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Abstract

Rat hypodactyly (hd) mutation is characterized by abnormal spermatogenesis and sperm decapitation, limb malformation
(missing digits II and III) and growth retardation. We have previously reported centrobin (centrosome BRCA2-interacting
protein) truncation at the C-terminus in the hd mutant. Here, we report data from a transgenic rescue experiment carried
out to determine a role of centrobin in pathogenesis of hd. The transgenic construct, consisting of full-length-coding cDNA
linked to a ubiquitous strong promoter/enhancer combination, was inserted to chromosome 16 into a LINE repeat. No
known gene is present in the vicinity of the insertion site. Transgenic centrobin was expressed in all tissues tested, including
testis. Transgenic animals show normal body weight and limb morphology as well as average weight of testis and
epididymis. Yet, abnormal spermatogenesis and sperm decapitation persisted in the transgenic animals. Western blotting
showed the coexistence of full-length and truncated or partially degraded centrobin in sperm of the rescued transgenic
animals. Immunocytochemistry showed a buildup of centrobin and ODF2 (outer dense fiber 2) at the sperm decapitation
site in the hd mutant and rescued transgenic rats. Additional findings included bulge-like formations and thread-like focal
dissociations along the sperm flagellum and the organization of multiple whorls of truncated sperm flagella in the
epididymal lumen. We conclude that centrobin is essential for normal patterning of the limb autopod. Centrobin may be
required for stabilizing the attachment of the sperm head to flagellum and for maintaining the structural integrity of the
sperm flagellum. We postulate that the presence of truncated centrobin, coexisting with full-length centrobin, together
with incorrect timing of transgenic centrobin expression may hamper the rescue of fertility in hd male rats.
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Introduction

About 9% of couples suffer from infertility on a global scale [1].

Male factor is a major contributing cause in about half of the cases

of infertility. About half of human male infertility cases remain

idiopathic despite advances in clinical diagnostics. Some of the

infertility cases are thought to be of genetic origin [2]. Several

genes involved in male fertility have been identified using animal

models, in particular mouse targeted mutations and spontaneous

mutations/transgenic models of mice and other mammals.

Mutated genes can cause either standalone or syndromic male

infertility [2,3]. These mutations were shown to disrupt multiple

steps of spermatogenesis and sperm function. Consequently, the

identification and characterization of novel proteins involved in

sperm development are key issues leading to a better understand-

ing of presently unknown causes of male infertility.

Spermiogenesis is a complex postmeiotic phase of spermato-

genesis. It involves the development of round spermatids into

mature spermatids, consisting of elongated heads with an

acrosome-acroplaxome complex anchored to the nucleus. The

head is attached to the flagellum by the head-tail coupling

apparatus (HTCA). The distal centriole of the HTCA degenerates

in rodent sperm [4,5]. The sperm flagellum consists of an axoneme

surrounded by mitochondria at its head proximal segment, the

middle piece, and characteristic peri-axoneme outer dense fibers

along the entire length of the flagellum and a fibrous sheath in the

principal piece. The annulus marks the transition from the

mitochondria-containing middle piece to the principal piece of the

sperm flagellum. Mature spermatids are released into the lumen of

the seminiferous tubule by the process of spermiation, assisted by

the apical domain of Sertoli cells, and undergo a maturation

process in the epididymis defined by the acquisition of forward

motility [6–8]. The orderly sequence of sperm development and

maturation requires the timely expression, intramanchette trans-

port (spermatids) and intraflagellar transport (spermatids and

sperm) of proteins and their precise assembly and stability [9].

Several genes encoding specific proteins have been identified as

essential for spermiogenesis. One of these genes is Cntrob

(centrobin, for centrosome BRCA2 interacting protein [10]).
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Cntrob encodes a protein with a central coiled-coil region flanked

by noncoiled regions at the NH2 and COOH termini. Centrobin

is a daughter centriole protein essential for centrosome duplication

and elongation, two functions depending on centrobin-tubulin

interaction [11]. Centrobin regulates the attachment of the mitotic

spindle to the centrosome [12], a condition essential for the

stability of microtubules anchored to the kinetochore on meta-

phase chromosomes during separation of their chromatids. These

properties are lost in centrobin-depleted cells that subsequently

undergo apoptosis. When overexpressed, centrobin forms bundle-

like structures [10]. The reported centrobin-microtubule associa-

tion mimics a similar condition seen in spermatids and sperm,

wherein centrobin associates transiently with the microtubule-

containing manchette and with the centrosome and axoneme of

the developing sperm flagellum.

We have previously reported the spontaneous mutation of Cntrob

encoding truncated centrobin in rat hypodactyly (hd) [13]. A major

defect during late spermiogenesis in the hd mutant is the

detachment in maturing spermatids of the developing flagella

from their HTCA, an event that leads to massive decapitation

[13]. The HTCA can be regarded as a specialized centrosome

surrounded by specific proteins, some of them presently unknown.

The HTCA consists of a proximal centriole anchored to the

spermatid nucleus and a distal centriole from which the

microtubule-containing flagellum axoneme originates. Outer

dense fibers and a fibrous sheath encircle the sperm axoneme.

Basically, the structure and function of the HTCA resembles the

centrosome, the putative site of the mitotic spindle. Centrobin is

an addition to the catalog of proteins with a potential role in the

integrity of the HTCA, a site leading to the ‘‘easily decapitated

sperm syndrome’’ in humans [14–19]. In addition to the hd rat

mutant, other rodent models also display sperm decapitation at the

HTCA site [20,21]. However, it remains to be determined the

specific role of centrobin as a single protein or/and as part of

protein complexes during the assembly and stability of the HTCA.

