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Abstract

We introduce an electromechanical model for human cardiac tissue which couples a biophysical model of cardiac excitation
(Tusscher, Noble, Noble, Panfilov, 2006) and tension development (adjusted Niederer, Hunter, Smith, 2006 model) with a
discrete elastic mass-lattice model. The equations for the excitation processes are solved with a finite difference approach,
and the equations of the mass-lattice model are solved using Verlet integration. This allows the coupled problem to be
solved with high numerical resolution. Passive mechanical properties of the mass-lattice model are described by a
generalized Hooke’s law for finite deformations (Seth material). Active mechanical contraction is initiated by changes of the
intracellular calcium concentration, which is a variable of the electrical model. Mechanical deformation feeds back on the
electrophysiology via stretch-activated ion channels whose conductivity is controlled by the local stretch of the medium.
We apply the model to study how stretch-activated currents affect the action potential shape, restitution properties, and
dynamics of spiral waves, under constant stretch, and dynamic stretch caused by active mechanical contraction. We find
that stretch conditions substantially affect these properties via stretch-activated currents. In constantly stretched medium,
we observe a substantial decrease in conduction velocity, and an increase of action potential duration; whereas, with
dynamic stretch, action potential duration is increased only slightly, and the conduction velocity restitution curve becomes
biphasic. Moreover, in constantly stretched medium, we find an increase of the core size and period of a spiral wave, but no
change in rotation dynamics; in contrast, in the dynamically stretching medium, we observe spiral drift. Our results may be
important to understand how altered stretch conditions affect the heart’s functioning.
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Introduction

The heartbeat is governed by electrical waves of excitation that

periodically propagate through the cardiac muscle and initiate its

contraction. Abnormal electrical excitation of the heart may result

in cardiac arrhythmias disturbing the heart’s pumping function.

Heart failure due to cardiac arrhythmias is a major cause of death

in the industrialized world [1]. It is known that dangerous types of

arrhythmias are caused by spiral waves of electrical excitation in

the cardiac muscle [2–4].

Electrical waves of excitation are affected by the deformation of

the heart via the mechano-electrical feedback phenomenon. It has

been shown that the rapid stretching of cardiac tissue (mechanical

stimulation) has a significant effect on the heart’s functioning, for

example, due to the initiation of electrical waves [5,6]. Important

examples are ‘‘commotio cordis’’ [7,8], the phenomenon that an

impact on the chest can cause arrhythmia; and the ‘‘precordial

thump’’, the phenomenon that an impact on the chest of a patient

may stop an arrhythmic heart condition [9]. Both phenomena are

believed to be a result of an abrupt deformation of the heart, and

the main effect of deformation on the electrical activity is

considered to be transmitted via so-called stretch-activated ion

channels. These channels produce depolarizing inward current as

a response to stretch of the tissue [5]. The study of mechano-

electrical feedback is an important direction of research in current

cardiac electrophysiology [10].

A valuable method to study mechano-electrical feedback is

mathematical modeling allowing to study the coupled mechanical

and electrical activity of the heart, which is a difficult problem in

experimental research. Generic electromechanical models for

heart tissue are successfully applied, for instance, to investigate the

effect of mechano-electrical feedback on pacemaking and spiral

wave activity [11–15] and to find mechanisms for the onset of

spiral waves [16,17]. Yet, these generic models are limited to

studies on a qualitative level, and more detailed models for cardiac

tissue need to be developed. First steps in that direction have been

made by coupling continuous mechanical models to biophysical

models of cardiac excitation and contraction [18,19]. However,

continuum mechanics is computationally demanding and makes it

difficult to achieve high spatial and temporal resolution of the

coupled electrical and mechanical processes. In this paper, we

PLOS ONE | www.plosone.org 1 March 2013 | Volume 8 | Issue 3 | e59317



introduce an electromechanical model for human cardiac tissue

which couples detailed biophysical models for cardiac excitation

and contraction to a discrete mechanical model. We use an ionic

model of excitation for human cardiac cells (Tusscher, Noble,

Noble, Panfilov 2006 model) [20,21] and a biophysical model for

excitation-contraction coupling (adjusted Niederer, Hunter,

Smith, 2006 model) [22,23]. Our method applies a generic model

for cardiac elasticity, an ideal crystal lattice of mass points

connected with springs. The mass-lattice model describes a

material which was introduced by Seth 1935 to discuss problems

of finite strain [24]. The Seth material relation is an extension of

the generalized Hooke’s law to finite elasticity. To solve the

mechanical equations we apply the Verlet integration [25]

(explicit, finite difference backwards integration scheme), a method

which is widely used in molecular dynamics simulations. The

Verlet integration has first been used to solve mass-lattice models

in cardiac elasticity by Mohr [26]. We applied this discrete

mechanical description before in a model to study reaction-

diffusion-mechanics systems [15], and use it here to set up an

electromechanical model for cardiac tissue. An advantage of this

method is its computational efficiency which allows to solve the

coupled electromechanical equations with high spatiotemporal

resolution.

To demonstrate the value of the discrete electromechanical

model we apply it to study effects of deformation on basic

properties of cardiac tissue, such as the action potential shape,

restitution properties, and the dynamics of spiral waves. In this

study we consider two mechanical conditions. The first one is a

constantly stretched medium, a simple assumption which was

widely used in initial studies on mechano-electric feedback [27,28],

and mimics conditions such as dilated cardiomyopathies [27]. As a

second condition, we assume a deforming medium which

resembles deformation occurring as a result of cardiac contraction.

We find that these stretch conditions have very different effects on

the studied characteristics of excitation, and discuss the underlying

mechanisms. The results of our application study may be

important to understand how situations of increased mechanical

load in the cardiac muscle alter the qualitative effect of stretch-

activated currents.

