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Abstract

Quantifying coupled spatio-temporal dynamics of phenology and hydrology and understanding underlying processes is a
fundamental challenge in ecohydrology. While variation in phenology and factors influencing it have attracted the attention
of ecologists for a long time, the influence of biodiversity on coupled dynamics of phenology and hydrology across a
landscape is largely untested. We measured leaf area index (L) and volumetric soil water content (h) on a co-located spatial
grid to characterize forest phenology and hydrology across a forested catchment in central Pennsylvania during 2010. We
used hierarchical Bayesian modeling to quantify spatio-temporal patterns of L and h. Our results suggest that the spatial
distribution of tree species across the landscape created unique spatio-temporal patterns of L, which created patterns of
water demand reflected in variable soil moisture across space and time. We found a lag of about 11 days between increase
in L and decline in h. Vegetation and soil moisture become increasingly homogenized and coupled from leaf-onset to
maturity but heterogeneous and uncoupled from leaf maturity to senescence. Our results provide insight into spatio-
temporal coupling between biodiversity and soil hydrology that is useful to enhance ecohydrological modeling in humid
temperate forests.
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Introduction

Vegetation plays an important role in movement of water across

the landscape by exchanging water between the soil and the

atmosphere via change in surface albedo and roughness [1],

canopy water interception [2], and transpiration [3–5]; changing

the hydro-mechanical properties of soil [6,7]; and redistributing

water laterally and vertically in soil profile via hydraulic

redistribution [8–10]. On the other hand, survival and distribution

of plants on a landscape depend on spatio-temporal patterns of soil

water availability [11–14]. Therefore, an increased understanding

of spatio-temporal patterns of vegetation water use and underlying

mechanisms is critical for effective watershed management and

advancement of the field of ecohydrology [15,16]. Recent studies

from arid ecosystems have reported the strong influence of spatio-

temporal patterns of vegetation on horizontal and vertical

gradients of soil moisture [17–19]. However, the underlying

processes that create spatial and temporal patterns of leaf area

index and soil moisture remain poorly understood, especially in

humid regions. Understanding the governing factors of this

interaction is critical for modeling carbon, water, and energy

cycles at the landscape scale.

Leaf surface is the site of gaseous (water and CO2) exchange,

therefore leaf area controls terrestrial water, energy and CO2

fluxes [4,20]. Leaf area index (L), defined as half of the total

intercepting leaf area (m2) per unit ground surface area (m2) [21],

is used as a key input to a variety of ecosystem and hydrologic

models [22] to incorporate phenological changes. Similarly,

volumetric soil water content (h) is a commonly used input in

hydrologic models and indicates the available soil water for plants.

Both L and h can be estimated by ground-based measurements,

remote sensing derivations, and simulation modeling [7,23].

Ground-based (direct and indirect) methods are relatively accurate

at the site level, but cumbersome, costly, and even destructive to

conduct [7]. Remote sensing has become a time and cost effective

tool for the detection of spatial and temporal changes in L and h
over a large (.10 km2) area [23,24], but at small scales (,10 km2)

detecting spatial and temporal variability in L and h is quite

challenging due to problems associated with accuracy, time, and

cost [23,25]. In this study, we used Bayesian kriging [26], a novel

data-model fusion approach to quantify and understand the

spatio-temporal dynamics of L and h. In practice, a model

parameter is unknown and often replaced by estimated value as if

the estimated value is true, thus ignoring the associated

uncertainty in parameter estimation. Bayesian inference treats a

parameter as a random variable and incorporates uncertainty in

predictions (posterior probability) based on a prior probability and

a likelihood function derived from the probability model for the
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observed data. Therefore, more realistic estimates of the model

parameters and prediction variance are obtained.

The main objectives of this study were (1) to quantify the spatio-

temporal interaction of L and h, and (2) to assess the governing

processes of this interaction at the Susquehanna Shale Hills

Critical Zone Observatory (SSHCZO). We asked: (1) what is

driving the spatio-temporal patterns of L in this forested

watershed? We hypothesized that the spatio-temporal patterns of L are

driven by spatial patterns of different species generated due to topography, soil

type and hydrology; and (2) are the spatio-temporal patterns of L

controlling the spatio-temporal patterns of h? We hypothesized that the

spatio-temporal patterns of L will strongly influence the spatio-temporal

patterns of h across the watershed.