This aim can facilitate the identification of subclinical forms of

male infertility involving sperm head-tail fragility leading to

decapitation during micromanipulation as part of in vitro repro-

ductive assisted technologies.

To pursue further a better understanding of centrobin’s role in

sperm decapitation, we attempted to rescue hd by transgenesis

using a construct encoding full-length centrobin protein. We have

found that limb malformation was completely rescued but sperm

decapitation persisted in the transgenic males. Yet, we have made

progress in determining additional structural and immunocyto-

chemical parameters concerning the contribution of centrobin to

sperm development.

Materials and Methods

Animals
All animal experiments were compliant with the Animal

Protection Law of the Czech Republic (311/1997) which is in

compliance with the European Community Council recommen-

dations for the use of laboratory animals 86/609/ECC, and were

approved by The Charles University Animal Care Committee. As

hd/hd males are sterile, the strain carrying the hd mutation (WHD)

was propagated by backcrossing heterozygous (+/hd) males to

homozygous (hd/hd) females [13].

Transgenic Construct
We previously amplified full-length wild-type centrobin (strain

BN/Cub) coding sequence by RT-PCR from testis cDNA and

cloned it into pEGFP-C1 [13]. We then subcloned this sequence-

verified coding sequence into pBS-CX1-LEL, to generate ubiqui-

tously expressing centrobin under the control of cytomegalovirus-

enhancer/b-actin (CAGGS) promoter [22].

Microinjection
Collecting rat zygotes, pronuclear microinjection of the

construct DNA, zygote cultivation, and implantation to the

pseudopregnant recipients was performed according to [22]. Since

we were concerned the mutated animals may yield suboptimal

results of embryo transfer, we used relatively genetically similar

wild-type strain WKY/Bbb, subsequently introducing the trans-

gene into the mutant animals by breeding.

Production of Rescued Males
We identified single transgenic founder by PCR using primers

Lip8_c5_2918F: ctcgacttccacctcctgtc; Lip8_3149R:TACAGTAG-

CAGGTCCTCAGCAG. PCR product of 343 bp was amplified

from endogenous locus, 238 bp from transgenic construct. We

bred this +/+ Tg+/2 founder male (the endogenous locus with

alleles ‘‘+’’ and ‘‘hd’’ for wild-type and mutant alleles respectively;

‘‘Tg’’ for the introgressed construct, allele+for presence, 2 for

absence of the transgene), to a mutant female (hd/hd Tg2/2).

Intercrossing the transgene positive hybrids (+/hd Tg+/2), we got

the rescued males: hd/hd Tg+/2 or hd/hd Tg+/+. Since our

genotyping assay cannot distinguish transgenic homozygotes

(Tg+/+) from heterozygotes (Tg+/2), we refer both groups as Tg+.

In rescued animals, due to lack of outward phenotypic manifes-

tation, we genotyped endogenous locus using primers:

Lip8_11_139F: CTGGGAGCCACACTTAGGTC; LTR_3_F:

CTGGGGCGGTACTATGCTAA; Lip8_c2_2235R:

AACTCCTGTTGGTGCTGTCC. LTR_3_F-Lip8_c2_2235R

yield 429 bp in mutants only (hd/hd), Lip8_11_139F-

Lip8_c2_2235R yield 171 bp in wild-type only (+/+). Heterozy-

gotes (+/hd) show both products.

Transgene Insertion Site Localization
To reveal the insertion point of the transgene, we performed

inverse PCR: we isolated DNA from a tg+ animal, cut with

restriction endonuclease Hin1II (Fermentas, Vilnius, Lithuania)

ligated to form circular DNA, amplified with primers CMVie_F:

CAAGTACGCCCCCTATTGAC; CMVie_R:

GCCAAGTGGGCAGTTTACC; and sequenced the product

using Sanger sequencing with BigDye chemistry (Applied Biosys-

tems, Foster City, California). Primers designed to amplify the

junctions between chromosome 16 and transgene construct were

as follows: Primers localized to chromosome 16 were

chr16_44M_F: TTTGCGAGGGACCTAAAATG and

chr16_44M_R: GCTGTGCGAATTGATCAGAA; primers in

the construct were _tgF: CCAATTCGCCCTATAGT-

GAGTCGT and _tgR = CMVie_R: GCCAAGTGGGCAGTT-

TACC.

Sperm Counts
We killed adult (3 months old) males and dissected cauda

epididymis of both sides, placed them into 5 ml of pre-warmed

PBS, cut several times with scissors and incubated for 10 min at

37uC. We counted an aliquot in Bürker hemocytometer. If

needed, suspensions were further diluted before counting. More

than 100 sperm were counted in each animal. Numbers were

expressed as total amount of sperm yielded from one male.