Methods

Model for Cardiac Excitation
We use the 2006 version of the Tusscher Noble Noble Panfilov

model for human epicardial myocytes (TP06) [20,21]. The model

is given as the following reaction-diffusion equation for the

transmembrane potential V

LV

Lt
~DDV{

Iion

Cm

, ð1Þ

with the membrane capacitance density Cm~2:0 mF=cm2, the

diffusivity Dij~Dij|0:00154 cm2=ms, and the transmembrane

ion current

Iion~ INazIK1zItozIKrzIKszICaLzINaCaz

INaKzIpCazIpKzIbCazIbNazIsac, ð2Þ

where INa is fast Naz current, ICaL is L-type Ca2z current, and

the Kz currents are Ito (transient outward), IKr (rapid delayed

rectifier), IKs (slow delayed rectifier), and IK1 (inward rectifier).

Furthermore, INaK is the Naz/Kz pump current, INaCa is the

Naz/Ca2z exchanger current, IpCa, IpK are plateau Ca2z and

Kz currents, and IbCa, IbNa are background Ca2z and Naz

currents. The voltage dependency of ion channels is modeled [29]

by gating variables with dynamics of the form

dn

dt
~

n?{n

t
, ð3Þ

where n? describes the voltage-dependent steady state activation,

and t the voltage-dependent characteristic time for a respective

gating variable. The TP06 model also describes Ca2z dynamics of

intracellular compartments of the sarcoplasmatic reticulum. A list

of parameters and equations for these currents is given in [20].

In our model we add a stretch-activated depolarizing current

Isac which will be introduced in the section ‘‘Mechano-Electrical

Feedback’’.

We will now describe the coupling of the electrical excitation

process of the cardiomyocytes to their tension development.

Model for Excitation-Contraction Coupling
We model myocyte excitation-contraction coupling in our

model with a numerically improved version of the Niederer,

Hunter, Smith (NHS) model [22,23] adjusted to human cardiac

tissue. The NHS model describes active tension in a sarcomere as

a function of intracellular calcium concentration [Ca2z]i,

sarcomere length, and the rate of sarcomere length change,

determinants which have been shown to substantially affect the

active tension development (see [22] and references within).

The NHS model takes the dynamics of sarcomere length into

account. We follow previous studies [12,15–17] and define as a

pseudo normalized sarcomere length.

l : ~

ffiffiffiffiffiffi
A

A0

s
, ð4Þ

where the A is the surface area of a smallest area element in the

model (see section ‘‘Mass-Lattice Model’’), and A0 is the surface

area of such a smallest area element in undeformed state.

Adjustments for Human Ventricular Cells. We followed

changes on the original version of the NHS model [22], which was

originally set up using experimental data of rat and guinea pig

hearts, that have been made in the work [18] to model human

ventricular myocytes. These changes were explained in [18] by

experimentally observed relaxation rates due to higher body

temperatures [30]. The changes are a speeding up of myocyte

relaxation rates to ar1~10 s{1, ar2~25 s{1, and adjusting the

contractile tension by setting parameters Tref ~125 kPa (maxi-

mum contractile tension at resting length of sarcomere) and

pCa50~6:5 (p[Ca2z]i at half maximal contractile tension).

Active Tension in Myocytes. The NHS model describes the

tension Ta development in cross bridges as.

Ta~bTTK(Qi)a, ð5Þ

bTT~Tref (
z

zmax

), ð6Þ

where T̂T is the length and velocity independent tension, (z=zmax) is

the fraction of available actin sites in a sarcomere z to the maximal

available actin sites zmax at a particular sarcomere length. Variable

z provides the coupling of the electrical and mechanical system

Discrete Model for Human Cardiac Tissue
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and is found during integration of the NHS model where it is

directly related to [Ca2z]i, which is given by the electrical

equations of the TP06 model. Scaling functions a and K(Qi)
describe the sarcomere length and velocity dependencies of the

total tension [22]. In particular, the function a models the

influence of the dynamics of the cross bridge cycle and thin

filaments in a sarcomere, and function K(Qi) accounts for the

velocity dependency of tension development via a fading memory

model.

It has been shown that in strongly coupled electromechanical

models for cardiac tissue, in which the equations for excitation

processes and mechanical processes are jointly solved, computa-

tional difficulties may occur due to the velocity and length-

dependency of a sarcomere [23]. To solve this problem, Niederer

and Smith proposed the ‘‘update method’’ [23], where the

functions K(Qi) and a are continuously calculated within the

mechanical iteration algorithm to calculate the total tension Ta via

Eq.(5). In this paper, we apply the NHS model, adjusted for

human cardiac tissue, together with the ‘‘update method’’. For a

detailed model description and parameters, see [22,23].

We will now describe the passive elastic properties of the

medium.

Mass-Lattice Model
We use the mass-lattice framework introduced in [15]. The two-

dimensional lattice consists of material points connected by springs

(Figure 1A). In this square lattice each mass point is connected to

N~8 (if not at the boundary) direct neighboring mass points with

springs that follow Hooke’s law (Figure 1B). The equations of the

model are.