Materials and Methods

Study site
The Susquehanna Shale Hills Critical Zone Observatory

(SSHCZO) spans over 7.9 ha in the Ridge and Valley region of

central Pennsylvania. SSHCZO watershed is covered by approx-

imately 110 years old humid temperate forest in which parent

material is developing over a thick (.200 m) homogenous Rose

Hill shale [27]. Five distinct soil series are present across the

catchment including, Weikert (loamy-skeletal, mixed, active, mesic

lithic dystrudepts), Berks (loamy-skeletal, mixed, active, mesic typic

dystrudepts), Rushtown (loamy-skeletal, over fragmental, mixed,

active, mesic typic dystrudepts), Ernest (fine-loamy, mixed,

superactive, mesic aquic fragiudults), and Blairton (fine-loamy,

mixed, active, mesic aquic hapludults) [28]. Most of the watershed

is covered by deciduous trees, including maples (Acer saccharum-

ACSA, A. rubrum-ACRU), hickories (Carya cordiformis-CACO, C.

glabra-CAGL, C. ovata-CAOV, C. tomentosa-CATO), and oaks

(Quercus alba-QUAL, Q. prinus-QUPR, Q. rubra-QURU, Q. velatina-

QUVE). Conifer trees, including Eastern hemlock (Tsuga canaden-

sis-TSCA)] and pines (Pinus strobus-PIST, P. virginiana-PIVI) also

were fairly common in the catchment (Figure 1a and S1). The

annual precipitation is ,900 mm and the mean annual temper-

ature is ,11uC.

Data Collection
A spatial sampling grid consisting of 90 sites (observed sites

varied from 60–90 depending on weather) across the watershed

Figure 1. Map of the Susquehanna Shale Hills Critical Zone Observatory (a) showing spatial distribution of five dominant tree
genera (Oak-Quercus spp., Hickory-Carya spp., Maple-Acer spp., Pine-Pinus spp., and Hemlock-Tsuga sp.) and spatial sampling grid
across the watershed. (b) Measurements of leaf area index (L: m2 m22), daily sum of precipitation, instantaneous volumetric water content (h:
m3 m23) at varying soil depths (10–80 cm) and total profile soil moisture storage (hTS: m) from April-November), 2010. Each point represents the
mean of all sampled (,90) points across watershed and vertical bars represent standard error of mean.
doi:10.1371/journal.pone.0058704.g001
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was used to measure L and h. The sampling grid was optimized to

minimize measurement variability (nugget) and capture spatial

variability by carefully choosing sites representing different

landforms units (hilltop, hillslope, swale, and valley floor) and

soils (Ernest, Blairton, Weikert, Berks, and Rushtown) in the

catchment. Please see Lin 2006 [28] for detailed information

about sampling design. The LI-2200 plant canopy analyzer (LI-

COR, Inc., Lincoln, Nebraska, USA) was used to measure ground

based forest L. The above canopy measurements were taken in an

open space next to the forest area and below canopy measure-

ments were taken at a predefined spatial sampling grid (Figure 1).

Both above and below canopy measurements were taken as an

average of four L measurements at each location with LI-2200

wand pointing in four (E, W, N, S) directions. A sunlit canopy was

avoided by taking measurements in the early mornings, evenings

or during overcast sky and a 45u restricted view of the sensor was

used. Remotely sensed (MODIS) measurements of L every 8-day

were obtained from ORNL-DAAC website (https://lpdaac.usgs.

gov/get_data/) and rescaled for the site L.

A TRIME-FM Time Domain Reflectometry (TDR) device was

used to collect volumetric soil water content (h) at 10, 20, 40, 60,

and 80 cm soil depths at sites co-located with L measurements by

inserting the soil moisture probe into a PVC access tube buried at

each site [28]. Total profile soil moisture storage (hTS) for a

Figure 2. Representative semivariograms of (a) leaf area index (L: m2 m22), and (b) volumetric water content (h: m3 m-3) of surface (10
cm) soil. c is semivariance and Q is range (3Q) parameter of spatial model. Discrete uniform prior and a discrete marginal posterior distribution of Q
are displayed for (c) L, and (d) h.