Transgenic Centrobin Rescues Limb Malformation
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Figure 1. Transgenic construct, its localization and expression. A Top: Transgenic construct contains CMVIE enhancer, chicken b-actin
promoter together with first noncoding exon and intron with rabbit b-globin acceptor splice site, coding sequence and rabbit b-globin 3’UTR and
polyA signal. Violet arrows represent PCR primers used to amplify the insertion sites (see B). Red arrows depict primers used to assess expression of
the transgene (see D and E). A Middle: structure of the insertion site region showed in detail (genome assembly Rn3.4, chr16:43998593–44005224).
Green: homology with the mouse (above zero in the nonrepetitive flanking sequence), grey rectangles: repetitive sequences; the insertion site is red.
A Bottom: Rat chromosome 16. Red line: insertion site; purple: centromere. The approximate positions of the genes flanking the transgene are
shown. B: Inversion PCR amplifying a fragment of chromosome 16 only in the transgenic animals. C: Long range PCR confirming insertion of the
transgene to chromosome 16. Expected product sizes were (for wild-type and transgenic respectively): chr16F-chr16R 6632 bp and 11898 bp
(impossible to be amplified with the PCR system employed); chr16F-tgR 944 bp (only transgenic); tgF-chr16R 6080 bp (only transgenic). D:

Transgenic Centrobin Rescues Limb Malformation
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RNA Extraction and RT-PCR
We extracted RNA from testis and other organs using Trizol

(Invitrogen, Carlsbad, California) and isopropanol precipitation.

For extraction of sperm RNA, we homogenized sperm isolated

from single cauda/caput epididymis (for wild-type and rescued

animals) or from both sides of three males (non-rescued mutants)

in Trizol. After the phase separation, we isolated RNA from the

aqueous phase using RNA Plus Micro Kit (Qiagen, Hilden,

Germany) according to manufacturer’s instructions. We reversely

transcribed the total RNA using Superscript III (Invitrogen,

Carlsbad, California) and amplified using primers _exp_tgF:

CTGACTGACCGCGTTACTCC; _exp_tgR: GCTGTAGC-

CATGTGCAGAGA; to assess expression of the transgenic

construct. Note that the primer combination takes advantage

from the intron introduced in the construct, which eliminates

interference with endogenous, as well as possible contamination of

RNA samples with genomic DNA of the transgenic animals (see

Figure 1,A, D, E). Primers flanking the junction between exons

10 and 11 were used for amplification of both endogenous and

transgenic cDNA distinguishing wild-type (both endogenous and

transgenic) and hd alleles [13].

Protein Extraction from Sperm and Western Blotting
For sperm protein isolation, we took the organic phase of Trizol

left after RNA isolation and proceeded to extract proteins

according to manufacturer’s instructions, except that we added

DTT to final concentration of 50 mM at the beginning. We also

used DTT at this concentration in the resuspension buffer,

containing 1% SDS. After standard SDS-PAGE, we detected

centrobin using affinity-purified rabbit polyclonal antibodies

against N-terminal or C-terminal domains of centrobin. To

produce the antibodies, we amplified fragments of Cntrob from

testicular cDNA, cloned into pET-15b (EMD Millipore Biosci-

ences, Billerica, MA) overexpressed the His-tagged recombinant

proteins in Rosetta(DE3)pLysS cells (EMD Millipore Biosciences,

Billerica, MA) and purified soluble proteins using Ni-NTA resin

(Qiagen, Hilden, Germany). We then exchanged the buffer to

phosphate-buffered saline using PD-10 desalting columns and

immunized rabbits with 100 mg/kg recombinant protein in

complete (first dose) or incomplete (subsequent doses) Freund’s

adjuvant (Sigma-Aldrich, St. Louis, MO). We applied up to six

doses monitoring antibody response by dot-blot. We purified the

collected serum using the recombinant proteins covalently coupled

to NHS-Activated Sepharose 4 Fast Flow (GE Healthcare Bio-

Sciences, Little Chalfont, United Kingdom). Elution buffer was

glycine pH 3.0, instantly neutralized by addition of 1/20 volume

of 1M Tris pH 9.0. After concentration and exchange to Tris-

buffered saline using Vivaspin columns (Vivaproducts, Littleton,

MA) and adjustment to 50% glycerol, the antibodies were stored

at 220uC. Western blotting was performed with anti-centrobin

antibodies at final concentration 0.5 mg/ml, secondary HRP-

conjugated antibody (GE Healthcare Bio-Sciences, Little Chal-

font, United Kingdom), and signal was detected using ECL

Advance or ECL Prime chemiluminiscent detection kit (GE

Healthcare Bio-Sciences, Little Chalfont, United Kingdom).

Control monoclonal b-actin antibody was purchased from Abgent

(San Diego, California).

Expression of the transgene in somatic tissues by RT-PCR. E: Expression of the transgene in testis by RT-PCR. hd/hd or hd = hypodactylous mutants,
transgene negative; Tg (Tg+) = transgene positive; wt = wild-type; ‘‘2‘‘ in C: water negative control; ‘‘2’’ RT in D and E, reverse transcriptase dropout
negative control. Numbers of individual animals according to our internal system for animal identification are given in panel E.
doi:10.1371/journal.pone.0060859.g001

Figure 2. Detection of centrobin in testis by Western blotting.
A: Western blot using centrobin C-terminal antibody that recognizes
both endogenous and transgenic wild-type centrobin. hd-allele specific
truncated form cannot be detected. Lack of centrobin in mutants is
supplemented to approximately normal level in the rescued males. B:
Centrobin N-terminal antibody confirms presence of wild-type protein
and the hd-specific truncated protein (lower amount in heterozygote
controls). C: We used b-actin as a loading control. D: Relative amount of
full-length centrobin as determined from densitometry of the Western
blot in B. The proportion is different among groups with full-length
centrobin (ANOVA p = 1025), post-hoc comparison by Tukey’s test
shows significant difference between the adjacent infertile and fertile
groups (p = 4.45 1024). Numbers labeling the lanes identify individual
animals.
doi:10.1371/journal.pone.0060859.g002
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Immunofluorescence and Electron Microscopy
All procedures, including processing, sectioning and staining of

plastic embedded tissues for histological examination, preparation

of spermatogenic cells from isolated seminiferous tubules and

sample preparation for immunofluorescence and electron micros-

copy were previously described. [13,23]. ODF2 polyclonal

antiserum was produced and characterized as described [24].