F12~
1

r
(
Ta(1)zTa(2)

2
)

l12

El12E
, ð7Þ

f1a~½c
El12E{r0

r0

� �
{d

(_ll12
:l12)

El12E
� l12

El12E
zF12, ð8Þ

f1p~k½c El13E{
ffiffiffi
2
p

r0ffiffiffi
2
p

r0

 !
{d

(_ll13
:l13)

El13E
� l13

El13E
, ð9Þ

XN

a~1

f ia~m€xxi~0: ð10Þ

Figure 1C illustrates main forces and the displacements of active

and passive lattice springs connecting the mass point 1 to the mass

points 2 and 3. Each mass point is connected to its 4 diagonal

neighbors with ‘‘passive springs’’ (passive elastic properties), and to

its 2 vertical and 2 horizontal neighbors with ‘‘active springs’’

(passive and active forces). Eq.(7) describes the excitation-

contraction coupling of two neighboring mass points 1 and 2
connected with an active spring, where Ta is active tension from

Eq.(5), and r is the mass point surface density (see section

‘‘Numerical Methods’’). Eqs.(8),(9) describe forces f1a~{f2a

mediated through an active spring to mass points 1 and 2, and

forces f1p~{f3p mediated through a passive spring to mass points

1 and 3. In Eqs.(8),(9) the spring vectors are given by mass point’s

positions as l12~x2{x1 and l13~x3{x1, r0 is the resting length

of an active spring and
ffiffiffi
2
p

r0 the resting length of a passive spring,
_ll12~v2{v1 and _ll13~v3{v1 are the time derivatives of the

respective spring vectors l12, l13. Parameter c is the stiffness

constant, and d is the damping parameter. Parameter k~1=2 is

the stiffness ratio between active and passive springs which causes

the lattice to be macroscopically isotropic [31] for small

deformations, and can be described by the generalized Hooke’s

law.

sij~CijklEkl~2mEijzl(trE)dij , ð11Þ

with the small strain tensor Ekl , Cauchy’s stress tensor sij , linear

elasticity tensor Cijkl , Kronecker delta Dij , and Lamé coefficients l

and m. Krivtsov showed in [32] that the lattice can be

approximated by the Seth material relation [24] for non-linear

deformations which is given by Eq.(11) when the Almansi’s finite

strain tensor is used instead of the small strain tensor. Young’s

elastic modulus of cardiac tissue has been measured in an atomic

force microscopy study 100+11 kPa [33]. However, cardiac

tissue provides a nonlinear elastic behavior for larger deforma-

tions, and we found that setting Young’s elastic modulus to

125 kPa in our model results in maximal deformations of springs

of 15%, similar to contracting cardiac cells. Thus we set the spring

Figure 1. Coupled mechanical and electrical mesh. (A) Coupled mechanical and electrical mesh. The mass points are indicated as large black
dots. The finite difference points to solve Eq.(1) are indicated as small white dots. The lattice springs are indicated as black lines. (B) Unit cell of the
two-dimensional lattice. Mass point 1 and its four horizontal and vertical nearest neighbors and four diagonal next-nearest neighbors are connected
with direct active and diagonal passive springs. Lattice springs are indicated by zigzagging lines (fat lines for active and thin lines for passive springs).
Dotted contours indicate insets for the associated subfigures. (C) Vectors used in Eqs.(7)-(10) for calculating lattice interactions. Figure taken from
[15].
doi:10.1371/journal.pone.0059317.g001
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stiffness c accordingly to 125 kPa=r (see section ‘‘Numerical

Methods’’). As we assume elastostatics m and d have no physical

relevance and should be set to optimize computations. Following

[15], we set m to the identical numerical value of c (m~0:125 for

c~0:125 N compare section ‘‘Numerical Methods’’), and set

d~30|c to achieve stable and efficient computations (see section

‘‘Model Validation’’).

In section ‘‘Model for Excitation-Contraction Coupling’’ we

defined a pseudo normalized sarcomere length l in terms of the

surface area of a smallest area element A in the lattice (see Eq.(4)),

which is a quadrilateral formed by 4 direct neighboring mass

points connected with active springs (see Figure 1A). Parameter A0

is the surface area of such a smallest area element in the

undeformed model, A0~r2
0 (see Figure 1A).

We will now describe how we model mechano-electrical

feedback via stretch-activated currents.

Mechano-Electrical Feedback
The deformation of a cardiomyocyte affects its excitation

processes. It has been shown in studies of excised cardiac tissue

and the whole heart that a direct electrophysiological influence of

the deformation of cardiac tissue is a depolarizing stretch-activated

current Isac (compare Eq.(2)) through stretch-activated ion

channels [5]. Experimental studies have shown that these channels

are activated instantaneously with mechanical stretch and follow a

linear current-voltage relationship [34,35]. Linear, time-indepen-

dent models have been proposed for Isac [27,28], and have been

used in other electromechanical models [12,14,18]. Following

these previous studies we use.

Isac~Gs
l{1ð Þ

lmax{1ð Þ V{Esð Þ, for lw1 (stretch) ð12Þ

where Gs is the maximal conductance, and Es is the reversal

potential of the stretch activated channels. For Es values around

½{20; 0� mV have been reported [36,37], and we set Es~0 mV .

It has been shown that Gs is within 0 to 100 S=F [5,38], and in

this paper we vary Gs in this range to study the influence of Is on

several properties. Parameter lmax is the maximal pseudo

normalized sarcomere length which we set to lmax~1:1 as in [18].

Numerical Methods
We solved the model applying an explicit Euler method for the

TP06 and NHS models, and Verlet integration [25] for the

mechanical model. After each Euler computation of the electrical

system a new [Ca2z]i is obtained, and a length and velocity

independent tension T̂T is computed via Eq.(6). T̂T is then passed to

the mechanics model, where the mechanical equations are solved,

using Verlet integration time step mt~0:01, until the sum of

forces on each mass point is smaller than threshold

thr~0:05 kPa=r. The Verlet computation of the position of a

mass point i for integration time tzmt is

xi(tzmt)~2xi(t){xi(t{mt)z€xxi(t)|(mt)2,

where mt~0:01 is the Verlet integration time step and t is the

integration time. For the very first time step, we use

xi(0zmt)~xi(0)z
1

2
€xxi(0)|(mt)2:

The acceleration of a mass point €xxi(t) is given by Eq.10. At

each time step the velocities of the mass points are calculated by

vi(t)~
xi(t){xi(t{mt)

mt
:

During the mechanical iteration algorithm the length and

velocity dependent tension scaling functions K(Qi) and a of the

total tension Ta which is computed via Eq.(5) are updated together

with the mesh configuration using the ‘‘update-method’’ [23]. We

found that numerical difficulties can occur in situations when the

damping force in a spring exceeds the Hooke’s force, for example

in an active spring (see section ‘‘Mass-Lattice Model’’).

d
(_ll12

:l12)

El12E
wc(

El12E{r0

r0

), ð13Þ

which in turn causes slow convergence of the iterative algorithm

requiring in some cases thousands of iterations before conver-

gence. However, we found that good convergence can be achieved

by setting the absolute damping force to 10% of the Hooke’s

spring force (for springs for which condition of Eq.(13) is true).

