visuo-motor modality),

participants underwent a training session of 12 randomly

generated trials with the same conditions as the subsequent

session. These training trials were discarded and not included in

the analysis.

Data analysis
For the perceptual task, responses were categorized as ‘‘far’’ and

‘‘close’’. A response was categorized as ‘‘far’’ when the participant

responded ‘‘leftward motion’’ with the fixation on the right side of

the screen or responded ‘‘rightward motion’’ with the fixation on

the left side of the screen. Responses were categorized as ‘‘close’’

otherwise. The mean proportion across participants of ’far’

responses was computed for each stimulus modality condition (V

and AV) and for each expected response condition (‘‘far’’ and ‘‘close’’).

The expected response was computed based on the number of

repetitions of the flickering bar (5 or 6 times) and the direction of

the initial physical inducer. Consider, for example, the case in

which a bar was shown on the left side of the screen with respect to

fixation. If the final illusory motion was towards the right (the

initial physical inducer shifted towards the left and the bar was

presented for 5 repetitions), then such a trial was categorized as

‘‘close’’. However, if the bar was shown on the right side of the

screen and the illusory motion was to the right, then it would be

classified as a ’’far’’ trial (see Figure 1).

It is important to note that the ‘‘far’’ and ‘‘close’’ coding of trials

holds either for the V (visual) or the AV (audio visual) conditions.

In fact, even in the absence of the sound, the presence of the

direction specific physical inducer allowed us to derive an expected

perceptual as well as motor response, according to the presentation

side and the number of bar repetitions.

For the visuo-motor task the distance between the eye

movement landing position and the flickering bar position on

the screen was computed for each trial and averaged across

participants for each condition and each expected response, as in

the perceptual task. This transformation was applied in order to

obtain comparable values, independent of the actual bar

eccentricity. Horizontal and vertical components of the eye

movement were analyzed separately. During offline analysis, only

trials in which the first eye movement was larger than 7 degrees of

visual angle were considered valid (average mean of 85% of valid

trials for across participants). A within-subjects ANOVA was

performed on the results of the behavioral and the visuo-motor

tasks. Linear regression and robust linear regression were adopted

to test the magnitude of the effects in the different tasks and

conditions.

Results

As expected, the sound-induced visual motion illusion influ-

enced perception (Figure 2, panel A). Confirming that the SIVM

illusion was consistently perceived in this experiment, an analysis

of variance (ANOVA) on the proportion of ‘‘far’’ response in the

perceptual task with factors expected response (‘‘far’’ vs ‘‘close’’) and

stimulus modality (‘‘V’’ vs. ‘‘AV’’) showed a significant main effect of

the latter variable in direction of the illusory movement (F

(1,12) = 64.82, p,.001, g2
partial = 0.84). Importantly, a significant

interaction between the two factors was found (F (1,12) = 23.69,

p,.001, g2
partial = 0.68). In the perceptual task, the main effect of

stimulus modality was not significant (F(1,12) = .01, ns, g2
partial = 0.02).

To better understand the role of the sound in the AV and V

conditions, the magnitude of the effect was computed for each

participant and stimulus modality condition as the difference

between the proportion of ‘‘far’’ responses for the different expected

response conditions (D= p(’far’ | expected response = = far) -

p(’far’ | expected response = = close), see figure 2 panel B). A

paired two sample t-test showed that the magnitude in the AV and

V conditions were statistically different (t(12) = 4.86, p,0.001).

Notably, SIVM magnitude in the V condition, given only by the

presence of the physical inducer, was smaller than the effect

magnitude in AV condition. However, it is interesting to note that

the illusion in the V condition was greater than zero (two-way, one

sample t test, t(12) = 5.00, p,0.001). This indicates that although

the mere presence of an initial physical inducer can drive some

residual direction specific alternation, this effect is weaker without

the accompanying sound, as can be seen in Figure 2 (panel B). This

last result suggests that the presentation of the physical inducer can

establish an alternating motion percept when position information is

hard to extract reliably, as is the case for peripheral stimuli. Thus,

we also report a novel visual illusion, in which a single offset

perpetuates perceived alternating motion over repeated static

flashes of the target. To our knowledge this is the first time that

this effect has ever been reported.