Affinity purified anti-centrobin serum detecting the N-terminal

domain of centrobin was used at a working dilution of 1:200.

Affinity purified anti-ODF2 serum was used at a working dilution

of 1:250.

Results

Transgenesis
The construct used for transgenesis caries the full-length wild-

type centrobin coding sequence (GenBank accession number

EF532342.1) under the control of the CMV immediate-early

enhancer and the chicken b-actin promoter. The construct also

contains an intron from the chicken b-actin gene combined with a

rabbit acceptor splice site, and rabbit hemoglobin polyA signal

(Figure 1,A). This design should support ubiquitous expression

[22].

We microinjected this construct into zygotes of the WKY/Bbb

inbred strain, identified a single founder showing successful

integration of the transgene, and bred the founder with the

mutant hd/hd females to get the rescued animals.

We assessed chromosomal localization of the transgene using

inverse PCR (Figure 1,B). Sequencing of the amplified fragment

revealed LINE type of repetitive sequence, which can be

nevertheless mapped to rat chromosome 16 with high probability

(the only 100% sequence identity hit by BLAT [25] on the rat

reference genome v3.4). Subsequent PCR amplification of both 59

and 39 joints using primers anchored to the unique sequence

flanking the LINE repeat confirmed localization of the transgene

at 16q11 (Figure 1,C).

The transgenic construct was expressed in all organs tested

(Figure 1,D) including testes and limb buds (Figure 1,E) as

shown by RT-PCR and also by western blot (Figure 2).

Rescue of Limb Malformation
Rat hypodactyly shows, aside of male infertility, a characteristic

limb malformation [26]. The limbs of rescued males (hd/hd Tg+)

cannot be distinguished from the normal limbs at the gross

anatomy level while their littermates (hd/hd Tg2/2) possess the

typical reduction of digit II and III (Figure 3,A). We conclude

that the limb malformation is completely rescued.

Figure 3. Limb phenotype, growth retardation rescue and
improvement of reproductive phenotype. A: Autopods of
mutants compared to transgenic rescue and controls. Left forelimb
(top) and hind limb (bottom). Anterior to posterior axis from top to
bottom. Normal hind limb has 5 toes, normal forelimb has 4 fingers and
a rudimentary thumb. Note missing digit II and hypoplastic digit III in
mutants only. B: Body weight. Transgenic rescue rats are indistinguish-

able from controls, mutants are significantly smaller (post-hoc
P = 0.0039 in comparison to rescued males). C: Testis weight (both
testes together). Transgenic rescued rats are indistinguishable from
controls, mutants are significantly smaller (post-hoc P = 0.0018 in
comparison to rescued males). D: Epididymis weight (both epididymi-
des) Transgenic rescue rats are indistinguishable from controls, mutants
are significantly smaller (post-hoc P = 0.0297 in comparison to rescued
males). E: Sperm count (cauda epididymidis of both sides). Rescued
males have more than 3 times more spermatozoa compared to mutants
(post-hoc P = 0.00114). However, control males have at least 4 times
more spermatozoa compared to rescued males (post hoc P = 0.000816
for rescued males compared to wild-type males). Mutants n = 3, rescued
n = 7, transgenic controls n = 6, nontransgenic (wild-type = WT) controls
n = 5. One-way ANOVA, with post hoc Tukey test for unequal N.
doi:10.1371/journal.pone.0060859.g003
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Rescue of Normal Growth
Another pathological manifestation of the hd/hd mutants is a

slight growth retardation resulting in decreased body weight of

adults. This phenotype is also rescued by the centrobin transgene

(Fig. 3B).

Testicular and Epididymal Weight
hd/hd mutants have much smaller testes when compared to

wild-type controls. The testicular and epididymal weights of

rescued animals were comparable to controls (Figure 3C,D).

Cauda epididymides of the rescued males contained significantly

more decapitated sperm remnants but less whorls of flagella than

in the hd mutant. Yet, control males had significantly more sperm

in cauda epididymidis (Figure 3E).

Sperm Morphology Remains Abnormal Despite the
Expression of Full-length Centrobin

Our first step was to distinguish differences in the structure of

the seminiferous epithelium in normal, hd/hd mutant and Tg+ hd/

hd rats. Figure 4,A–C compares spermiation during stage IX of

spermatogenesis in the three rat models. In control rats,

spermiation proceeds with the expected release of well-developed

mature spermatids into the seminiferous tubular lumen. In

contrast, spermiation in the hd/hd mutant and Tg+ hd/hd rats

consists in the release of partially or fully decapitated mature

spermatids. A significant difference is the relative abundance of

releasing mature spermatids in Tg+ hd/hd rats when compared to

the hd/hd mutant. The caput, corpus and cauda of the epididymal

duct were examined in normal, hd/hd mutant and Tg+ hd/hd rats

(Figure 4, D–F). Contrasting with the expected presence of

abundant normal sperm in the lumen of cauda epididymidis

(Figure 4, D) was the profusion of whorls of decapitated sperm

flagella in the hd/hd mutant (Figure 4, E and inset) and spherical

bodies in the epididymal cauda of Tg+ hd/hd rats (Figure 4,F). An

immunocytochemical analysis of specimens collected from the

epididymal cauda of Tg+ hd/hd rats indicates the presence of

ODF2 immunoreactive sites in the spherical bodies

(Figure 4,G,H). Electron microscopy confirmed the presence of

bundles of outer dense fibers (ODFs) in the spherical bodies as well

as the fragmentation and detachment of ODFs from the

microtubule-containing axoneme of the flagella (Figure 4,I).

