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Abstract

Chagas disease, or American trypanosomiasis, is a parasitic disease caused by the protozoan Trypanosoma cruzi and is
transmitted by insects from the Triatominae subfamily. To identify components involved in the protozoan-vector
relationship, we constructed and analyzed cDNA libraries from RNA isolated from the midguts of uninfected and T. cruzi-
infected Triatoma infestans, which are major vectors of Chagas disease. We generated approximately 440 high-quality
Expressed Sequence Tags (ESTs) from each T. infestans midgut cDNA library. The sequences were grouped in 380 clusters,
representing an average length of 664.78 base pairs (bp). Many clusters were not classified functionally, representing
unknown transcripts. Several transcripts involved in different processes (e.g., detoxification) showed differential expression
in response to T. cruzi infection. Lysozyme, cathepsin D, a nitrophorin-like protein and a putative 14 kDa protein were
significantly upregulated upon infection, whereas thioredoxin reductase was downregulated. In addition, we identified
several transcripts related to metabolic processes or immunity with unchanged expressions, including infestin, lipocalins
and defensins. We also detected ESTs encoding juvenile hormone binding protein (JHBP), which seems to be involved in
insect development and could be a target in control strategies for the vector. This work demonstrates differential gene
expression upon T. cruzi infection in the midgut of T. infestans. These data expand the current knowledge regarding vector-
parasite interactions for Chagas disease.
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Introduction

Parasitic diseases transmitted by arthropods have been some of

the most severe causes of human death in the world, especially in

developing countries. Malaria, yellow fever, dengue and African

trypanosomiasis are examples of arthropod-borne diseases trans-

mitted to humans [1]; Chagas disease, or American trypanosomi-

asis, is another example of this type of disease. Chagas disease is

caused by the protozoan parasite Trypanosoma cruzi and is

transmitted by insects from the Triatominae subfamily [2].

Chagas disease remains prevalent in many Latin American

countries, affecting an estimated eight million people [3], and it is

correlated with poor living conditions. Although most acute

infections are asymptomatic, approximately 30% become chronic,

resulting in approximately 12,500 deaths annually. Moreover,

there is neither a vaccine nor a preventive treatment to cure

Chagas disease, as the drugs currently used have efficacies only in

the acute phase of the disease, leading to several side effects in

humans [3,4]. In contrast to the majority of parasites that transmit

arthropod-borne diseases, T. cruzi is not inoculated in the host’s

saliva because this protozoan does not infect the salivary glands of

the vector insect. Instead, the parasite colonizes the intestinal tract

and rectum of triatomines. As part of the feeding process, the

insect defecates, and its feces, containing T. cruzi, remain on the

skin of the vertebrate. Then, the host becomes infected via mucosa

or at bite sites [5].

T. cruzi uses a blood feeding process to proliferate and develop

inside the insect’s midgut. However, the parasite must bypass the

vector’s defenses, which are composed of innate immunity

molecules expressed in response to different types of infection

[6]. The midgut of blood-sucking triatomines is considered an

immune competent tissue [4], and it is suggested that inducible

immune compounds from the intestinal tract can modulate

parasite development [7–9]. Nevertheless, little information has

been published regarding expression profiles in the midgut or the

role of innate immunity for many important disease vectors [10],

including triatomine bugs such as Triatoma infestans, which is one of

the most important vectors of T. cruzi [11].

Studies on the molecular interactions of protozoa from the

Trypanosoma genus and triatomine vectors are limited. Most of

these studies address the interactions of parasites in the hemo-

lymph as they move to the salivary glands of insects. In the case of

T. cruzi, this parasite remains in the intestinal tract and therefore

has minimal or no direct contact with hemolymph factors [12].
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Thus, we aimed to identify molecules from the vector midgut that

could be involved in the parasite-vector relationships using

Expressed Sequence Tags (ESTs) sequencing and analysis.

The study of genomes from disease vectors is a helpful

technique to identify targets with the aim of controlling insect

development and parasite transmission. Although the genome

sequencing of the triatomine insect Rhodnius prolixus is in progress,

there are currently there no efforts to sequence the T. infestans

genome [11].

EST analysis is an alternative to genome studies that helps

provide information about disease vectors. Some approaches that

have been used to identify Chagas disease vector molecules include

the analysis of expressed sequence tags (ESTs) from the salivary

glands [13–15] and ovaries [16] of triatomine insects. However, no

extensive investigations have been conducted concerning the T.

infestans midgut.

