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Abstract

In genome-wide association studies, results have been improved through imputation of a denser marker set based on
reference haplotypes and phasing of the genotype data. To better handle very large sets of reference haplotypes, pre-
phasing with only study individuals has been suggested. We present a possible problem which is aggravated when pre-
phasing strategies are used, and suggest a modification avoiding the resulting issues with application to the MaCH tool,
although the underlying problem is not specific to that tool. We evaluate the effectiveness of our remedy to a subset of
Hapmap data, comparing the original version of MaCH and our modified approach. Improvements are demonstrated on the
original data (phase switch error rate decreasing by 10%), but the differences are more pronounced in cases where the data
is augmented to represent the presence of closely related individuals, especially when siblings are present (30% reduction in
switch error rate in the presence of children, 47% reduction in the presence of siblings). The main conclusion of this
investigation is that existing statistical methods for phasing and imputation of unrelated individuals might give results of
sub-par quality if a subset of study individuals nonetheless are related. As the populations collected for general genome-
wide association studies grow in size, including relatives might become more common. If a general GWAS framework for
unrelated individuals would be employed on datasets with some related individuals, such as including familial data or
material from domesticated animals, caution should also be taken regarding the quality of haplotypes. Our modification to
MaCH is available on request and straightforward to implement. We hope that this mode, if found to be of use, could be
integrated as an option in future standard distributions of MaCH.
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Introduction

Genome-wide association studies (GWAS) have shown great

success in unravelling the genetic variation underlying many

important traits and disease complexes in natural human

populations [1,2]. Imputation of marker data has been suggested,

both as a way to augment missing or sparse genotype data based

on reference haplotypes from sequenced reference haplotypes [3],

and in order to reconcile study cohorts assembled from genotyping

efforts using different SNP panels [4]. The process of imputation

consists of inferring the genotype phase for all markers, and then

finding the best corresponding genotypes in the reference

population, for those markers that are missing in experimental

data. The underlying assumption is that short haplotype blocks are

most likely preserved over the course of many generations. Thus, a

suitable panel of reference haplotypes can be highly informative

for genotypes not observed directly, and increase detection power.

Panel sizes are constantly growing, from the tens or hundreds in

original Hapmap populations [5], into currently 1092 high-quality

human genomes from the 1000 Genomes Project [6,7]. However,

some popular algorithms for genotype imputation scale as O(n2)
[8,9] in runtime per study individual with unknown phases, where

n is the total number of haplotypes (haploid references and study).

An increase in panel size by a factor of 100 might therefore

increase runtime by a factor of 10000, exhausting computational

resources. Other approaches exist [10], but reduce computational

complexity by making additional approximations.

Due to the rapid increase in the computational complexity of

Markov model phasing with increasing reference population size,

it has been suggested to infer the phases using only the study

population (or a subset thereof), followed by imputing genotypes

into this fixed (pre-phased) haplotype set [11]. This operation

reduces the computational complexity, allowing much larger

reference panel sizes. However, as no known fixed haplotypes are

available during pre-phasing, the Markov chain approaches used

in the most popular pre-phasing schemes become more sensitive to

the problem of chain trajectories getting stuck in local minima. In

this paper we describe a specific scenario causing the model

optimization to stall. We show the extent of the problem with

experimental data, and suggest a possible modification of the

MaCH [8] algorithm successfully circumventing the issues.

Materials and Methods

Most hidden Markov model approaches for phasing of genotype

data lacking a pedigree share several characteristics [12]. A state in

the model consists of a haplotype pair, meaning that an observed

unordered genotype pair in one individual corresponds to a pair of
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haplotypes from other individuals. With a proper selection of

transition probabilities, blocks of the genome will be attributed to

identical states, reflecting identical ancestry. The posterior

probabilities for the state distribution can be found at each

position, and putative haplotype candidates can be determined by

sampling from that distribution. By iterating over all individuals,

the undetermined (sampled) haplotypes can be successively

improved.

Consider that such a successive improvement is underway, and

that the next step is to sample new haplotypes from the posterior

distribution for individual A. This step is shared by e.g. MaCH

and IMPUTE2. Also assume that individuals A and B are

completely identical, over a major stretch of a chromosome. In this

case, a problem arises. This is not an uncommon case, rather, it is

sufficient that the individuals are ordinary full siblings for this to

occur. Approximately 1=4 of the total genome for a pair of siblings

will consist of such very long regions, as crossover events are

relatively far apart relative to the marker density in modern maps.