We concluded that the multiple whorls seen in the epididymal

lumen resulted from the aggregation of underdeveloped decapi-

tated flagella and that the spherical bodies originated from the

fragmentation of flagella. Similar histological studies of Tg+ +/hd

rats revealed normal structural features comparable to those seen

in control rats (data not shown).

Mislocalisation of Centrobin and ODF2 in Epididymal
Sperm of Transgenic Rats

Sperm of the rescued Tg+ hd/hd rats were immotile (data not

shown). Despite mating of multiple rescued males with fertile

females for several months, no offspring was observed. This

outcome was in accordance with the structural testicular and

epididymal data. Our next step was to compare the localization of

centrobin and ODF2 in mature spermatids and sperm in wild-type

rat, hd/hd mutant and Tg+ hd/hd rats. We previously determined

that decapitation in hd/hd rats takes place upon completion of

spermiogenesis [13]. Here we wanted to examine the relationship

between centrobin and ODF2, a specific marker of outer dense

fibers of the flagellum and also a component, together with

centrobin, of the HTCA [13,24]. Figure 5,A–J illustrates

centrobin immunoreactive patterns in epididymal sperm and

mature spermatids of wild-type, hd/hd mutant and rescued Tg+ hd/

hd rats visualized with an antiserum detecting the N-terminal

domain of centrobin. In normal sperm, centrobin is visualized in

the acroplaxome region of the sperm head, the HTCA and along

the flagellum (Figure 5,A). In the hd/hd mutant, decapitated

sperm (Figure 5,B,C) and decapitated mature spermatids

(Figure 5,D,E) display a centrobin-containing mass at the

HTCA region. Three significant characteristics were noted in

epididymal sperm (Figure 5,F,G) and mature spermatids

(Figure 5,H,I) from rescued Tg+ hd/hd rats: (1) the distribution

of centrobin immunoreactive sites along the flagellum extended

distally beyond the HTCA region into the flagellum. (2) An

intermittent scattering of centrobin immunoreactive bulges was

seen along the flagellum. (3) Tail components dissociated into thin

threads at discrete focal points between bulges. We concluded that,

although centrobin extended beyond the HTCA region in Tg+ hd/

hd spermatid and sperm flagella, centrobin immunoreactivity was

preferential at the bulging regions. Furthermore, a thread-like

dissociation of flagellar segments was restricted to those devoid of

significant centrobin immunoreactivity (see the dashed box in

Figure 5,F,G). Figure 5,J illustrates the partial dissociation of

ODFs, the mislocalization of mitochondria and accumulation of

proteinaceous material in a decapitated epididymal sperm from

the hd/hd mutant resolved by electron microscopy. Similar changes

were seen in rescued Tg+ hd/hd rats (data not shown).