With this, we observe a significant improvement - typically the

mechanical system converges within 10–20 iterations. In this paper

the ‘‘update method’’ is applied within the Verlet routine on

discrete nodes, whereas in the original work [23] the method is

used within the Newton algorithm to solve equations of continuum

mechanics. Moreover, here the actual sarcomere length was not

used for the mechano-electrical feedback calculation, but a pseudo

normalized sarcomere length l from Eq.(4). For simulations we

used an Euler integration space step from Dx~Dy~0:025 cm to

0:05 cm and Euler integration time step of Dt~0:02 ms. We

computed a quadratic grid of up to 403|403 finite difference

points (and up to 201|201 mass points) using no-flux boundary

conditions modeling a thin quadratic layer of 10|10 cm2 cardiac

tissue. The spring stiffness c and mechanical threshold thr are

functions of the mass point density. Mass point density r is

function of the coarseness of the mass-lattice model, here we set

the resting length of an active spring to be as long as two finite

difference integration steps r0~2|Dx (see Figure 1A), thus the

mass point density is

r~
1

r2
0

~
1

4|Dx2
,

where the factor 1=4 is the ratio of mesh coarseness (#mechanical

points/#electrical points) in the model. For an Euler space step of

Dx~0:05 cm, the mass point density is r~100 cm{2, spring

stiffness is c~0:125 N, and the mechanical threshold is

thr~0:05 mN. The boundaries of the medium were fixed in

space modeling isometric contraction to mimic isovolumic phases

in the cardiac cycle, a common assumption which was used in

similar electromechanical studies [12,14–16].

Model Validation
The numerical coupling and integration of the Euler and the

Verlet scheme require the choice of several parameters. We will

first discuss the integration parameters and then parameters for the

coupling of the numerical grids to assure efficient and stable

computations.

Discrete Model for Human Cardiac Tissue
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Integration Parameters. It has been shown that the TP06

model together with the improved NHS model coupled with a

whole heart continuum mechanics model can be stably integrated

with the Euler method using integration parameters Dt~0:02 ms
and Dx~0:05 cm [18]. We use Euler integration steps of

Dt~0:02 ms and Dx~0:05 cm as in [15] for most computations,

and use a stricter setting Dx~0:025 cm for simulations on spiral

wave dynamics. To validate the usage of larger space step

Dx~0:05 cm we performed simulations of our main results on

potential shape, and restitution properties using Dx~0:025 cm. In

these simulations we found that our setting of Euler integration

parameters yields consistent results. We update the mechanical

configuration after each Euler step, and achieve stable and

accurate integration of the coupled electromechanical model. For

solving the mechanical Eqs.(8)-(10) we use a Verlet integration

time step of mt~0:01 (as in [15]). We find that this setting allows

efficient and stable computations of new configurations of the

mechanical grid for this paper’s simulations.

Damping-Stiffness-Ratio. The system of coupled, damped,

driven, mechanical oscillators described by Eqs.(8)-(10) has been

shown in [15] to allow fast stable convergence of the lattice mass

points to their new configuration in a similar application as in this

paper. In this work we found that setting the damping-stiffness

ratio d=c~30 (dimensionless) as in [15] yields stable and efficient

computations of mechanical mesh configurations in most situa-

tions. However, we found that in some situations (e.g. under

external stimulation) we get numerical difficulties when Eq.(13) is

true even for smaller values of the damping-stiffness ratio d=c (e.g.

d=c~1). Thus, we apply d=c~30 together with the stability

criterion outlined in the section ‘‘Numerical Methods’’ for all this

paper’s simulations.

Electrical and Mechanical Grids. In [15] we applied a

method to validate the mesh coupling of the finite difference mesh

and the mechanical mesh via an error norm defined by residues of

mass point trajectories. This method allowed us to find accurate

coupling parameters. We found in these validation experiments

that the usage of a coarser finite difference mesh compared to the

mechanical mesh as shown in Figure 1A allows accurate

computations. This is, because changes in tension and strain are

typically distributed more smoothly in space than electrical

variables. For example, the upstroke of an electrical excitation

wave has a length of the order of one to two millimeters, whereas

the mechanical tension changes over a range of few centimeters. In

this paper, we performed simulations to test how a change in

resolution of the mechanical mesh compared to the electrical

system affects the main results of the paper, and we found that our

parameter setting yields consistent results. We also found in [15]

that our mechanics model converges better with a frequent update

rate, and therefore we also choose here to update the mechanical

mesh after each time the electrical system was solved (every

Dt~0:02 ms). We performed a convergence study to determine a

suitable value for the threshold of convergence for the mechanical

problem for numerical step sizes. For this we halved and quartered

the value for thr, and found qualitatively same results (influence of

stretch on action potential, restitution properties, spiral wave

dynamics). Thus we set thr~0:05 kPa=r, e.g. for Dx~0:05 cm,

thr~0:05 mN, and for Dx~0:025 cm, thr~0:0125 mN.