Interestingly, a within subjects analysis showed that the

magnitude of the effect in the V condition was correlated with

the magnitude in the AV condition (see figure 2 panel C, linear

regression, t(11) = 2.69, p,0.05, r2 = 0.34). In other words,

participants who had a larger vision-only illusion also had a

bigger audio-visual illusory perception of motion. It is important to

note that the intercept parameter was significantly different from 0

(t(11) = 4.58, p,0.001). This strongly suggests a specific sound-

induced effect since, in the theoretical case of magnitude effect

equal to 0 in the visual (V) condition, the magnitude of the effect in

the AV condition would still be different from zero.

One of the main goals of the present study was to test whether

the illusory percept of motion influenced saccadic landing

positions. This was indeed the case. The effects of the experimen-

tal manipulations were confirmed by an ANOVA on the

horizontal component of eye movements in the visuo-motor task

with factors expected response (‘‘far’’ vs. ‘‘close’’) and stimulus modality

(‘‘V’’ vs. ‘‘AV’’), showing a significant effect of expected response

(F(1,12) = 18.09, p,.01, g2
partial = 0.60). Saccadic position was

biased along the direction of the visual illusion (see Figure 3 panel

A). That is, when the direction of the last repetition of the bar was

perceived to move away from initial fixation, saccades were larger

in magnitude and vice-versa.

Interestingly, neither a main effect of stimulus modality (A vs. AV,

F(1,12),1, ns, g2
partial,0.01) nor interaction between stimulus

modality and expected response emerged (F(1,12),1, ns, g2
partial = 0.02).

Thus, at the macro level, the visuo-motor illusion effect appeared to

be comparable with and without the sound, in contrast to what was

found with the perception task. The same analysis performed on the

vertical component of saccadic eye movements did not yield

significant results for any factors nor the interaction parameter.

The magnitude of the effect in the visuo-motor task was

computed for each participant and condition as the difference

between eye movement landing position and the flickering bar

position distance, for the different expected response condition

(D= distance(expected response = = far) - distance(expected

response = = close), see Figure 4). As with the perceptual

measurements, the magnitude of the effect in the AV condition

was clearly correlated with the magnitude in the V condition (see

figure 4, linear regression, t(11) = 2.59, p,0.05, r2 = 0.32). That is,

Cross-Modal Illusion Affects Eye Movements
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participants who showed an effect of the illusion on saccadic

landing positions showed similar effects with and without sound.

In this case the intercept parameter did not reach significance.

Based on this pattern of results, one might hypothesize a

possible dissociation between perception and action in our

experiment. In fact, there was an added effect of the sound (AV

vs. V conditions) in the perception but not in the oculomotor

measures, supporting a weak interpretation of the two-visual

system hypothesis. However, looking more closely at the data

within subjects it becomes clear that the perceived illusion and the

eye movement patterns were closely related.

There was a significant linear relation across participants

(r2 = .27, t(11) = 2.32, p,.05) between the magnitude of the

illusion effect in the two tasks when the sound was present (figure 5

panel A). This result indicates that in the AV condition the

magnitude of the illusory effect in the visuo-motor task increased

along with the magnitude of the illusory effect in the perceptual

task. Thus, it was possible to predict the amount of visuo-motor

illusory effect from the magnitude of the perceptual illusion (and

vice versa), supporting a close relation between perception and

action systems. Critically, this relation was not present in the

vision-only condition when analyzing magnitude effect across

perceptual and visuo-motor modality (r2 = .02, t,1, ns, see figure

5 panel B). To test the role of influential values in each fit (audio-

visual and vision-only) we ran a bootstrapping analysis (2000

resampled bootstrapping test) and reported the 95% percentile

confidence interval on each slope parameter (figure 5 panel C).

The slope parameter was significantly above zero only in the

audio-visual illusion condition, whereas this was not the case for

the visual-only condition.

To further test the difference between the audio-visual and

visual-only condition we compared the two conditions in a single

model, testing the effect of perceptual magnitude and sound

condition on visuo-motor magnitude. Perceptual magnitude was

treated as a continuous independent variable and sound condition

as a dichotomous independent variable. Significance levels were

tested with 95% confidence intervals in 2000 bootstrapping

repetitions

For each task we computed the magnitude on the illusory effect

for each participant and level of eccentricity position of the bar

Figure 2. Results of the perception task. Panel A: the proportion of ‘‘far’’ responses for the two stimuli conditions (visual vs. audio-visual; V and
AV) as a function of expected response. The steeper slope in the AV condition indicates a larger illusion effect (bars represent 2 SEM around the mean
after normalization to remove between-subject variability [32]). Panel B: post hoc analysis representing effect magnitude in the V and AV condition.
Magnitude in the latter condition is bigger than in the former, nonetheless V condition magnitude is consistently smaller but statistically different
from chance (see results section; bars represent 2 SEM around the mean after normalization to remove between-subject variability [32]). Panel C:
regression analysis in the perceptual task, the effect magnitude in the AV condition is positively correlated with magnitude in the V condition.
doi:10.1371/journal.pone.0062131.g002