An antibody to ODF2 reveals specific immunoreactivity at the

HTCA region, along the middle piece of the flagellum, and with

somewhat decreased intensity along the principal piece of a wild-

type sperm (Figure 5,K). In spermatids from the hd/hd mutant,

ODF2 aggregates at the decapitated end of the developing

spermatid flagellum with moderate immunoreactivity extending

toward the annulus region (Figure 5,L,M). Relatively thin

developing flagella, caped at one end by a severed HTCA, can be

Figure 4. Characteristics of spermiation and sperm maturation in control, hd/hd mutant and rescued Tg+ hd/hd rats. A: Histologic
section of a control seminiferous epithelium showing the release of mature spermatids during stage IX of spermatogenesis. B: Histologic section of a
hd/hd mutant displaying abnormally shaped heads (arrowheads) and severed flagella (arrows) of mature spermatids seen in a similar
spermatogenic stage IX. Note that round spermatids display normal structure. C: Histologic section of a rescued Tg+ hd/hd rat showing heads
(arrowheads) separated from the flagella seen in a similar spermatogenic stage IX. The inset illustrates a thin cytoplasmic bridge (pointer)
connecting the spermatid head to its developing flagellum. The number of decapitated mature spermatids released at spermiation is larger in the
rescued rat as compared to the mutant. Round spermatids display normal features. D: Histologic section of the tail region of the epididymis of a
control rat showing well-developed sperm in the lumen and the epididymal epithelium with normal characteristics. E: In the hd/hd mutant, the
epididymal lumen contains multiple compact whorls (dashed circle) each consisting of entangled flagella seen in the inset at higher magnification.
The height of epididymal epithelium is reduced. F: In the rescued Tg+ hd/hd rat epididymis, flagellar whorls coexist with numerous spherical bodies
(dashed box). The arrow indicates a decapitated sperm. The height of epididymal epithelium is reduced. G–H: Phase contrast microscopy (panel G)
and immunofluorescent localization of ODF2 (panel H) in decapitated sperm and spherical bodies harvested from the epididymal cauda of a rescued
Tg+ hd/hd rat. The pointers in panel H indicate immunoreactive ODF2. I: Electron microscopy of a spherical body and sperm flagella in the
epididymal lumen of a Tg+ hd/hd rat. The dashed circle indicates aggregates of outer dense fibers in the spherical body equivalent to those seen in
panels G and H. The dashed boxes indicate cross-sections of sperm flagella (middle piece) each with an intact axoneme and surrounded by
fragmented outer dense fibers (ODFs). The arrow indicates two fused sperm flagella (principal piece). Scale bar in all panels and inset is 5 mm.
doi:10.1371/journal.pone.0060859.g004
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Figure 5. Immunofluorescence localization of centrobin (A, C, E, G and I; N-terminal antibody) and ODF2 (K, M, O and Q) in
spermatids and/or epididymal sperm from control, hd/hd mutant and rescued Tg+ hd/hd rats. Panels B, D, F, H, L and P are phase-
contrast microscopy. Panel O is a phase-contrast microscopy-immunofluorescence merge. The blue bar indicates the decapitation region. A:
Centrobin localization in wild-type control epididymal sperm. The location of the immunoreactive acroplaxome (Apx) and head-tail coupling
apparatus (HTCA) is indicated. Note the regular immunoreactive centrobin banding pattern along the flagellum. B–C: Decapitated sperm with fused
flagella (opposing arrows). Centrobin immunoreactivity predominates at the HTCA region (arrowhead). D–E: Decapitated spermatid. The
arrowhead indicates substantial centrobin-containing material at the HTCA region. The arrow points to a developing bulge of the flagellum. F–G:
The arrows denotes the presence of centrobin in the flagellar bulges. The dashed box indicates a thread-like dispersion at the inter-bulge linker.
H–I: The arrows show the linear arrangement of centrobin-containing bulges along the spermatid flagellum. The single-crossed arrow identifies
immunoreactive spermatid flagella of reduced diameter. The double-crossed arrows point to the centrobin-stained severed end of the thin, also
immunoreactive, decapitated spermatid flagella. J: Transmission electron microscopy of a decapitated sperm. The dotted line indicates a large
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seen forming an entangled network. A significant observation was

the lack of ODF2 immunoreactivity in the bulging flagellar region

of late spermatids and epididymal sperm from rescued Tg+ hd/hd

rats (Figure 5,O). Immunoreactive ‘‘silent’’ flagellar segments can

be seen in a late spermatid (that still retains its attached head) to an

abnormal aggregate of immunoreactive ODF2 at the HTCA

region (Figure 5,P,Q). We concluded that the centrobin-rich

bulges may represent a storage area of a centrobin excess in the

sperm flagellum of rescued Tg+ hd/hd rats. This condition was not

paralleled by an equivalent deposit of ODF2. In rescued late

spermatids, ODF2 distribution was relatively discontinuous along

the developing flagellum, while most of the bulk of ODF2 was

restricted, together with centrobin, to the HTCA region (compare

Figure 5,D,E and Figure 5,P,Q).

Higher Levels of Centrobin Transcripts and Protein are
Present in Sperm of Rescued Tg+ hd/hd Rats

Cntrob transcripts were expressed in sperm isolated both from

caput and cauda epididymidis. It was also possible to distinguish

wild-type and mutant transcripts (Figure 6,A,B). In sperm of the

rescued Tg+ hd/hd, the expression of transgenic centrobin can be

clearly observed at a significantly higher level in comparison to

both non-transgenic controls and mutants. Transcript abundance

was reflected by protein abundance measured by western blotting

(Figure 6,C–E). We concluded that differences in the level of

centrobin transcripts and protein correlated with a more extensive

distribution of centrobin in sperm of rescued Tg+ hd/hd rats as

compared to the hd/hd mutant. Figure 6,C shows a protein band

with a lower molecular mass which appears to represent truncated

centrobin (100–70 kDa range, different from the cca 55 kDa

protein from hd/hd males) perhaps representing proteolytic

cleavage, coexisting with full-length centrobin (110 kDa) over-

expressed in rescued rats. In fact, centriolar degeneration or

reduction normally occurs when rat sperm reach the epididymis

[4,5]. It is likely that a centrobin proteolytic cleavage reflects in

part the centrosomal involution process that may be more

prominent in sperm of the hd/hd mutant.

Discussion

Cntrob mutation in the rat hypodactyly (hd) was discovered using

the positional cloning approach. The non-recombinant region in

the case of hd was 464 kb and contained 16 genes. All the evidence

pointed to truncated centrobin protein encoded by the mutated

Cntrob gene in the hd mutant rat as causative of skeletal

abnormalities and male infertility [13]. In this work, we attempted

the transgenic rescue of the hd mutant rat, a golden standard for

validating the role of Cntrob in skeletal and infertility pathogenesis.

As we have shown previously, the characteristic limb phenotype of

hd rats is comprised of reduction of distal parts of digits II and III.

On molecular level, limb buds of hd rats show deficiency of

chondrogenic condensation of distal parts of digital rays II and III,

as shown by Sox9 expression. The data presented here show that

the transgenic rescue fully corrected the autopod reduction

phenotype. (Figure 3A). We conclude that Cntrob mutation is

responsible for skeletal alterations of the hd mutant rat. Therefore

normal function of centrobin is essential for autopod development.