Mesh Initial Conditions. The main determinant of cardiac

contraction is the [Ca2z]i transient, and it is necessary to set initial

conditions of the TP06 model so that it describes a steady state

Ca2z dynamics of a working cardiac cell. We found that one

should carefully approach this problem as establishing of such a

steady state can take a substantial period of time. To demonstrate

this, we performed a numerical experiment on a single, non-

deforming cell in which we stimulated it with a frequency of 2 Hz
by setting V~0 mV for one time step 0:02 ms. We see in

Figure 2A that it requires a long time to reach steady state

dynamics for [Ca2z]i. Figure 2B illustrates the [Ca2z]i transient

after 30 s of applying the stimulation protocol. According to this

simulation we adjusted initial conditions of the TP06 model:

[Ca2z]i~0:11 mM; [CaSR]~3:77 mM; CaSS ~0:2 mM. Note

that these calcium concentrations were taken at peak values of

[Ca2z]i, and that in following numerical experiments we

performed additional initialization procedures.

Figure 3 shows an electromechanical pulse of a single fiber

during isometric contraction. One can see that as in experimental

records [39] the tension is slightly delayed from the [Ca2z]i

transient, the fiber produces a maximal contractile tension of

&85 kPa approximately after 100 ms after the upstroke of the

action potential.

Results

We applied our discrete electromechanical model to study the

effects of stretch-activated currents and stretch conditions on

action potential duration (APD) and conduction velocity (CV)

restitution, and spiral wave dynamics. The results of these studies

are shown in this section.

We consider two mechanical conditions, a constantly stretched

medium, and a contracting medium. The condition of sustained

stretch in the medium has been assumed previously, for example,

in a model to study how dilated cardiomyopathies may affect

defibrillation efficacy [27], and in a model to study the effect of

mechano-electrical feedback on the action potential of ventricular

cells [28]. However, under normal physiological conditions cells

are not constantly stretched, but contract during most of the action

potential. It is interesting to note, that as an experimental

condition, constantly applied mechanical load is often applied to

study effects of mechano-electrical feedback, for example, in

cardiac cell cultures [40] or animal models [41]. Therefore, we

perform studies both, in a constantly stretched medium, and in a

contracting medium to investigate the effects of different

mechanical conditions.

Action Potential Shape and Restitution Properties
Constant stretch. We used a 10 cm|10 cm medium which

we assumed stretched to lmax. From Eq.(12) we see that in this

situation every cell in the medium experiences Isac~Gs V{Esð Þ,
thus we apply Isac to every cell without actually deforming the

medium. We initiated a train of traveling plain waves with a

period of 1 s to study the influence of Isac on characteristics of the

action potential for Gs from 0 to 25 S=F . In Figure 4A we show

the shape of the action potential of the cell in the center of the

medium for different Gs after 50 s application of the stimulation

protocol. From Figure 4A we see that increasing Gs causes an

increase in the resting potential in the medium and increase in

APD. In particular, Figure 4B shows that increase of Gs from 0 to

25 S=F increases the resting potential by 20 mV (from {86 mV
to {66 mV ). Figure 4C shows that increasing Gs from 0 to

25 S=F increases APD from 311 ms to 361 ms. This effect occurs

as a larger Gs causes a stronger depolarizing Isac. As a result of

stronger Isac the resting potential increases, and during an action

potential Isac counteracts repolarizing currents elongating the

APD.

The effect of Isac on the upstroke of the action potential in the

constantly stretched medium is illustrated in Figure 5. We see in

Figure 5A that the upstroke peak and slope decreases with

increasing Gs, and that for Gsw15 S=F no typical sodium driven

Discrete Model for Human Cardiac Tissue
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upstroke takes place. In Figure 5B the upstroke slope is shown as a

function of Gs. We see that for Gsw20 S=F the upstroke slope

drops to values under 50 S=F which is much lower than the

sodium driven upstroke in the TP06 model without deformation.

This effect of Gs on the upstroke can be explained by a depletion

of fast sodium channels via the accommodation phenomenon, a

decrease of opening probability of fast sodium channels due to

sub-threshold depolarization [29]. In a previous study [28], which

also assumed a constantly stretched medium, similar effects of Isac

on the APD, upstroke and resting potential were found. Moreover,

it was shown previously in Langendorff-perfused rabbit hearts that

sustained volume load causes increased resting potential and

decreased the slope of the action potential upstroke [41].

To measure restitution properties in the constantly stretched

medium we applied the same setup as above, but varied the

stimulation period from 0:33 s to 3 s. We measured CV from the

difference in front arrival times between two points, one at the

center, and the other 1:5 cm further in propagation direction.

Figure 6 illustrates the APD and CV restitution. We see from

Figure 6A that increasing Gs increases the APD. For Gs between 0
and 10 S=F the slope of the APD restitution curve is not affected

much, and APD grows continuously for longer stimulation periods

to a plateau. For Gs between 15 and 25 S=F and a stimulation

period longer than 1 s we see that an increasing, slightly negative

slope of the APD restitution curve is caused. From Figure 6B we

see, that increasing Gs causes decreasing CV. For stimulation

intervals shorter than 0:75 s we observe that increasing Gs causes a

higher steepness of the CV restitution curve. Restitution curves for

Gs between 0 and 20 S=F are monotonically increasing for longer

stimulation intervals; yet, for Gs~25 S=F we see a biphasic shape

with a local maximum of around 0:75 s, and slightly negative slope

of the CV restitution curve for longer stimulation interval. We also

see that the minimal period of excitation increases with increase of

Gs from about 0:33 s for Gsƒ10 S=F to about 0:5 s for

Gsw10 S=F . In a previous study [27], where also constant stretch

was assumed in the medium, increasing Gs also caused longer

APD and decreased CV.