Figure 3. Relationship between (a) leaf area index (L: m2 m22) observed from space (MODIS-L, 1 pixel for entire watershed) and
ground (LI2200-L, average of ,90 points across the watershed); and (b) L and volumetric water content (h: m3 m23) of surface soil.
Filled circles represent the data at the same date and filled square represent 11 days lagged data.
doi:10.1371/journal.pone.0058704.g003
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particular site is calculated by the following equation [29]:

hTS~
Xn

i

hi � di ð1Þ

where n is the number of depth points available at a site, hi is the

volumetric soil moisture content at the ith depth and di is the

representative length of the ith depth interval. The depth interval

length (d) was 0.15 m for 10 and 20 cm depths, and 0.20 m for 40,

60, 80 and 100 cm depths. Surface (10 cm) h showed the most

spatial and temporal variability [30], so the subsequent analyses

were performed on the surface soil layer only.

Elevation and slope data were derived from a high-resolution

0.560.5 m DEM raster dataset for the SSHCZO, which was

gathered by a LiDAR flight in February 2011 and was

preprocessed at the University of California-Merced. TerraScan

(Terrasolid: http://terrasolid.fi) software was used to classify the

raw LiDAR point data into ‘‘bare-earth’’ and ‘‘above-ground’’

points. Ordinary kriging was used to interpolate the ground points

and generate the digital elevation model (DEM) at 1 m resolution

[31]. The relief between the highest and the lowest point across the

watershed was 51.4 m. Slope value (radian) was calculated from

the Shale Hills DEM using Maximum Triangle Slope method

[32].

Statistical Analyses
Lag Analysis. Remotely sensed canopy L data were used to

gapfill ground based L data to match with h when data were not

collected on the same date. In addition linear interpolation was

conducted to gapfill L and h when concurrent data were missing.

Regression analysis was performed between L and h at different

lags.

Spatial modeling. We used Bayesian kriging, a fully

probabilistic Gaussian spatial model [26,33], for spatial interpo-

lation. A brief summary of modeling approach is given below and

the detailed information can be found in [26]. Bayesian kriging

assumes that observed data Yi: i = 1,…,n are conditionally

independent given a Gaussian underlying process S with:

Level1 :YijS~N(b(xi)zS(xi),t2)

Figure 4. Distribution of deciduous (Acer saccharum-ACSA, A. rubrum-ACRU, Carya cordiformis-CACO, C. glabra-CAGL, C. ovata-CAOV, C.
tomentosa-CATO, Quercus alba-QUAL, Q. prinus-QUPR, Q. rubra-QURU) and evergreen (Tsuga canadensis-TSCA, Pinus strobus-PIST, P.
virginiana-PIVI) species across a gradient of (a–c) elevation, and (d–f) slope. Vertical lines represent the center (mode) of the distribution.
Density curves were calculated from the values sampled at each tree location (total trees = 1832).
doi:10.1371/journal.pone.0058704.g004
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Level2 :S(xi)~N(0,s2R(h;w))

Level3 : prior(b,s2,w,t2) ð2Þ

The first level describes a spatial linear trend (b = trend

parameter) based on spatially referenced explanatory variables.

The variance t2 (nugget) represents measurement variability and/

or spatial variation below the sampling grain. The second level

describes a stationary Gaussian spatial process [S(xi)] with mean =

0, variance = s2 and correlation function R(h;Q), where Q is

correlation parameter (range of spatial autocorrelation = 3Q) and h

is lag distance (vector distance between two locations), and the

third level specifies the prior for the model parameters. We chose

an exponential correlation function:

R(h;w)~exp({h=w) ð3Þ

The mean and variance of L and h were estimated at individual

locations from the predictive distribution using the krige.bayes

function of geoR library [34] in R version 2.15.0 [35]. This

algorithm uses discrete distribution and parameter prior to

compute the discrete posterior distribution and samples a

parameter value from it. We assumed a constant trend mean

model and used a multidimensional (10061006100) parameter

[Q, s2, and t2.rel (relative nugget = t2/s2)] grid by choosing a

sensible interval of values for each parameter considering the study

site. Please see R script (Script S1) for exact intervals for individual

parameters. Flat prior (see Figure 2 for an example of prior and

posterior distributions) were chosen for Q, and t2.rel, and a

reciprocal prior for s2. The sampled parameter value is then

attached to [b | Y, Q, s2, t2.rel] and a realization is obtained from

the predictive distribution at the desired location. This process was

repeated several times so that the sample is large enough to permit

stable estimation of the underlying distribution. The mean and the

Figure 5. Temporal dynamics of leaf area index (L: m2 m22) across Susquehanna Shale Hills CZO during 2010. Kriging was performed
using hierarchical Bayesian model and maps of posterior mean are displayed.
doi:10.1371/journal.pone.0058704.g005
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variance of the predictive distribution were computed at individual

locations using 100,000 posterior draws. Leave-One-Out cross-

validation strategy was used for model validation.