In this work, we analyzed midgut cDNA sequences from insects

infected with T. cruzi in comparison to uninfected T. infestans.

Several ESTs matched with putative proteins related to the

protection of triatomine insects against parasite challenges, which

were modulated in infected T. infestans midguts. Expression

patterns of some of these molecules were confirmed by qRT-

PCR. This is the first EST profile analysis in the midgut of a

triatomine insect infected with T. cruzi, which provides new

insights towards understanding the role of midgut molecules in

triatomine-T. cruzi interactions.

Results and Discussion

T. infestans EST sequencing profile
Expressed Sequencing Tag profiling of insects under stress or

parasitic infection could provide information about related cellular

functions, including growth, development and immune defense

[17]. A total of 1,341 clones (661 and 680 clones from uninfected

and infected insects, respectively) were sequenced to obtain ESTs

from T. infestans midgut libraries. These raw data were subjected to

cleaning steps, resulting in approximately 440 high-quality ESTs

from each library. To obtain clusters, reads of the two libraries

were assembled using the CAP3 program, which generated 380

clusters using sequences representing a minimum size of 76 base

pairs (bp) (Table 1 and Data S1 – spreadsheet stats). A consensus

sequence derived from two or more sequences was named ‘contig,’

and the term ‘singleton’ was used for single sequences. In this

section, we will use the denomination ‘cluster’ to address ESTs

from both contigs and singletons.

The average cluster length among all ESTs was 664.78 bp, and

approximately 283 clusters were distributed in a range of 500–

700 bp (Figure 1 and Data S1, spreadsheet stats). The fact that the

majority of clusters were over 500 bp in length was an advantage

because the production of larger clusters facilitated subsequent

functional analysis [18]. Only clusters longer than 200 bp were

selected for further analysis.

For functional analysis, ESTs were matched against a subset of

the non-redundant (nr) NCBI protein database (see NR-light in

methods) using BLASTx. Approximately 55% of whole T. infestans

midgut ESTs had a match in this database when implementing a

cut-off E-value of 161025 (Table 1 and Data S1). In the absence

of T. infestans genomic information, we compared the clusters

obtained to a preliminary set of Rhodnius prolixus proteins predicted

from the genome of this insect. The fact that 241 out of 380 T.

infestans clusters matched to predicted Rhodnius proteins with an E-

value lower than 1025 showed that both of these triatomines have

similar protein sets. In addition, some differences between these

two Chagas disease vectors were observed: 139 of the predicted

proteins appeared to be specific to T. infestans. From the 241

predicted proteins that matched the Rhodnius proteins, we

highlighted 33 proteins classified as unknown; these are listed in

the worksheet named ‘‘Rhodnius matches’’ (Data S1). Most of these

sequences presented differential expression upon infection, and

their relevance in the efficiency of T. cruzi infection will be

investigated in future studies.

The EST profile was also analyzed in terms of a taxonomic

classification by comparison to other taxa (Figure 2). As the

computational time to blast sequences to the non-redundant

protein database (nr) increased considerably, we built a protein

database, named NR-light, that is a subset of nr, as described in

the methods section. This database includes many arthropods,

viruses, bacteria and protozoan parasites with well annotated

genomes that commonly infect arthropods and some vertebrates.

Figure 2 presents complementary information about the similarity

of T. infestans clusters to the annotated proteins when they were

blasted against the two datasets.

Because the NR-light database may lead to a bias towards

insects, we observed that the highest percentage of clusters

matched insects (65.45%), and approximately 19% of the clusters

present in this group were similar to the predicted proteins from T.

infestans. Another abundant class of clusters was related to other

Hemipterans (approximately 19%), which corresponded to hits

from insects such as Triatoma dimidiata, Triatoma matogrossenssis and

the pea aphid Acyrthosiphum pisum, the representative organism of

this group (see Data S1). The high number matches to A. pisum

sequences may be explained by the prevalence of this insect

genome [19]. However, triatomine midgut sequences are scarce;

therefore, our ESTs enhance the data related to Chagas disease

vectors.

We also used a detailed functional classification system (Table 2;

Data S1, worksheet class distribution and Data S2, worksheet

,5%X column O) and the statistics of cluster classes for

upregulated clusters (Table 3; Data S1, worksheet class distribu-

Table 1. Analysis summary of T. infestans ESTs.