The posterior probability when individual A is analyzed will be

completely dominated by the haplotypes for B in such a region.

However, this dominating effect will only be justified if the

haplotypes for B are truly correct. Since genotypes match in every

position, any haplotype resolution for B will have a dominating

influence on A. Correspondingly, any haplotype resolution for A
will have a dominating influence on B. In an iterative optimization

scheme starting out from randomly initialized haplotypes without

an external reference, the pair of A and B will be locked in a local

minimum very close to the starting point. This structure is

illustrated in Figure 1.

If transition probabilities are also iteratively updated based on

observed data, the problem is further compounded. The single

very favorable state also makes transition events rare. Transitions

then become even more infrequent in later iterations, further

decreasing the probability of sampling another haplotype.

The effect is not necessarily confined to two individuals. If a

larger set of individuals share a comparatively long region in both

Figure 1. Bad MCMC mixing for cases of double genotype sharing. MaCH and similar approaches implement a Markov-chain Monte Carlo
scheme where in each iteration the individual genotype resolutions are updated one by one, by mapping the genotypes. If two individuals contain
identical marker genotypes for a longer stretch of markers, the Hidden Markov Model will give the other individual a probability approaching 1. When
no reference haplotypes are provided, all haplotype data is initialized randomly. In this series of panels, individuals A and B are initialized differently
(a). In panel (b), A is updated. With high probability, the existing (random) haplotype resolution from B is copied. When B is updated (c), A is sampled
with high probability, replicating the original random data for B. In iteration 2, A is updated again (d), but again B is sampled with high probability.
Since any haplotype resolution for B will match the genotypes for A, there is no pressure to identify a better resolution. The two individuals form a
local feedback loop with no true mixing in the Markov chain. Our modified algorithm lowers the probability of sampling from a mirror individual (like
the pair of A and B), thus allowing haplotypes from other individuals in the dataset to influence the final resolution. Similar cases can also arise with
larger groups of individuals than 2. Those are handled successfully by our remedy, as well.
doi:10.1371/journal.pone.0060354.g001
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chromatids, i.e. carry identical-by-state genotypes for all markers

in a long region, the same kind of lock-in effect will appear. The

state distribution will consist of a mix of states, but it will be almost

totally occupied by different combinations of haplotypes from the

set of similar individuals, and the sampling at each marker in each

iteration will almost always be drawn from this set, thus only

reflecting the initial randomization of phase.

Our proposed remedy to this is to keep the current model

formulation, but improving the mixing properties of the sampling

process. The sampling process in MaCH [8] starts from the last

marker, iteratively going backwards, sampling based on the

forward probabilities given the state at the previous marker

sampled. Specifically, there is a vector for all unique pairs of n
haplotypes. What should be filtered out is those cases where the

pair taking one haplotype from B and one from C (B0C0) is just as

likely as taking the other haplotype from both individuals (B1C1).

When that is the case, any haplotype resolution would match, as

per the reasoning above. Thus, the match can be uninformative,

causing a local (incorrect) minimum to be maintained. The (non-

normalized) sampling probability used for P’(B0C0) is, with our

modification, instead P(B0C0){P(B1C1) (assuming the result is

positive, otherwise capped to a small e), where P is the forward

probability. In the case where B~C, the result is that sampling the

‘‘copy another individual’’ pair B0B1 is precluded, as

P’(B0B1)~P(B0B1){P(B0B1)~0. By only modifying the sam-

pling probability, our approach does not affect the overall

structure of the model. The probability distribution is re-

normalized after the subtraction step outlined above.

Experiments using Hapmap population data
In order to verify the extent of the problem when phasing a

small set of realistic dense human data, we used the 60 first

chromosome 21 haplotypes (30 parents with 19 306 markers) of

the phased Hapmap3 release 2 Utah residents with Northern and

Western European ancestry from the CEPH collection (CEU) trios

[13]. The full set of identified SNPs available in the phased data

was used. Every second marker was cleared to be used as a test set

for imputation. The individuals were not supposed to be closely

related since the data only consisted of the parental generation.