Density curves. To explore the distribution of different

species across a gradient of elevation, slope and h, smooth density

curves, using density function in R, were calculated for LiDAR

derived elevation and slope data, and spatially interpolated h data

at individual tree locations. Additionally, to explore the gain in L

and loss of h at individual tree location from budbreak to leaf

maturity, density curves were calculated for spatially interpolated

L and h at individual tree locations. Tree location data were used

as a prediction grid in Bayesian kriging for spatial prediction of L

and h.

Results

The ground based observations (LI2200) and the remotely

sensed (MODIS) L showed similar trends of budbreak, maturity

and senescence (Figure 3a), but the MODIS-L was greater than the

LI2200-L. MODIS-L was rescaled to fit the highest observed value

of LI2200-L and zeros were replaced with linearly interpolated

data. The surface (10 cm) h explained the most variability in L, so

all further analyses were performed on surface h.

What is driving the spatio-temporal patterns of L in this
forested watershed?

Figure 1a shows the spatial distribution of dominating tree

species across the watershed. Deciduous trees (oaks, hickories, and

maples) are generally present at higher elevation (Figure 4) and in

general avoid low slope locations (Figure 4), while evergreen trees

(hemlock and pines) are concentrated on south ridge and south-

west valley floor along the stream (Figure 1a), which have lowest

slope across the watershed. Evergreen trees in general prefer lower

elevation and lower slope locations (Figure 4a,d). At the species

level, both maple species (ACSA and ACRU) occupied lower

elevations while the four hickory species were found at moderate

(CAOV and CACO) or higher (CAGL and CATO) elevations

Figure 6. Temporal dynamics of posterior variance in leaf area index (L: m2 m22) across Susquehanna Shale Hills CZO during 2010.
Kriging was performed using hierarchical Bayesian model and maps of posterior variance are displayed.
doi:10.1371/journal.pone.0058704.g006
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(Figure 4b). Oak species were present at low (QUAL), moderate

(QURU), and high (QUPR) elevation (Figure 4b) making it the

most abundant and widely distributed genus. Eastern hemlock

(TSCA) and one of the pine species (PIST) were primarily present

at low elevation (Figure 4c) and the wet valley floor alongside of

the stream (Figure 1a), while the other pine species (PIVI) was

distributed along the dry south ridge (Figure 1a). Soil water

content did not significantly influence the spatial distribution of

different species (Figure S2). Soil moisture content explained the

occurrence of some species such as eastern hemlock (TSCA) and

red maple (ACRU), which were restricted to the wettest region of

the watershed along the stream, while mockernut hickory (CATO)

and chestnut oak (QUPR) avoided the wetter regions of the

watershed (Figure 1a, S2). Other species seemed to grow without

any specific preference to a particular type of hydrologic regime,

such as white, red and black oak (QUAL, QURU, QUVE),

shagbark hickory (CAOV) and sugar maple (ACSA) (Figure S2).

Eastern hemlock (TSCA) was restricted to the Ernest soil, red

maple was found on Ernest and Rushtown soils, hickories and

chestnut oak preferred Weikert soil and the rest of the species did

not show any particular affinity to one type of soil. Despite the

differences in elevation, soil type, and soil moisture, all evergreen

species were present on relatively flat terrains (Figure 4f). The

resulting spatial distribution and mixture of different species

created unique spatio-temporal patterns of L, including timing of

budbreak, maturity, and senescence. For instance, red maple

(ACRU) showed earlier budburst, greater L, but similar senescence

as red oak (Figure S3). The variability in leaf expansion (increase

in L) of different species (Figure S2) also added complexity in

spatial patterns of L resulting in a unique temporal pattern of L

across the watershed (Figure 5).

Figure 7. Temporal dynamics of surface (10 cm) volumetric soil water content (h: m3 m23) across Susquehanna Shale Hills CZO
during 2010. Kriging was performed using hierarchical Bayesian model and maps of posterior mean are displayed.
doi:10.1371/journal.pone.0058704.g007
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Are the spatio-temporal patterns of L controlling the
spatio-temporal patterns of h?