Description Number %

High quality ESTs 872 100

Contigs 380 -

Mean (bp) 664.78 -

BLATX NR protein database (,1025) 472 54.12

doi:10.1371/journal.pone.0061203.t001

Figure 1. Length distribution of T. infestans clusters.
doi:10.1371/journal.pone.0061203.g001

Relationship of Vector and Parasite
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tion and Data S2, worksheet up-reg) and downregulated clusters

(Table 4; Data S1, worksheet class distribution and Data S2,

worksheet down-reg). Many transcripts were classified as putative

secreted proteins related to processes such as protein transcription

and synthesis.

A large portion of transcripts comprised identified proteins

representing unknown functions (Table 2). A number of these

transcripts were found to be upregulated or downregulated in

response to T. cruzi infection. Specifically, 21 unknown or

unknown conserved transcripts were upregulated (Table 3)

whereas 52 were downregulated (Table 4) in T. infestans upon

infection. It is possible that some proteins encoded by these

transcripts may have novel functions in response to T. cruzi

infection and are good targets for future studies.

Differential transcript expression was observed for genes that

participate in many processes, such as energy metabolism,

detoxification, immunity and proteinase control. Regarding the

expression of important molecules involved in these processes and

in vector-parasite relationships, we selected some representative

contigs among those that were differentially expressed in

uninfected insects and in insects infected with T. cruzi to quantify

expression using qRT-PCR.

Transcripts differentially expressed in T. infestans midgut
Down-regulated transcript. A contig encoding a Thior-

edoxin reductase (Data S1, contig 573) was downregulated in

infected insects (Figure 3). Thioredoxin reductase is an antioxidant

Figure 2. A pie chart showing the species distribution of BLASTx hits of the T. infestans clusters for several organisms.
doi:10.1371/journal.pone.0061203.g002

Table 2. Functional classification of transcripts from all
clusters.

Class Number of Clusters Number of ESTs

Putative secreted proteins 14 62

Nuclear regulation 5 8

Transcription factor 3 6

Transcription machinery 9 25

Protein synthesis machinery 25 42

Protein export machinery 9 12

Protein modification machinery 19 27

Proteasome machinery 2 2

Transporters/storage 10 22

Oxidant metabolism/
detoxification

6 23

Metabolism, carbohydrate 6 9

Metabolism, nucleotide 1 1

Metabolism, amino acid 2 2

Metabolism, lipid 10 15

Signal transduction 18 33

Extracellular matrix/cell adhesion 7 17

Cytoskeletal 7 18

Transposable element 3 3

Metabolism, energy 18 50

Unknown 126 288

Unknown, conserved 54 104

Immunity 7 12

Viral 12 73

Nuclear export 1 1

Secreted proteinase inhibitor 6 14

doi:10.1371/journal.pone.0061203.t002

Table 3. Functional classification of transcripts that
originated from upregulated contigs.

Class Number of Clusters Number of ESTs

Putative secreted proteins 3 14

Nuclear regulation 1 2

Transcription factor 1 2

Transcription machinery 2 4

Protein synthesis machinery 4 10

Transporters/storage 4 9

Oxidant metabolism/detoxification 2 9

Metabolism, carbohydrate 2 4

Metabolism, lipid 1 3

Signal transduction 2 7

Extracellular matrix/cell adhesion 1 2

Cytoskeletal 2 6

Metabolism, energy 1 2

Unknown 7 8

Unknown, conserved 4 13

Immunity 1 2

Secreted proteinase inhibitor 1 2

doi:10.1371/journal.pone.0061203.t003

Relationship of Vector and Parasite
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enzyme that promotes the conversion of oxidized thioredoxin and

can act together with the glutathione system to regenerate reduced

glutathione, contributing to the detoxification of free radicals and

impairing oxidative stress in hematophagous insects [20]. Accord-

ing to Paes et al. [21], low concentrations of molecules involved in

oxidative stress promote the proliferation of T. cruzi. Therefore,

the expression of thioredoxin reductase in infected bugs may be

modulated by T. cruzi to allow parasite proliferation inside the T.

infestans midgut.