Growth retardation was also fully corrected (Figure 3B). This

finding supports previous evidence from cellular studies, suggesting

that centrobin role in centriole duplication has impact on cell

proliferation rate [10,11].

Male infertility was persistent in transgenic hd mutant males.

Testicular and epididymal gross anatomy of the rescued rats did

improve to wild-type level (Figure 3C,D). However, the sperm

count, albeit meaningfully higher compared to mutants, was

considerably lower compared to wild-type controls. Despite this

relatively increased amount of sperm, the key finding impacting on

the fertility of the rescued males was the persistent and substantial

sperm decapitation. We could not detect significant differences in

the decapitation pattern of rescued and hd mutant sperm. Yet, we

observed structural changes as well as differences in the

immunoreactive pattern of centrobin and ODF2 along the sperm

flagellum pointing to a role of centrobin in stabilizing the

association of ODFs to the axoneme. A significant structural

finding was the series of sperm flagellum bulges housing centrobin

but not ODF2. ODF2 was restricted to the inter-bulge connecting

segments, which showed a tendency to break up into thread-like

formations (see Figure 5F,G). It is likely that the bulges along the

sperm flagellum of the rescued Tg+ hd/hd rats develop to house

excess full-length centrobin coexisting with endogenous truncated

centrobin and other proteins. A high concentration of centrobin in

the bulges may disrupt the intraflagellar transport of centrobin and

other proteins to the required assembly sites. As a result, segments

of the flagellum become less stable. Examples of these proposed

mechanism could be the distinct thread-like dissociation sites (see

Figure 5F,G), the fragmentation and dispersion of outer dense

fibers (see dashed boxes in Figure 4I), and the release into the

epididymal lumen of spherical bodies containing dissociated outer

dense fibers (see Figure 4 G–I).

It is also possible that centrobin may stabilize the association of

outer dense fibers to the microtubule-containing axoneme. The

sperm head-tail attachment site consists of centriolar microtubules

and pericentriolar proteins developing the HTCA. ODF2 and

centrobin are components of the HTCA [13,24]. The presence of

large aggregates of centrobin and ODF2 at the HTCA site (see

centrobin in Figure 5,D,E and ODF2 in Figure 5, L,M)

suggests a disruption in the transport of these two proteins along

the developing flagellum. In fact, bundles of thin flagella seen in

testis (see Figure 5,H,I and Figure 5,L,M) and prominent

whorls of flagella seen in epididymis (Figure 4,E,F and
Figure 4,I) indicate that decapitation occurs to a large extend

before completion of flagellar development. Decapitated flagella

find it easy to form multiple whorls and undergo a degradation

process in the epididymal environment resulting in the formation

of multiple spherical bodies.

deposit of proteinaceous material at the decapitated end. The material is presumably equivalent to the accumulation of centrobin and ODF2 (and
other proteins) detected by immunocytochemistry. The localization of outer dense fibers (ODF) and mitochondria (Mi) is indicated. K: Wild type
control epididymal sperm stained with ODF2 antibody. The location of the HTCA and annulus is indicated. L–M: The arrowhead indicates a large
deposit of ODF2 at the HTCA region and extending along the middle piece of the flagellum (single-crossed arrow) up to the annulus. The double-
crossed arrows point to densities at the decapitated end of several developing spermatid flagella. The arrows denote less intense ODF2
immunoreactive spermatid thin flagella contrasting with the more intense staining of the thicker flagellum (single-crossed arrow) present in the
field. N: Merged phase-contrast-fluorescence microscopy images displaying ODF2 immunoreactivity along segments (brackets) linking non-
immunoreactive bulges (arrows) of a decapitated sperm flagellum. ODF2 immunoreactivity extends up to the annulus. O–P: Mature spermatids with
a persistent attached head can be seen. A significant ODF2 deposit is visualized at the HTCA region (arrowhead). The brackets indicate a less
intense staining of ODF2 in regions presumed to become bulges. Scale bar in phase-contrast and fluorescence microscopy panels: 10 mm.
doi:10.1371/journal.pone.0060859.g005
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Recently two targeted gene inactivation experiments were

reported to result in sperm head decapitation, Odf1 [21] and

Oaz3 (OAZ-t) [20]. Odf1 is a major component of the outer dense

fibers. Odf12/2 mice show isolated deficiency of morphogenesis of

elongated spermatids. In addition to deficiency of, the flagella

show disturbed mitochondrial sheath and dislodged outer dense

fibers. Interestingly, detached flagella retain some motility. hd

mutants as well as Cntrob transgenes similarly to Odf12/2 display

outer dense fiber disorganization (thread-like dissociation of ODF2

positive material). Also limited motility of the detached flagella can

be observed in fresh preparations of caput epididymidis sperm

(unpublished data) indicating (limited) functionality of detached

tails. On the other hand, distinct coiling of the flagellum typical for

Odf12/2 sperm was not observed neither in hd nor in Cntrob

transgenic rats, that instead form whorls of multiple flagella.