L showed an exponential increase from April (leaf onset/

budbreak) to July (leaf maturity) and reached the maximum in

mid-July (leaf maturity) (19 July) (Figure 1b). Furthermore, an

exponential decline in L was observed from July (leaf maturity) to

November (senescence) (Figure 1b). An exponential decline in h
was observed at all measured soil depths (10–80 cm) and in total

moisture storage (hTS), which coincided with the exponential

increase in L. Moreover, there was a subsequent rise in h and hTS

with declining L (Figure 1b). L and h were negatively correlated

and their relationship showed hysteresis with ,11-day lag between

increase in L and decrease in h (Figure 3b). The lower elevation

species (both deciduous and evergreen) produced more leaf area

and experienced less decline in surface soil moisture while higher

elevation species produced less leaf area and experienced greater

decline in soil moisture (Figure S2). The spatial mean of L across

the watershed (mean of all modeled values of L in the watershed at

161 m grid) increased from leaf onset to maturity and then

decreased from maturity to senescence (Figure 5), whereas spatial

variability (standard error of spatial mean of L) and prediction

variance were highest during budbreak and declined to a

minimum during closed canopy and again increased from canopy

closure to senescence (Figure 6). On the other hand, spatial

variability and prediction variance of h was correlated with the

spatial mean of h (Figure 7,8). Overall the kriged maps of L

(Figure 5) and h (Figure 7) confirm the temporal trend of

instantaneous measurements.

The measurement error (nugget, t2) and the spatial variance

(sill, s2) of L and h increased with increasing spatial mean of L and

h (Table 1,2). This relationship was also reflected in the inverse

temporal trends of spatial structure (spatial model parameters-b, Q,

t2, s2) of L and h (Figure 9a–d) similar to the inverse relationship

of their mean values (Figure 1b). The nugget and sill of L increased

from leaf onset (April) to maturity (July) and then decreased from

leaf maturity to senescence (November), while the nugget and the

sill of h decreased from leaf onset to maturity and then increased

from leaf maturity to senescence (Figure 9a–d). Leave-one-out

cross-validation showed good agreement between observed and

predicted values for both L (R2 = 0.92 20.99) and h (R2 = 0.76–

0.96) (Figure S4, S5).

Figure 8. Temporal dynamics of surface (10 cm) volumetric soil water content (h: m3 m23) across Susquehanna Shale Hills CZO
during 2010. Kriging was performed using hierarchical Bayesian model and maps of posterior variance are displayed.
doi:10.1371/journal.pone.0058704.g008
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Discussion

What is driving the spatio-temporal patterns of L in this
forested watershed?

Variation in phenology and factors influencing it have attracted

the attention of ecologists for a long time and current literature

shows that multiple factors, such as hydrology [36,37], variation in

leaf longevity [38,39], tree height [40], CO2 concentration and

nutrients [41], temperature [42–44] and light availability [45]

greatly influence leaf phenology. However, influence of biodiver-

sity on coupled dynamics of phenology and hydrology across a

landscape is largely untested. Our results support the first

hypothesis partially and show that spatial distribution of tree

species drives the spatio-temporal patterns of L in the watershed

and depends on topography and soil type. However, soil

hydrology was not a good predictor of species distribution across

the watershed, possibly due to humid conditions. Topography,

mainly elevation and slope, greatly influenced the spatial

distribution of different tree species across the watershed

(Figure 2), which created a unique spatial pattern of leaf area

index. Surprisingly, soil moisture did not explain the distribution

of the tree species across the watershed (Figure S2). Soil type and

slope explained the spatial distribution better than h, except for

eastern hemlock which was only present on wet soil along the

stream. But the presence of TSCA can be better explained by soil

type than hydrology. Furthermore, spatial pattern of L exhibited

strong temporal dynamics due to different timings of budbreak,

maturity, and senescence of leaves and variability in leaf expansion

of different species, thus creating a spatially explicit forest

phenology (Figure 5).

Are the spatio-temporal patterns of L controlling the
spatio-temporal patterns of h?

Quantifying spatio-temporal patterns of L and h is becoming

increasingly important, as spatially distributed approaches become

more common in current and future landscape modeling [16,46].

Our results support our second hypothesis and show the coupled

dynamics of L and h in spatial and temporal domains. The spatial

structure of leaf phenology and hydrology showed tight coupling at

the peak of the growing season (closed canopy) (Figure 9),

presumably primarily through evapotranspiration, as leaves

control loss of water from plants through transpiration [3–5]. In

addition, L likely influences loss of water from shallow soil layers

(evaporation) through changing surface albedo and roughness [1].