Up-regulated transcripts. Contig 564 (Data S1) was

upregulated (approximately 35-fold) in infected T. infestans

compared to the control (Figure 4A). This contig matched the

rhodnius biogenic amine binding-like protein [Triatoma matogros-

sensis] in the NR-light database (Data S1, column U) and presented

the best match to nitrophorin in Conserved Domain Database

(CDD) (Data S1, column DC). Nitrophorins are nitric oxide

carriers that have been reported to play a role in the innate

immunity of insects. Although nitrophorins are salivary gland

molecules, they are lipocalins and are able to bind non-polar

molecules such as nitric oxide [22]. According to Whitten et al.

[10], nitric oxide production was upregulated when the triatomine

insect Rhodnius prolixus was infected with T. cruzi. Because nitric

oxide can react with other radicals to generate compounds toxic to

T. cruzi [23], nitrophorin-like molecules might be upregulated

through signaling mechanisms carried out by the parasite to aid its

survival in the insect’s midgut.

We found increased expression (approximately 90-fold) of

contig 538 (Data S1) encoding a possible 14 kDa putative secreted

protein in infected insects (Figure 4B). These transcripts did not

match known proteins in the databases, including the Rhodnius

database, suggesting that this is a new protein that has discovered

in the midgut of T. infestans. Thus, elucidation of the role of this

hypothetical protein merits further investigation as it was highly

modulated by T. cruzi infection and seems to be involved in vector-

parasite relationships.

The expression of lysozymes was also upregulated in infected

insects (Figure 4C). Lysozymes catalyze the hydrolysis of

glycosidic bonds of peptidoglycans present in bacterial cell

walls and causes bacterial lysis [24]. Lysozymes are considered

to be an antimicrobial peptide expressed in response to bacterial

challenges [8]. However, high expression levels of lysozymes

were observed upon the artificial injection of T. cruzi in the

hemolymph of Rhodnius prolixus [25], indicating that this protein

may also be involved in the modulation of T. cruzi infection in

triatomine insects.

A contig encoding cathepsin D (Data S1, contig 183) was

upregulated in the T. infestans midgut when infected with T. cruzi

(Figure 4D). Cathepsin D is a lysosomal protease involved in

digestion processes in triatomine insects. The expression of

transcripts encoding cathepsin D was detected in the anterior

midgut of T. infestans [26]. Borges et al. [27] showed that cathepsin

D activity increased when the triatomine insect was infected with

T. cruzi and that this activity was due to parasite colonization in the

midgut.

Cystatin was another molecule that was found to be upregulated

upon T. cruzi infection. Cystatins are reversible and tight-binding

inhibitors of papain-like cysteine proteases, and they are

widespread in plants, animals and microorganisms [28]. Although

the number of cystatin transcripts remained constant in both

libraries, qRT-PCR revealed that this inhibitor is upregulated in

the anterior midgut when T. infestans is infected with T. cruzi (data

published in Buarque et al. [29]). Our studies on T. infestans

cystatins show that recombinant T. infestans cystatin (Tigutcystatin)

is a tight-binding inhibitor (Ki = 3.29 nM) of the T. cruzi cysteine

protease cruzipain [29]. Thus, T. infestans cystatins might be

important in modulating T. cruzi colonization inside the insect

midgut by inhibiting cruzipain, which is a virulence factor for the

parasite T. cruzi [30].

In both libraries, we also identified contigs assembled from

ESTs with unchanged expression related to several metabolic

processes and important for T. infestans development. We list some

of these contigs below (Table 5).

Table 4. Functional classification of transcripts that
originated from downregulated contigs.

Class Number of Clusters Number of ESTs

Putative secreted proteins 4 16

Nuclear regulation 1 3

Transcription machinery 1 11

Protein synthesis machinery 4 11

Protein export machinery 2 4

Protein modification machinery 1 2

Transporters/storage 1 2

Oxidant metabolism/detoxification 1 7

Metabolism, carbohydrate 1 2

Signal transduction 3 20

Extracellular matrix/cell adhesion 2 4

Metabolism, energy 5 15

Unknown 9 33

Unknown, conserved 7 19

doi:10.1371/journal.pone.0061203.t004

Figure 3. qRT-PCR of Thioredoxin reductase upon T. cruzi
infection. The levels of mRNA from Thioredoxin reductase were
obtained by relative quantification. Adult insects infected with T. cruzi
and uninfected T. infestans were used for analysis (three biological
samples were used for both the uninfected and infected groups). All
data were normalized to 18S ribosomal RNA, representing the mean
(n = 3) of identical triplicates 6 standard deviation. An unpaired t test
was performed for statistical analysis, and differences were considered
significant at P,0.05. Asterisks represent significant differences (***
P,0.001).
doi:10.1371/journal.pone.0061203.g003