In order to introduce a high degree of double genotype sharing,

which is the problem condition we are interested in, we also

created modified datasets based on this original data. These

included adding back the child in each trio set (45 individuals in

total); and two sets of monozygotic twins to the parents, one

creating an overall double haplotype sharing consistent with the

presence of full siblings (1=4, twins for the 7 first parents, 37
individuals in total), and one introducing a monozygotic twin to

each parent (60 individuals in total). Using full twins along the

whole genome should be similar to resampling true full siblings,

since typical regions shared in this manner with this level of

relatedness should be of chromosome-like length (tens of cMs/

Mbps).

Phasing in MaCH was run for 2000 iterations. While benefits

from more than 200 iterations were limited, we were interested in

discovering whether the near-asymptotic behavior of the original

MaCH and our modified version were identical. It could be

argued that the improved mixing of our modification would only

speed up convergence, but not affect the results after a high

number of iterations.

After phasing, the number of switch errors in the phase

sequences were counted compared to the original phased data.

The switches (as defined in [14]), or flips, were only counted for

the 30 original parents for all datasets, in order to make the

numbers directly comparable. The phased data as well as

estimated genotype error and recombination rates were then fed

to minimac for imputation using the remaining 57 parents in the

trio dataset as a reference panel.

Results

We have implemented the modification outlined in the Methods

section in MaCH. The change could easily be added to the main

source tree as an extra option. Instructions on how to make the

corresponding changes to the source are available on request. The

performance of our modified approach is demonstrated in Table 1,

with comparisons relative to an unmodified version of MaCH

1.0.17. Clear improvements are demonstrated for the number of

switches needed to represent the true haplotypes (as reported by

the Hapmap consortium), as well as in imputation accuracy, even

for a dataset consisting of supposedly unrelated individuals. When

artificial siblings were added, compounding the problem, the

effects are far more drastic. Our modified version results in modest

improvements in switch error rate as well as imputed alleles for the

unmodified dataset, despite the fact that no long regions of double

Table 1. Comparison between original and modified MaCH.

Original MaCH Modified MaCH

Dataset # switches
# incorrect
imputed alleles # switches

# incorrect
imputed alleles

Trio parents (no children) 5408 3730 4915 3566

Trio parents and children 1907 3261 1350 3217

Full siblings to parents 9657 4611 5096 3616

Monozygotic twins to parents * 42074 8787 6309 4016

Comparison between original MaCH and a modified version with our remedy, showing both the total number of switch errors and the number of incorrectly imputed
alleles. The comparison is based on the 30 first phased Hapmap3 release 2 CEU trio parents [13]. Four versions are used: 1. the original dataset (only parents), 2.
including their children, as well as 3. simulating siblings to parents, 4. simulating twins to parents. When children are excluded and no virtual siblings are present, no
known relationships exist between the individuals in the dataset. Imputation performance was verified by reconstructing the half of the marker set (9653) that was left
out, using minimac [11], employing the remainder of the phased CEU trio data (57 individuals) as reference panel. All MaCH runs were executed for 2,000 iterations, with
20 rounds for minimac. Metrics are reported for only the 30 original individuals, in order to aid comparisons.
*In this case, the minimac run starting from the recombination frequencies determined by the original MaCH failed to converge at all, with errors for all markers. The
results for original MaCH in this table row are based on the pre-phased haplotypes from original MaCH, but starting out with the recombination frequencies from the
modified version, in order to allow the minimac imputation to complete at all.
doi:10.1371/journal.pone.0060354.t001
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genotype sharing would generally be expected in unrelated

individuals.

These results led to an investigation of the amount of double

genotype sharing in additional detail. The average best match for

any parent individual to some other parent individual was slightly

above 61, i.e. if a marker in this dataset is chosen at random for

some individual, it will on average be part of a stretch with double

genotype sharing of total length 61. The longest matching region

between any pair of individuals was 432 markers in length,

corresponding roughly to 1:4 cM for the marker density in the

Hapmap data used, indicating that the individuals are indeed not

extremely closely related. To perform haplotype inference at all

with these algorithms, single haplotype sharing must be present

between individuals. This implies single genotype sharing as well.

The average for single genotype sharing in this dataset is a region

583 markers in length, with a maximum of 982 markers. The

probability of a single chromatid being shared identical by descent

in some region is naturally higher than the same condition holding

for both chromatids at the same loci.