At budbreak and senescence the spatial structure of L and h were

not coupled (Figure 9, shaded region) and water was distributed

more uniformly (Figure 7) throughout the watershed (with

variation mostly associated with the topographic complexity). L

and h showed a clear seasonal pattern and supported the previous

findings of Takagi and Lin [30], which suggests greater control of

evapotranspiration on soil moisture under dry conditions and

topography under wet conditions. However, we found a lag of

about 11 days between the increase in L and decline in h, which

could be due to the delay in full photosynthetic activity after leaf

onset [47,48], water storage inside tree stem [48–50], and soil

moisture buffer zone around trees due to lateral water flow in soil

[49,51] and plant-aided hydraulic redistribution [8–10]. The

temporal variation of vegetation and hydrology coupling was also

visible in spatial structure of L and h across the watershed

(Figure 9). At budbreak and senescence the forest canopy was

patchy and highly variable for L across the watershed due to

differences in phenology of different species and h showed high

variability due to complex terrain [30] and variable demand of

water from emerging and senescing leaves (Figure 5,7). At leaf

maturity, forest canopy was closed (maximum L) and the spatial

variability of L was minimum (Figure 5,6), while soil moisture

(after 11 days) was very low and relatively uniformly distributed

across the watershed and thus showed least variability (Figure 7,8).

Conclusions

Results from this study suggest that spatial distribution of tree

species and different timing of budbreak, maturity, and senescence

for different species across the forested landscape created unique

spatio-temporal patterns of L, which created the patterns of water

demands reflected in variable soil water content in space and time.

The landscape canopy and soil water became increasingly

homogenized and coupled from leaf onset to maturity (i.e.,

increasing and homogenous L, and decreasing and homogenous

h), but became more heterogeneous and uncoupled from leaf

maturity to senescence (i.e., patchy and decreasing L, and patchy

and increasing h). Our results provide insight into tight coupling

between biodiversity and soil hydrology across space and time.

Incorporating these spatial and temporal feedbacks into hydrologic

Figure 9. Temporal dynamics of spatial model parameters of
leaf area index (L: m2 m22) and volumetric soil (10 cm) water
content (h: m3 m23) from April–November, 2010. b is trend
parameter, Q is range parameter (range = 3Q), s2 is partial sill, and t2 is
nugget. Each point represents the posterior mean of an estimated
parameter for one date and solid line represents the fitted curve.
Shaded regions mark budbreak and senescence periods when spatial
structure [nugget (t2) and sill (s2)] of L and h was uncoupled.
doi:10.1371/journal.pone.0058704.g009
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Table 1. Summary of semivariogram parameters estimated from Bayesian model for leaf area index (L: m2 m22).

Date b (Trend) Q (Range = 3Q) s2 (Sill) t2 (Nugget) t2/(t2+s2) (NSR) R2

4/25/2010 1.33 (0.94, 1.71) 116.16 (70.71, 232.32) 0.60 (0.41, 1.03) 0.04 (0.02, 0.09) 0.06 (0.02, 0.17) 0.93

5/10/2010 1.89 (1.01, 2.70) 181.82 (95.96, 388.89) 1.37 (0.85, 2.59) 0.07 (0.02, 0.19) 0.05 (0.01, 0.17) 0.97

5/20/2010 2.30 (1.36, 3.17) 272.73 (151.52, 454.55) 1.30 (0.81, 2.21) 0.07 (0.03, 0.13) 0.05 (0.02, 0.13) 0.99

6/3/2010 3.28 (2.15, 4.29) 90.91 (60.61, 166.67) 6.13 (4.36, 9.93) 0.06 (0.00, 0.45) 0.01 (0.00, 0.08) 0.95

6/10/2010 3.13 (2.13, 4.01) 207.07 (126.26, 388.89) 1.79 (1.17, 3.22) 0.05 (0.00, 0.13) 0.02 (0.00, 0.09) 0.98

6/24/2010 3.61 (3.12, 4.12) 80.81 (55.56, 141.41) 1.60 (1.15, 2.44) 0.03 (0.00, 0.14) 0.02 (0.00, 0.09) 0.98