Relationship of Vector and Parasite
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Transcripts with unchanged expression upon T. cruzi
infection

Transcripts encoding infestin, an anticoagulant protein from the

T. infestans midgut that counteracts the host’s hemostastic system

by inhibiting thrombin and factor XIIa from coagulation cascades

[31,32], were found in our analysis (Data S1, contig 256). Most of

the activity of infestin-like inhibitors was found in the anterior

midgut, suggesting that these anticoagulant molecules are synthe-

sized and stored in the anterior midgut prior to the ingestion of

blood [33]. No significant alterations in infestin expression were

detected under T. cruzi infection (Figure 5). According to Lovato et

al. [34], differences in infestin expression were observed 12 h after

T. cruzi challenge, although the expression remained constant 36 h

after infection. In our work, midguts were dissected 24 h post-

challenge; therefore, we suggest that infestin expression can

fluctuate at different times of infection. We cannot exclude the

possibility that infestin may play a role in the first hours after T.

cruzi infection, which could explain the presence of proteins prior

to the blood meal.

Some transcripts had significant matches to different insect

lipocalins. These proteins play several roles, including the

transport of small molecules in vertebrates and invertebrates

[35]. In our set of ESTs, a contig was found that is related to fatty

acid binding lipocalins (FABL) (Data S1, contig 457), which may

be related to the transport of fatty acids [36]. Moreover, the contig

identified was related to triabin-like lipocalins, which are thrombin

Figure 4. qRT-PCR of four transcripts upregulated upon T. cruzi infection. Amounts of mRNA from nitrophorin-like protein (A), 14 kDa
protein (B), lysozyme (C) and cathepsin D (D) were obtained by relative quantification. Adult insects infected with T. cruzi and uninfected T. infestans
were used for analysis (three biological samples were used for both the uninfected and infected groups). All data were normalized to 18S ribosomal
RNA, representing the mean (n = 3) of identical triplicates 6 standard deviation. An unpaired t test was performed for statistical analysis, and
differences were considered significant at P,0.05. Asterisks represent significant differences (** P,0.01; *** P,0.001).
doi:10.1371/journal.pone.0061203.g004

Relationship of Vector and Parasite
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inhibitors [37]. Triabin-like lipocalins were identified in salivary

glands transcriptomes from T. infestans and T. dimidiata [15–16].

Defensin ESTs were also detected in the present EST analysis

(Data S1, contig 582). Defensins are antimicrobial peptides

involved in defense against infection with microorganisms [38].

We observed a similar expression profile in libraries from both

uninfected and T. cruzi infected triatomines. Defensin expression is

upregulated in the posterior midgut of triatomine insects upon T.

cruzi infection. However, this antimicrobial peptide is not

modulated by T. cruzi in the stomach, and it may reflect a T.

infestans adaptation to control symbiont multiplication [9].

Another putative protein, juvenile hormone binding protein,

was identified. This protein is involved in the development and

reproduction of insects and was proposed as a potential target to

control the vector insect and consequently decrease the transmis-

sion of Chagas disease [11].

In summary, this work provides the first global analysis of

expression profiles from the midgut of a Chagas disease vector

under T. cruzi infection, with a resulting repertoire of transcripts

that are important in the elucidation of metabolic processes in T.

infestans. We demonstrated differential expression of several ESTs

upon T. cruzi infection. Moreover, we reported a largely

upregulated putative 14 kDa protein that has not been described

previously. Together, the data provide relevant information

regarding the interaction of T. cruzi with the vector insect and

new target molecules for future research in the control of Chagas

disease.

Materials and Methods

Ethics Statement
Experimental protocols for mouse infections were carried out in

accordance with the guidelines of the Ethics Committee in

Research from the Federal University of São Paulo (CEP –

UNIFESP), approved under registry 1850/08.