Contracting Medium. For the simulations in a contracting

medium we applied the same system size, stimulation protocol,

and parameter setting as for the constantly stretched medium;

however, the medium is deforming due to excitation-contraction

waves, and the boundaries are fixed space (see section ‘‘Numerical

Methods’’). In Figure 7A we show how the shape of the action

potential is affected by Isac. We see that increasing Gs in from 0 to

100 S=F causes no substantial increase in the resting potential and

in APD. Another effect of increasing Gs is a linear increase in the

transmembrane potential starting &50 ms prior the upstroke. For

example, for Gs~100S=F the transmembrane potential increases

to {77 mV , which is well under the threshold of excitation, that is

at &{60 mV . In Figure 7B we illustrate the effect of Isac on APD.

One can see that increasing Gs from 0 to 100 S=F increases APD

by 0:45 ms. This effect of Isac on APD is small in the studied

parameter range compared to the constantly stretched medium,

where increasing Gs from 0 to 25 S=F resulted in increase of APD

by 50 ms.

In Figure 7C we illustrate the effect of Isac on the action

potential upstroke in the deforming medium. We can see that the

upstroke peak decreases for increasing Gs; from 28:3 mV (for

Gs~0 S=F ) to 22:1 mV (for Gs~100 S=F ). This decrease in

upstroke peak is small compared to the constantly stretched

medium, where an increase of Gs from 0 S=F to 10 S=F caused a

Figure 2. Mesh initialization (A) [Ca2z
i] transient during pacing experiment. [Ca2z]i is shown for a single non-deforming cell undergoing

2 Hz pacing. (B) Steady state [Ca2z
i] transient. [Ca2z]i is shown for a single non-deforming cell after 35 s of 2 Hz pacing.

doi:10.1371/journal.pone.0059317.g002

Figure 3. Electromechanical activity of an isolated fiber. A pulse
is initialized at time 10 ms by setting voltage to 0 mV for 0:02 ms. Fiber
was kept at its resting length during the simulation.
doi:10.1371/journal.pone.0059317.g003
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decrease of the upstroke amplitude by 15:0 mV (compare

Figure 5A). Furthermore, in Figure 7D we illustrate the maximal

upstroke slope against Gs. The maximal upstroke slope decreases

for increasing Gs. The effect of Isac is small compared to the

constantly stretched medium. In particular, increasing Gs from 0
to 25 S=F in the contracting medium decreases the upstroke slope

from 326:6 V=s to 302 V=s, whereas in the constantly stretched

medium an increase of Gs from 0 S=F to 5 S=F causes a decrease

to 269 V=s.

Figure 8A illustrates the effect of Isac on the APD restitution in

the contracting medium. From Figure 8A we see a small effect of

Isac on the APD. Only for a stimulation period shorter than 1 s we

see a small decrease in steepness of the restitution curve with

increasing Gs.

Figure 8B illustrates the effect of Isac on CV restitution in the

contracting medium. We see, that for a stimulation period longer

than 2 s stretch activated currents have only little effect on CV.

This is because for a slow stimulation period the effects of

deformation caused by a preceding wave progressively decrease.

For stimulation periods shorter than 0:5 s, a steep positive CV

restitution is present for all measured values of Gs, and the slope of

the CV curve increases when Gs is larger. For stimulation periods

between 1 s and 2 s we see that contraction results in negative CV

restitution slopes: a higher periodic stimulation causes higher wave

velocities. Note that CV depends on the position it is measured, as

the medium before the wave is depolarized by Isac. Here we used

an average CV to illustrate the abnormal CV restitution.

Effect of Mechanical Conditions. Let us now compare the

results for a constantly stretched and contracting medium. We

found, that under both, dynamical and static stretch conditions,

increasing Gs causes an elongation of the APD; however, in the

deforming medium the effect is much smaller than in the

constantly stretched medium (compare Figures 6A, and 4 with

Figures 7B, and 8A). Furthermore, the results of the CV restitution

in the constantly stretched and the contracting medium are

significantly different. We can explain these differences by

substantially different time courses of stretch in a constantly

stretched and in contracting tissue. Figure 9 illustrates the shape of

action potential, stretch activated current, and deformation of the

medium for a single cell which is subject to a constant stretch

(similar to Figure 4), and for a cell in a contracting medium, in

which we measured the APD restitution shown in Figure 8. In

both setups the cell was paced at 1 Hz. We see that Isac in a

constantly stretched cell is active during the entire action potential,

and Isac has a substantial negative value (inward current) at the

waveback, which results in APD prolongation. On the contrary,

for a cell in the contracting medium Isac is absent at the waveback.

This is because at this phase of the action potential the cell is

Figure 4. Effect of stretch-activated currents on the action potential in constantly stretched medium. (A) Action potential vs Gs . (B)
Resting membrane potential vs Gs. (C) APD vs Gs. Traveling plain waves were periodically (1 Hz) induced in a medium held at (lmax) for different Gs .
Action potentials were measured after 50 s. Resting potential was measured in the medium without external stimulations. APD was measured at 90%
recovery.
doi:10.1371/journal.pone.0059317.g004

Figure 5. Effect of constant stretch on the action potential upstroke. (A) Upstroke of action potential vs Gs . (B) Maximal upstroke slope vs
Gs . Protocol was as in Figureô 4.
doi:10.1371/journal.pone.0059317.g005
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contracting, and thus no stretch activated current is produced. As

a result of that difference, the APD for a cell in the deforming

tissue is only slightly longer than that of a cell in a non-deforming

tissue. Some elongation of the APD at increased Gs can be

explained with the negative current prior/during the upstroke of

the action potential which slightly decreases the sodium current via

Figure 6. Dependence of restitution on stretch-activated currents in constantly stretched medium. (A) APD restitution vs Gs. (B) CV
restitution vs Gs . Same parameters were used as in Figureô 4.
doi:10.1371/journal.pone.0059317.g006