Figure 3. Visuo-motor modality ANOVA results. Panel A: average horizontal (x) component offset from flickering bar position (0 in the y axis)
across experimental condition. Data shows a significant influence of expected response condition (bars represent 2 SEM around the mean after
normalization to remove between-subject variability [32]). Panels B and C: Boxplots showing single participant distribution of horizontal component
amplitude and saccade onset time across all conditions.
doi:10.1371/journal.pone.0062131.g003

Cross-Modal Illusion Affects Eye Movements
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(15, 16, or 17 degree of visual angle). There was a significant linear

relation between the magnitude of the illusion effect in the two

tasks when the sound was present (AV condition, r2 = .57,

t(37) = 2.90, p,.05, robust linear regression, p value estimated

by 2000 resampled bootstrapping sets, figure 6A thick line, white

symbols) but not when the sound was absent (V condition,

r2 = 0.08, t(37) = 20.28, ns, robust linear regression, p value

estimated by 2000 resampled bootstrapping sets, figure 6A dotted

line, black symbols).

Moreover, as can be seen in Figure 6B, there was a significant

interaction between perceptual magnitude and sound, showing

that the slope in the AV condition was steeper than in the V

condition.

This result indicates that in the AV condition the magnitude of

the illusory effect in the visuo-motor task increased along with the

magnitude of the illusory effect in the perceptual task, supporting a

close relation between perception and action systems. Thus, a

careful examination of the results showed that, despite the

difference at the macro level, there was still a close relationship

between the two tasks at the level of individual participants. The

influence SIVM on visuo-motor behavior rules out a strong

interpretation of the two-visual system hypothesis. Moreover the

overall pattern of results does not support a weak interpretation of

the hypothesis, providing evidence in support of a shared

representations between visuo-motor and perceptual systems.

In general, the illusion influenced the horizontal component of

the saccade consistent with a perceived shift in position. However,

on average, participants tended to perform slightly smaller

saccades than requested (Figure 3, panel A). This is not surprising

given the nature of the task and the large amplitude of the required

saccades (16 degrees of visual angle on average), since undershoots

are commonly reported in similar studies [14]. Participants

performed ‘‘blind saccades’’ towards a target that disappeared

50 ms after the eye movement cue (see figure 1), which was

extinguished by the time the eyes started to move (average saccade

onset time across participants 336 ms, SD = 80 ms).

Discussion

The aim of this study was to test the link between action and

perception by measuring whether oculomotor behaviour might be

biased by the SIVM audio-visual illusion. Using a modified version

of SIVM paradigm we were able to replicate the illusion in the

perceptual judgment task. Moreover, we found a consistent effect

of the SIVM illusion on saccade landing positions. The horizontal

component of the eye movements towards a flickering bar

perceived as shifting away from the initial fixation point was

larger than when the bar was perceived as shifting towards the

initial fixation point, and vice-versa. Thus, both perception and

action were fooled by the illusion.

Interestingly, for both perceptual judgments and visuo-motor

behaviour the mere presence of the physical inducer was sufficient

to establish an alternating motion perception also in the absence of

Figure 4. Analysis of individual subject performance in the
different tasks and conditions. Data shows a strong correlation
between the strength of the illusion in the two stimuli conditions (visual
vs. audio-visual; V and AV) within the visuo-motor task.
doi:10.1371/journal.pone.0062131.g004

Figure 5. Analysis of individual subject performance in different tasks and conditions. Panel A: correlation between the visuo-motor and
the perceptual response in the AV condition. Panel B: there was no correlation between the visuo-motor modality and perceptual modality in the
visual condition (V). Panel C: 95% confidence interval bootstrapped slope parameter for the AV and V-only condition. Only in the former case the
slope parameter was significantly above zero, whereas this was not the case in the V-only condition.
doi:10.1371/journal.pone.0062131.g005
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a coupled spatially specific sound. It is important to point out that