Insects and infection protocol
T. infestans were reared under controlled temperature

(2762.0uC) under a 12/12 light/dark cycle. Adult male insects

(n = 10) that had been starved for 30 days were allowed to feed ad

libitum on anesthetized mice (ketamine 150 mg/kg and xylazine

7 mg/kg). Insect tissues were dissected 24 h after feeding. For

infection experiments, insects were infected orally by feeding ad

libitum on anesthetized mice infected with T. cruzi Y strain, and

these insects were also dissected 24 h after feeding. Mice infection

was performed according to Kollien and Schaub [39], and the

population density (16106 parasites/mL) was determined using a

Neubauer chamber.

cDNA library construction
T. infestans mRNA was extracted from 10 anterior midguts from

insects belonging to the control group (uninfected insects) and 10

anterior midguts from the infected insects group using TRIZOL

reagent (Invitrogen, Carlsbad, CA). The PCR-based cDNA library

was created following the guidelines of the SMART cDNA library

construction kit (Clontech), which provides an oligonucleotide

named SMART IV in the first-strand synthesis to produce a high

percentage of full-length, double-stranded cDNA. T. infestans

midgut total RNA was used for reverse transcription to cDNA

using MMLV reverse transcriptase (Clontech), the SMART IV

oligonucleotide, and the CDS III/primer (Clontech). The reaction

was carried out at 42uC for 1 h.

A long-distance PCR-based method was utilized to perform the

second-strand synthesis by using Advantage Taq polymerase mix

(Clontech), a 59 PCR primer and a CDS III/39 primer, which

inserts Sfi1A and B restriction enzyme sites at the end of the

cDNA. The PCR conditions were 95uC for 1 min, 19 cycles of

95uC for 15 s and 68uC for 6 min. A 5-mL sample was analyzed on

a 1.1% agarose/EtBr (0.1 mg/mL) gel to check the quality and

abundance of the cDNA. Next, DNA polymerase was inactivated

with proteinase K, followed by precipitation, and double-stranded

cDNA was then digested with SfiI restriction enzyme at 50uC for

2 h. Then, cDNA was fractioned on a ChromaSpin-400 column

(Clontech). The fractions were analyzed on a 1.1% agarose/EtBr

Table 5. A list of contigs with unchanged expression that are important for metabolic processes or defense in T. infestans.

Putative protein Nucleotide length (bp) E-value Identity (%) Species of best match

Infestin 634 1.00E-121 98 Triatoma infestans

FABL 624 7.00E-44 77 Cimex lectularius

Triabin 779 5.00E-14 31 Triatoma matogrossensis

Defensin 525 2.00E-47 92 Triatoma brasiliensis

JHBP 915 2.00E-05 22 Daphnia pulex

FABL – Fatty acid binding lipocalin.
JHBP – Juvenile hormone binding protein.
doi:10.1371/journal.pone.0061203.t005

Figure 5. qRT-PCR of infestin. Adult insects infected with T. cruzi
and uninfected T. infestans were used for analysis (three biological
samples were used for both the uninfected and infected groups). All
data were normalized to 18S ribosomal RNA, representing the mean
(n = 3) of identical triplicates 6 standard deviation. An unpaired t test
was performed for statistical analysis.
doi:10.1371/journal.pone.0061203.g005

Relationship of Vector and Parasite
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(0.1 mg/mL) gel, and fractions containing cDNA were pooled.

The cDNA was precipitated and ligated into a lTriplEx2 vector

(Clontech), and the ligation was packaged using GigaPack Gold III

Plus packaging extract (Stratagene) according to the manufactur-

er’s guidelines. The packaged library was plated by infecting log-

phase XL1-Blue Escherichia coli cells (Clontech) for cDNA library

amplification and titering unamplified and amplified libraries.

Sequencing of T. infestans cDNA libraries
The E. coli BM 25.8 strain was used to inoculate 2 mL of LB

broth medium at 31uC with shaking at 180 rpm until the OD600

reached 1.3. Next, MgCl2 was added to the culture (10 mM final

concentration). Then, the bacterial culture was combined with

separate amplified cDNA libraries, and the mixture was incubated

at 31uC without shaking. Next, 400 mL of LB medium and the

bacteria, including the libraries, were incubated for an additional

1 h at 31uC with shaking (225 rpm). Finally, infected cells (1–

10 mL) were spread on an LB/ampicillin plate and grown

overnight at 31uC to obtain isolated clones, maintaining the

excised pTriplEX2 containing the DNA inserts.

Following an excision protocol, mini plasmidial preparations

(minipreps) were performed using bacteria BM 25.8 clones

according to Sambrook [40]. Then, minipreps (200 ng) were used

as templates for sequencing reactions. The primer used was

upstream from the inserted cDNA (LD insert 59-

CTCGGGAAGCGCGCCATTGTGTTGGT-39), and the se-

quencing reaction was performed on an MJ PT-200 thermocycler.