Figure 7. Effect of stretch-activated currents on the action potential in contracting medium. (A) Action potential vs Gs. (B) APD vs Gs . (C)
Upstroke of action potential vs Gs . (D) Maximal upstroke slope vs Gs . Traveling plain waves were periodically (1 Hz) induced for different Gs . Action
potentials were measured after 50 s. Resting potential was measured in the medium without external stimulations. APD was measured at 90%
recovery.
doi:10.1371/journal.pone.0059317.g007
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the accommodation phenomenon. The linear increase of trans-

membrane potential shown in Figure 7 is also present in Figure 9,

and we can see that it is caused by a linear increase of stretch and

thus Isac which sets in &50 ms prior the upstroke. Overall, in the

deforming medium the cell is affected by Isac only from &50 ms

before the upstroke until &30 ms after the upstroke, while during

constant stretch Isac is always present. This explains why the effect

of Gs on the APD is much smaller in the contracting medium

compared to the constantly stretched medium. Note the change in

sign of Isac when the transmembrane potential reaches the reversal

potential of the stretch activated channels Es~0 mV (compare

Eq.(12)). Thus Isac has a depolarizing effect on cardiac cells prior

an action potential, and can have a repolarizing effect during the

action potential. From Figure 9 we can also understand the

different results on the CV restitution curves for the constantly

stretched and the contracting medium. In the constantly stretched

medium decrease of velocity is due to the constantly depolarizing

Isac causing accommodation, whereas in the contracting medium,

a depolarization of the medium Isac sets in only about 50 ms prior

to the upstroke (compare Figure 4), so that no significant

accommodation takes place, and causes a preexcitation of the

medium prior the traveling wave. As a result, for intermediate

stimulation periods, an increase in Gs causes an increase of CV.

Spiral Wave Dynamics
We studied effects of deformation on spiral wave dynamics in

our model. We initiated a spiral wave with an S1–S2 protocol in

the medium, and then simulated spiral rotation for 10 s to avoid

Figure 8. Dependence of restitution on stretch-activated currents in contracting medium. (A) APD restitution vs Gs. (B) CV restitution vs
Gs . Same parameters were used as in Figureô 6.
doi:10.1371/journal.pone.0059317.g008

Figure 9. Effect of stretch conditions on stretch-activated currents and action potential shape. Continuous lines show variables for cell in
the medium, dotted lines show variables for constantly stretched cell. The constantly stretched cell was constantly held at l~1:02, and paced at 1 Hz
to steady state dynamics. The other cell was in a contracting medium in the same setup as in Figureô 6, and also paced at 1 Hz to steady state
dynamics. Gs~25 S=F .
doi:10.1371/journal.pone.0059317.g009

Discrete Model for Human Cardiac Tissue

PLOS ONE | www.plosone.org 9 March 2013 | Volume 8 | Issue 3 | e59317



artifacts from the spiral initiation protocol. During this initial

phase Gs~0 S=F . The values of all variables are then recorded,

and used as initial conditions for the following simulations. We set

Gs to various values, in contracting and constantly stretched

medium, and studied how this affects the dynamics of the rotating

spiral wave. We studied spiral wave dynamics for Gs between 0
and 20 S=F . Figure 10 illustrates the simulation experiment, it

shows spiral rotation in the model for Gs~10 S=F in the

contracting medium.

We found that in the constantly stretched medium (assumed to

be stretched to lmax) the spiral tip follows a static circular core

(data not shown). Figure 11A illustrates how Isac affects the spiral

core radius. We found that the size of the spiral wave core

increases with increasing Gs (1:04 mm for Gs~0 S=F , and

1:17 mm for Gs~20 S=F ). In Figure 11B it is illustrated how

the spiral period is affected by Isac in the constantly stretched

medium. We find, that the spiral period increases for increasing

Gs. An increase of Gs from 0 S=F to 20 S=F causes an increase of

spiral period from 223 ms to 411 ms. This increase in the period

can be explained by elongation of APD under constant stretch

conditions (Figure 9).

Figure 12A illustrates how the spiral wave rotation is affected by

Isac in the contracting medium. We see that in absence of Isac the

spiral rotates around a circular core. However, for increasing Gs

the spiral starts to drift, and drift velocity increases with an

increase of Gs. All spiral tip trajectories in Figure 12A show drift

for the same time interval (&4:4 s), and we see that the distance

traveled by the spiral tip increases substantially with an increase of

Gs. We use the traveled distance of the spiral tip to estimate the

velocity of spiral wave drift. Figure 12B shows the velocity of spiral

wave drift as a function of Gs. We see an approximately linear

increase in drift velocity with increase of Gs. Figure 12C illustrates

the effect of Isac on spiral wave period. We see that increasing Gs

increases the spiral wave period: an increase of Gs from 0 S=F to

20 S=F causes an increase of spiral period from 223 ms to 237 ms.

This effect can be explained by the accommodation phenomenon.

Isac decreases the availability of sodium channels which results in a

decrease of excitability which is known to increase the period of a

spiral wave. However, as the effect of Isac on APD is minimal (see

Figure 8A) the increase of the period is also less substantial

compared to the constantly stretched medium. Moreover, a

decrease in excitability of a medium is known to increases the

radius of a spiral core [42]. We calculated the size of the core of

drifting spirals by correcting the spiral tip position data for the drift

of the core, and indeed found some increase of the core radius with

Figure 10. Illustration of spiral wave dynamics in contracting medium. Time after stretch activated current Isac was activated is shown top
right of each subfigure. Gs~10 S=F .
doi:10.1371/journal.pone.0059317.g010

Figure 11. Dependence of spiral wave dynamics on stretch-activated currents in constantly stretched medium. (B) Spiral core radius as
a function of Gs . (C) Spiral wave period as function of Gs.
doi:10.1371/journal.pone.0059317.g011
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increasing Gs (1:04 mm for Gs~0 S=F , and 1:07 mm for

Gs~20 S=F ); however, the effect is small.