the inducer stimulus was only presented at the beginning of the

trial, either 2 or 2.5 seconds before the last bar in the sequence (for

5 and 6 repetitions conditions, respectively). Thus, the effect of the

physical inducer persisted over time across subsequent repetitions

of the stationary bar. To our knowledge this is the first time that

this effect has been reported. This unexpected result has potential

implications for studies of target localization in the far periphery

[26] and requires further study. It has been shown that moving

stimuli produce far reaching sub-threshold waves of activity in

primary visual cortex spreading far ahead of the actual stimulus

representation that ‘‘prepare’’ the cortex for an object’s putative

trajectory [27]. In the far periphery, this anticipatory sub-

threshold activity might be related to the established alternation

observed here. The current findings add something new to those

reported by Hidaka and colleagues [20] by showing that, in

addition to a synchronous auditory inducer, also a single visual

inducer can bias the subsequent perception of a static flashing

stimulus so that it seems to move. One interesting question for

future studies is whether the AV illusory motion and the visual

inducer motion found in the present study reflect a shared

mechanism (such as a shift in attention or preparatory activity in

cortex for expected motion) or different modality-specific mech-

anisms. The correlation between audio-visual and visual-only

induced motion illusions is suggestive of the possibility of a single

mechanism.

More generally, the current pattern of results is relevant to the

debate regarding potential dissociations between perception and

action. Based on a simple comparison of whether the illusion

manipulation (AV vs. V conditions) resulted in a significant

difference or not between the two tasks, our results might at first

seem to support a weak interpretation of the perception/action

dissociation [11]. Indeed, the AV condition had a larger effect on

perceptual judgments than the V condition, but no such difference

was found on the eye movement landing position. However the

correlation between the magnitude of the perceptual and the

oculomotor effects in the AV but not the V condition (Figures

5C&6A) suggests a close coupling between action and perception

systems. Thus, a more detailed analysis of the same data led to

evidence for a common representation driving both the perceptual

and the visuo-motor modality in the SIVM illusion. This idea was

further supported by the robust linear regression approach in a

single model (see figure 6B), showing a significant interaction

between perceptual magnitude and sound, with the slope in the

AV condition being steeper than the V condition. These findings

resemble those obtained by Smeets & Brenner [28] in which the

authors show how motion and location signals are processed

independently, and these different sources of information are kept

separated for both perception and action systems.

Another important aspect to be discussed is whether our

findings are specific to the oculomotor system, rather than

grasping or pointing hand movements as in many earlier studies.

It has long been noted that saccades and attention are closely

linked [29,30]. Thus, the pattern of results found here might not

hold for other sensory-motor systems such as those that subserve

hand-related actions. Regarding the question of whether the

oculo-motor effects found here are based entirely on attention

shifts, it is notable that previous studies have shown reduced effects

of visual illusions on saccade amplitudes with full attention [17]. In

a study of Muller-Lyer illusion [17], it was reported that illusion

effects on eye movement were largest for fast compared to longer

saccadic latencies. Longer latencies result in a smaller illusion,

suggesting that with sufficient time the oculomotor system was able

to determine an accurate position of the target.

Overall, our results suggest that the spatial localization

mechanisms involved in perceiving the flashing bar and targeting

a saccade to that bar relied upon a shared neural representation.

Moreover our data shows that the so-called sound-induced visual

motion illusion can fool both perception, and eye movements, and

that this can occur even without any sound at all based on the

mere presence of a visual inducer. Such an inducer was able to

establish a long lasting alternation in the periphery of the visual

Figure 6. Bootstrapped robust linear regression links illusion magnitude in the perceptual and the visuo-motor domains. Panel A:
perceptual – visuo-motor relation binned across the 3 eccentricities for each participant (squares = 15 deg/vis angle, diamonds = 16 deg/vis angle,
triangles = 17deg/vis angle); audio-visual condition (white symbols, thick line): y = 1.24x20.19, t(37) = 2.90 (slope parameter, p,0.05 based on 2000
bootstrapped repetitions), r2 = 0.57; visual-only condition (black symbols, dotted line): y = 20.15x+0.48, t(37) = 20.28 (slope parameter, ns based on
2000 bootstrapped repetitions), r2 = 0.08. Panel B: 95% confidence interval of interaction parameter between audio-visual and visual-only condition
suggesting how the slope in the audio-visual condition is significantly different from the visual only-condition (mean bootstrapped interaction
parameter = 1.58).
doi:10.1371/journal.pone.0062131.g006
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field. While the nature of shared representations between action

and perception for a variety of features remains a matter of debate

[11,31,3], the current findings provide support for a common

mechanism in spatial localization.
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