The sequencing products were precipitated using ethanol and

sodium acetate buffer. Finally, DNAs were sequenced on an ABI

3130 sequencer (Applied Biosystems).

Bioinformatics analysis
Expressed sequence tags (ESTs) were trimmed of primer and

vector sequences and then assembled and compared with other

databases using programs from the National Center for Biotech-

nology Information (NCBI). The cleaned, non-assembled sequenc-

es were deposited in dbEST from NCBI under accession numbers

JK733006 – JK733438 and JK733439 – JK733877 for ESTs from

uninfected and infected T. infestans libraries, respectively.

The BLAST tool [41] and CAP3 assembler [42] were used to

compare and assemble the sequences. For functional description of

the transcripts, the Blast tool [43] was used with a program [44]

developed by Jose Ribeiro (NIAID – NIH) to compare the

sequences with the following databases: Conserved Domain

Database (CDD) [45]; Protein families (Pfam) [46]; Ortologous

eukaryotic domains (Kog) [47]; simple modular architecture tool

(Smart) [48] using rpsBlast; Mit-pla and ribosomal RNA (rRNA)

using BlastN and Swissprot; Gene Ontology (GO) [49]; and a

subset of the Non-Redundant Database (NR) that we called NR-

light using BlastX. This subset of the non-redundant database

comprises proteins from the organisms having the following starts

(or ends, when the bracket indicates closure): ‘‘[Tribolium’’, ‘‘[Apis

m’’, ‘‘[Anopheles’’, ‘‘[Aedes’’, ‘‘[Culex’’, ‘‘[Ixodes’’, ‘‘[Glossina’’,

[‘‘Ochlerotatus’’, ‘‘[Tabanus’’, ‘‘[Chrysops’’, ‘‘[Amblyomma’’,

‘‘[Ornithod’’, ‘‘[Argas’’, ‘‘[Rhipicephalus’’, ‘‘[Boophilus’’, ‘‘[Phle-

botomus’’, ‘‘[Lutzomyia’’, ‘‘[Simulium’’, ‘‘[Rhodnius’’, ‘‘[Pan-

strongylus’’, ‘‘[Triatoma’’, ‘‘[Dipetalogaster’’, ‘‘[Mus m’’, ‘‘[Naso-

nia’’, ‘‘[Strongylocentrotus’’, ‘‘[Daphnia’’, ‘‘[Homo sa’’,

‘‘[Arabidopsis’’, ‘‘[Escherichia’’, ‘‘[Pseudomonas’’, ‘‘[Streptococ-

cus’’, ‘‘[Acyrthosiphon’’, ‘‘[Pediculus’’, ‘‘[Ciona’’, ‘‘[Danio’’,

‘‘[Caenorhabditis el’’, ‘‘[Drosophila mela’’, ‘‘[Plasmodium’’,

‘‘[Haemaphysalis’’, ‘‘[Cimex’’, ‘‘[Rickettsia’’, ‘‘[Asaia’’, ‘‘[Klebsi-

ella’’, ‘‘[Serratia’’, ‘‘[Enterobacter’’, ‘‘[Trypanosoma’’, ‘‘[Leish-

mania’’, ‘‘virus]’’, ‘‘[Saccharomyces’’, ‘‘[Neurospora’’, ‘‘[Aplysia’’,

‘‘[Babesia’’, ‘‘[Toxoplasma’’, ‘‘[Nocardia’’, ‘‘[Rhodococcus’’,

‘‘[Streptomyces’’, ‘‘[Ceratitis’’, ‘‘[Hyalomma’’, ‘‘[Brugia’’, ‘‘[Bran-

chiostoma’’, [Bos ta’’, ‘‘[Gallus g’’, ‘‘[Hydra’’, ‘‘[Orizasa’’,

‘‘[Nephila’’, ‘‘[Titus’’, ‘‘[Sussc’’, ‘‘[Rattusra’’, ‘‘[Canisfa’’, ‘‘[Ar-

giope’’, ‘‘[Araneus’’, ‘‘[Acanthoscurria’’, ‘‘[Agelenopsis’’, ‘‘[Schis-

tosoma’’, ‘‘[Bombyxmor’’, ‘‘[Bothrops’’, ‘‘[Ancylostoma’’, ‘‘[Ne-

cator’’, ‘‘[Bungarus’’, ‘‘[Crotalus’’, ‘‘[Hirudo’’, ‘‘[Desmodus’’,

‘‘[Xenopsylla,’’ ‘‘[Ctenocephalides’’ and ‘‘[Caenorhabditis ele-

gans’’.