Our results on spiral wave drift in contracting tissue are

qualitatively similar to that observed in [14], where a low

dimensional model of cardiac tissue was applied, and the spiral

drift was discussed as a so-called resonant drift mechanism [43].

Resonant-drift can be induced by a periodical variation of the

medium properties such as its excitability synchronously with the

spiral wave period [44]. In our model a rotating spiral wave itself

periodically affects the excitability of the medium. We can

understand this from Figure 10, where we can see that the

fraction of the excited surface area (and thus the fraction of

contracting medium) to the total surface area of the medium

changes in synchrony with the spiral rotation, in turn affecting the

mediums excitability properties. Therefore, we believe that in our

simulations and in [14] the underlying mechanism of spiral drift is

the resonant drift.

Discussion

We introduced a discrete electromechanical model of the

human heart which couples a biophysical model of cardiac

excitation [20,21] and tension development [22,23] with a discrete

elastic mass-lattice model. We demonstrated the value of the

model in an application study. We used our new model to

investigate how stretch conditions and stretch-activated currents

affect the heart’s functioning. For this we studied how stretch-

activated currents affect action potential shape, restitution

properties, and spiral wave activity in a medium which we

assumed constantly stretched, and a contracting medium with

isometric boundary conditions. We found that stretch conditions

significantly influence these properties by activating stretch-

activated ion channels. In the freely deforming medium we find

that the primary effects are accommodation, and preexcitation of

the medium. In the constantly stretched medium we find a much

Figure 12. Dependence of spiral wave dynamics on stretch-activated currents in contracting medium. (A) Spiral tip trajectories are
shown for different values of Gs . Each tip trajectory illustrates drift for 4:434 s. Starting points and drift directions are illustrated with arrows. (B) Spiral
wave drift velocity as function of Gs. Drift velocity is estimated from the tip trajectories using the distance of the spiral core position. (C) Spiral wave
period as function of Gs. Spiral period was measured from the last spiral rotation.
doi:10.1371/journal.pone.0059317.g012
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stronger accommodation effect, no effect of preexcitation, and

substantial elongation of the APD caused by depolarizing Isac

during the recovery phase of the action potential. We found that

spiral wave drift is caused in the deforming medium, whereas in

the constantly stretched medium rotation dynamics is not affected,

but spiral period and core size is increased.

It has been shown that the dynamics of spiral waves in the heart

manifests itself in the type of cardiac arrhythmia, for example, a

drifting spiral wave can induce a polymorphic ventricular

tachycardia which is a known precursor for ventricular fibrillation

[45]. Our results show that in addition to heterogeneity induced

spiral wave drift [46–48] there is a drift due to mechano-electrical

feedback which can also affect the type of cardiac arrhythmia.

Our results on restitution properties suggest that in dynamic

stretch-conditions Isac causes abnormal CV restitution due to a

preexcitation in the medium. It has been shown that abnormal CV

restitution can cause alternans and initiation of spiral waves

[49,50], and also important phenomena on spiral wave dynamics

such as discordant alternans can be caused by abnormal CV

restitution [51,52]. We expect that this mechanism of mechani-

cally caused abnormal CV-restitution is important to understand

the onset of arrhythmias due to emergent dynamic inhomogene-

ities.

The computation time of our mechanical model scales linearly

against the number of mechanical nodes, which allows to solve the

model with a higher mechanical node density and thus high spatial

resolution of Isac [16]. Furthermore, this computational efficiency

of the discrete mechanical model allows us to update the its

configuration after each electrical step (0:02 ms). Continuous

mechanical studies on cardiac function normally solve mechanics

following several electrical steps, because its more demanding

numerical schemes, for example in [18] the mechanical configu-

ration was solved following 100 electrical steps.

The passive elasticity of the heart is most commonly described

by hyperelastic constitutive relations in finite element formulations

of continuum mechanics, for example, the Guccione material

relation in [18]. A drawback of the mass-lattice framework of the

new model is its difficulty to reproduce passive mechanical

properties of biological tissue with a discrete mechanical model,

for example volume conservation or specific passive mechanical

properties such as hyperelasticity. In contrast, these properties can

be directly described in constitutive relations in continuum

mechanics. The discrete electromechanical model could be

extended to describe hyperelastic material relations, for example

using the approach developed by Fritz et al. in [53], where a mass-

spring model is in fact adapted to a hyperelastic material relation

to describe cardiac mechanics. Moreover, also volume conserva-

tion and anisotropy of heart tissue can be introduced to discrete

mechanical models [54,55].

As another next step, the discrete electromechanical model can

be extended to three-dimensional simulations to study the effect of

mechano-electrical feedback on the dynamics of scroll waves.

Our modeling framework can potentially be used to estimate

effects of mechanical or electrical components in experimental

studies of wave propagation in the heart. However, it needs to be

adjusted to the specific tissue type and mechanical properties of

the experimental system. It can be done by changing the

parameters on our model based on direct measurements.

We set up the new electromechanical model using a standard

form for the stretch-activated currents Isac in Eq.(12). This allows

us to compare the new results to results previously achieved with

electromechanical models using a continuous mechanical descrip-

tion, for instance results on spiral wave drift in [14]. Experimental

studies showed that Isac depends also on additional factors, for

example, the stretch rate [56]. Our model can easily be adjusted to

other formulations of Isac, for example, to the formulation of Jie

et al. [19] which considers a stretch rate dependency. It can be

interesting to compare the effect of different formulations of Isac on

the dynamics of wave propagation.

The effect of deformation of the medium on the metric tensor

are neglected in the model, as we assume that the main resistivity

between cells is constituted by gap junctions. We used this

assumption also in [15], where we found that the change of the

metric tensor did not affect qualitative results our study on

mechanically caused pacemaking activity in a low-dimensional

model.
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