For the other cases, where double genotype sharing was

explicitly introduced, the differences detected between the

methods are drastic. The switch error rate at most rises by 30%
for our modified version (in the case of simulated MZ twins). The

original MaCH phasing breaks down in this scenario, with an

almost eight-fold increase in the switch error rate, and a doubling

of imputation errors. In the more plausible scenario of siblings

rather than twins being present, the original MaCH error rate still

increases by over 70%.

Although the differences in results are modest in some cases, we

have observed the original MaCH method to be much more

sensitive to details in input data structure. We tested including all

markers, ignoring the step of leaving every second out for

imputation purposes. This increased the switch error rate

dramatically for the original MaCH, but only resulted in a modest

increase in our modified version. The total number of switch

errors for the 30 CEU parents tested in our experiments, when no

markers are masked, are 6597 for our modified version and 14770
for the original MaCH. Figure 2 shows the switch error rate (out of

the total of 30 parents) for the unmasked dataset, indicating that

the original MaCH version will sometimes create long regions of

repeated phasing errors that also coincide between multiple

individuals, as predicted.

Discussion

We think that our results regarding the extent of deterioration in

haplotype quality when some types of related individuals are

included in the data should be of interest to all situations where

imputation or phasing based on Markov model methods are used,

but especially so in the case where pre-phasing is performed

followed by imputation with e.g. minimac, or when it is known

that some of the individuals to be phased might be closely related.

It is also relevant to point out that even in a dataset with

supposedly unrelated human individuals, our remedied version

reduces the switch error rate by 50% when no markers were

masked.

It should be noted that the degree of relationship required for

the issue of double genotype sharing to be present does not have to

be as close as full siblings. Rather, the relevant condition is

whether there is some probability that two individuals share both

homologues of a certain region identical by descent. This could be

the case for e.g. double cousins, but the condition could also hold

for far shorter regions (but still on the range of multiple Mbps) in

relatively isolated populations with little historical exchange of

genetic material. The issue described could be even more serious

for analyses in non-human species, where no reference haplotypes

at all might exist, or where double genotype sharing might be

aggravated due to (artificial or natural) inbreeding patterns.

Indeed, relatedness to the level of causing extensive double

genotype sharing in some regions between some individuals could

be considered a necessary condition for this type of phasing

algorithms to work at all, since they rely on regions of single

haplotype sharing between individuals being present in order to

infer the correct haplotypes. The expected regions of double

genotype/haplotype sharing will be much shorter, but the

presence of some such regions between some individuals will still

be expected with data showing enough haplotype sharing to allow

successful inference.

Figure 2. Comparison of switch error locations. Switch errors for
all markers for CEU trio parents on chromosome 21 plotted in order left-
right, top-down (19 306 markers). For each marker, red color intensity
indicates the switch error rate for all 30 parents using the original MaCH
1.0.17 algorithm, while green intensity indicates the error rate using our
proposed modification. Hence, yellow color indicates regions where
errors are shared. The issue of bad chain mixing we describe for the
original algorithm manifests as contiguous (horizontal) blocks of
repeated switch errors using the original approach, while the error
rate using the modified algorithm is 50% lower in total. The errors in the
modified algorithm consist of events more evenly distributed. Several of
those error locations coincide with errors from the original method. This
figure also shows that even if overall haplotype quality in terms of error
rate would be acceptable, some regions can still be heavily affected,
and paradoxically those regions are the ones where multiple individuals
share both haplotypes identical by descent.
doi:10.1371/journal.pone.0060354.g002
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The effects seen in switch error rate are not fully reflected in the

imputation error rate. We suggest that this is due to the insufficient

size of the very limited reference panel used in this specific

experiment. The quality of the pre-phasing only influences

imputation quality when the reference set contains matches to

the true haplotypes.

If one is reluctant to use our remedy or other modifications of

existing haplotype inference approaches, we still suggest investi-

gating the quality of phasing, both in pre-phasing schemes and

more traditional schemes where reference haplotypes are present

in all iterations. One way to do so is to perform cross-validation of

the phasing of the study population, creating different subsets

where e.g. 20% of individuals are left out, counting the number of

flips when comparing the resulting haplotypes for individuals

common between subsets. Regions of individual genomes where

the number of flips are high indicate that the resulting haplotypes

are influenced by the information from only a few other

individuals in the population, possibly indicating the issue of

insufficient chain mixing noted here.
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