The sequences were also blasted against a Rhodnius prolixus protein

database (Data S1). This database was built through automatic gene

previsions obtained using GeneID software [50] and trained with a

protein dataset deduced from an extensive Rhodnius transcriptome

(data not published but available at http://rhodnius.iq.ufrj.br/

English/index.php?option = com_content&view = article&id =

3&Itemid = 4). GeneID training and protein prediction (data

not published) were performed by Dr. Rafael Dias Mesquita

(IQ-UFRJ-Brazil), who kindly allowed us to use this informa-

tion. The ESTs from the two libraries, non-infected insects

and insects infected with T. cruzi, were assembled together.

However, we controlled the quantity of reads from each

library that were assembled to form each cluster. This

procedure enabled us to predict which clusters would have

downregulated, upregulated or unchanged expression upon

infection with T. cruzi.

Another program, kindly provided by Dr. José Marcos Ribeiro

(NIAID – NIH), was used to organize the blast results. This

program inserted the relevant information into a column-

hyperlinked excel spreadsheet (Data S1). One of these programs,

named ‘‘Classifier,’’ was used to read all blast results for each

cluster; it was also used to functionally classify and then propose

names for the proteins potentially coded by the cluster.

Another program, assembly joiner, extracted the coding sequences

(CDSs) from the clusters, eliminated the 59 and 39 UTRs when present

and corrected the frameshifts by substituting stop codons in the middle

of each sequence. In addition, this program deleted the truncated

codon by replacing the unknown triplet with X in the amino acid

sequence. The resulting protein sequences were also blasted against

the databases cited above, and the blast results were listed in another

excel spreadsheet (Data S2). In this spreadsheet, there are five

worksheets as follows: the first shows the most reliable data (,5% X),

the second shows all results, and the other three show the separate

analyses of the upregulated, downregulated and unchanged clusters.

Quantitative RT-PCR (qRT-PCR)
Quantitative RT-PCR (qRT-PCR) was performed using three

biological samples for each group (infected and uninfected insects),

each obtained from a pool of four insects. Total RNA was

extracted from the anterior midgut using TRIzol reagent

(Invitrogen) and quantified using NanoVue equipment (GE

Healthcare). Then, 1 mg of RNA was treated with 1 Unit of

DNase (Fermentas) for 1 h at 37uC. Reactions were stopped by

adding EDTA and heating for 10 min at 65uC. cDNA synthesis

was performed using the ImProm-IITM Reverse Transcription

System (Promega) following the manufacturer’s guidelines.

Quantitative RT-PCR was performed following the methods

described by Livak and Schimittgen [51] for delta delta Ct

calculations to conduct relative quantification of the transcripts.

The calibrator was the uninfected group for upregulated

transcripts and the infected group for downregulated transcripts.

Anterior midgut cDNAs from T. cruzi–infected and non-infected

T. infestans were quantified using SYBRH Green PCR Master Mix

(Applied Biosystems) in a 7500 Real-Time PCR System (Applied

Biosystems). The qRT-PCR reaction consisted of 1 mL of 10-fold
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diluted cDNA (5 ng), 6 mL of SYBRH Green and 0.3 mM of each

primer (Primer sequences are in Data S3) in a 12 mL total volume.

18S ribosomal RNA was used as the internal control. The PCR

program comprised 40 cycles at 94uC (15 seconds) and 60uC
(1 min), followed by melt curve generation. Melt curves were

analyzed to check the specificity of amplification. Reactions were

performed in triplicate (for each biological sample), and all values

are represented as the mean 6 standard deviation. An unpaired t

test was conducted for statistical analysis, and a significant

difference was accepted at P,0.05.

Supporting Information

Data S1 (TI-S1) Hyperlinked excel file with assembled
contigs and spreadsheets containing information about
the best hits in databases and a classification of contigs.
(XLSX)

Data S2 (TI-S2) Hyperlinked excel file with coding
sequence information.
(XLSX)

Data S3 (qRT-PCR) Word file containing primer se-
quences for qRT-PCR expression analysis.

(DOCX)
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