OAZ3 is an inhibitor of ornithine decarboxylase likely regulating

local content of polyamines in the developing sperm. Oaz3

deficient mice show easy separation of heads from flagella. There

are few points of interest – ultrastructure of the flagellum and

HTCA is well preserved (in contrast to both Odf12/2 and hd),

detachment is well defined to occur between basal plate of the

nuclear envelope and capitulum, nondisrupted sperm can be

retrieved from epididymis and lose tails upon incubation, these

tails display ‘‘mighty motility’’ up to 15 hours. These comparisons

suggest a model, where centrobin participates with Odf1 in

building the outer dense fibers, attaching mitochondria and

making structurally tough HTCA. Centrobin perhaps is not part

of the ODFs themselves as suggested by its relation with Odf2

protein in centrobin transgenes. Polyamines probably act later in

final stabilization of the structures of HTCA although the

mechanism is speculative. Supportive evidence comes from a

study showing that primary amines disrupt head to flagellum

connection [27].

We are at present unable to demonstrate that Cntrob mutation is

a direct determinant of decapitation leading to male infertility in hd

rats. It is possible that, in addition to Cntrob, the mutation of

another gene may be responsible for sperm decapitation in hd rats,

or that a negative effect determined by truncated centrobin is not

fully compensated or overridden by the coexisting expression of

full-length centrobin.

First possibility of an additional contributing gene would point

to one of the remaining 15 genes in the hd non-recombinant region

as a cause of rat hd. However, 4 of the 15 genes are not expressed

in the testis and the rest do not contain any mutation in the coding

sequence nor any mutation affecting splicing. Also RT-PCR did

not indicate any substantial change in the expression of these

genes. All available evidence thus still points to the Cntrob gene as

responsible for male infertility of hd mutant [13].

The possibility of interference of the mutant truncated

centrobin with full-length transgenic centrobin is not compliant

with the fact that heterozygotes +/hd show normal fertility and are

indistinguishable from wild-type (+/+) males suggesting hd allele is

operating more like a loss-of-function mutation. Substantial level

of centrobin observed in the testis as well as in the sperm of the

transgenic males makes this hypothesis unlikely. This finding also

excludes epigenetic transgene silencing as the cause of the

persisting infertility phenotype, even though the transgene is

localized inside a LINE element that may be selectively silenced

[28,29]. On the other hand deficiency in Piwi/piRNA mediated

LINE silencing lead to male infertility [30–32], and we may

speculate what would happen if the transgenic construct were able

to rescue the LINE element at the site of transgene insertion from

the silencing process. However; this LINE element (belonging to

family L1) is incomplete (lacks 59 1.2 kb and 39 1.5 kb), likely

Figure 6. Centrobin expression in epididymal sperm. A: RT-PCR
with primers flanking the junction between exon 10 and 11. Mutants
show products with higher molecular weight due to the insertion of an
endogenous retrovirus [33]. (green arrowhead). Wild-type product
(blue arrowhead) can be amplified both from endogenous locus
transcripts as well as from the transgenic transcripts. The ‘‘mutant’’
product can be also seen in the rescued males, although during PCR,
the product can be masked by preferential amplification of the smaller
molecular weight amplicon coming from the transgene. B: b-actin is
shown as endogenous control. Robust expression of centrobin can be
seen in sperm both from caput (less mature) and cauda (more mature)
epididymis. C: Western blot with an antibody against C-terminal part of
centrobin. There is no signal in mutants because they lack the C-
terminal portion of centrobin. Note a lower molecular weight species of
centrobin from from caput and cauda epididymidis sperm of rescued
rats that may correspond to proteolytic processing or degradation. This
can be seen in the wild-type sperm too with higher exposition time (not
shown). D: Western blot with an N-terminal-specific antibody (middle
panel) shows similar results as seen with the C-terminal antibody,
55 kDa mutant truncated protein is also identifiable (green arrow-
head). Note: the last lane had to be developed separately due to excess
signal. E: b-actin served as the loading control.
doi:10.1371/journal.pone.0060859.g006
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inactive, and thus not direct target of silencing. Therefore, the

non-native promoter used is probably deficient in the normal

temporal regulation of centrobin expression which may result in

centrobin protein expression at the wrong time and possibly in the

wrong amount during spermatogenesis, in other words, we can

expect dosage sensitivity of centrobin as part of functional protein

complexes that would be disrupted either in absence or excess of

centrobin. This hypothesis is supported by the finding of impaired

localization of centrobin in transgenic rescued rats. An intriguing

possibility would be requirement of a different splicing variant of

centrobin in spermatids in contrast to somatic cells. However, RT-

PCR data do not indicate coexistence of splicing transcript

variants encoding full-length and truncated centrobin.

Further analysis of the mechanism of sperm decapitation and

flagella abnormalities is hindered at present by a lack of data

concerning centrobin-interacting protein partners during sperm

development. It is known that a-tubulin is a centrobin-interacting

partner in the centriole and that centrobin-tubulin interaction is

necessary for centriole elongation [11]. Since HTCA contains a

centriole pair, centrobin may be recruited to HTCA via its tubulin

interaction. Furthermore, a deficiency of centrobin intramanchette

transport and/or intraflagellar transport (also microtubule-depen-

dent) may result from a failure of centrobin-tubulin interaction

determined by dimerization/multimerization of transgenic cen-

trobin. In fact, it is known that over-expression of centrobin results

in the formation of protein bundles ([10] and our unpublished

data), a finding that may explain the tendency of over-expressed

centrobin to accumulate in bulges along the sperm flagellum. By

dissecting the conundrum of infertility rescue failure, biochemical,

proteomic and transcriptomic analyses using the transgenic rats

may be invaluable for providing additional insights into the

mechanism of sperm decapitation and sperm flagellum abnormal-

ities in the rat model as well as in equivalent phenotypes seen in

the infertile human male.
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