7/8/2010 2.61 (1.59, 3.52) 166.67 (95.96, 353.54) 2.32 (1.52, 4.41) 0.04 (0.00, 0.16) 0.02 (0.00, 0.08) 0.98

7/19/2010 4.22 (3.75, 4.54) 156.57 (60.61, 383.84) 0.27 (0.16, 0.55) 0.10 (0.06, 0.17) 0.38 (0.13, 0.88) 0.92

7/29/2010 2.72 (1.85, 3.53) 308.08 (176.77, 469.70) 1.02 (0.63, 1.73) 0.15 (0.09, 0.24) 0.14 (0.06, 0.31) 0.96

8/20/2010 3.25 (2.26, 4.30) 202.02 (116.16, 404.04) 1.92 (1.17, 3.59) 0.04 (0.00, 0.17) 0.02 (0.00, 0.11) 0.97

9/6/2010 2.81 (1.90, 3.57) 227.27 (131.31, 424.24) 1.33 (0.84, 2.47) 0.01 (0.00, 0.06) 0.01 (0.00, 0.05) 0.99

9/20/2010 3.06 (2.32, 3.80) 171.72 (85.86, 378.79) 1.08 (0.63, 2.07) 0.35 (0.21, 0.56) 0.31 (0.13, 0.72) 0.93

10/8/2010 2.09 (1.52, 2.64) 181.82 (111.11, 358.59) 0.73 (0.48, 1.34) 0.01 (0.00, 0.04) 0.01 (0.00, 0.06) 0.99

10/19/2010 1.05 (0.27, 1.80) 343.43 (202.02, 484.85) 0.76 (0.47, 1.22) 0.00 (0.00, 0.02) 0.00 (0.00, 0.02) 0.99

10/31/2010 0.68 (0.09, 1.21) 217.17 (121.21, 419.19) 0.55 (0.34, 1.03) 0.01 (0.00, 0.03) 0.01 (0.00, 0.05) 0.99

11/13/2010 0.88 (0.57, 1.17) 111.11 (70.71, 207.07) 0.38 (0.27, 0.65) 0.00 (0.00, 0.02) 0.01 (0.00, 0.06) 0.99

Notes: NSR is noise to signal ratio and R2 is linear model fit of leave-one-out cross validation between modeled and observed L. Parameter estimates represent mean of
posterior distribution and values inside the parenthesis are quantile based 5% and 95% credible intervals.
doi:10.1371/journal.pone.0058704.t001

Table 2. Summary of semivariogram parameters estimated from Bayesian model for surface (10 cm) soil water content (h:
m3 m23).

Date b (Trend) Q (Range = 3Q) s2 (Sill) t2 (Nugget) t2/(t2+s2) (NSR) R2

4/25/2010 0.28 (0.24, 0.32) 196.97 (45.45, 449.49) 0.0018 (0.0012, 0.0035) 0.0013 (0.0009, 0.0020) 0.76 (0.38, 0.98) 0.76

5/6/2010 0.24 (0.22, 0.27) 90.91 (35.35, 252.53) 0.0016 (0.0011, 0.0029) 0.0011 (0.0007, 0.0015) 0.67 (0.31, 0.97) 0.81

5/10/2010 0.25 (0.23, 0.27) 85.86 (40.40, 207.32) 0.0019 (0.0013, 0.0035) 0.0011 (0.0007, 0.0016) 0.56 (0.24, 0.94) 0.83

5/19/2010 0.26 (0.23, 0.28) 75.76 (30.30, 207.07) 0.0020 (0.0014, 0.0036) 0.0013 (0.0009, 0.0019) 0.66 (0.30, 0.96) 0.83

5/26/2010 0.20 (0.18, 0.23) 85.86 (30.30, 262.63) 0.0021 (0.0014, 0.0037) 0.0013 (0.0008, 0.0020) 0.64 (0.27, 0.96) 0.89

6/17/2010 0.18 (0.16, 0.20) 80.81 (30.30, 212.12) 0.0015 (0.0010, 0.0027) 0.0010 (0.0006, 0.0014) 0.63 (0.28, 0.96) 0.84

6/23/2010 0.15 (0.13, 0.16) 80.81 (30.30, 207.07) 0.0011 (0.0007, 0.0019) 0.0006 (0.0003, 0.0009) 0.54 (0.22, 0.93) 0.85

7/8/2010 0.10 (0.08, 0.11) 90.91 (30.30, 292.93) 0.0008 (0.0005, 0.0015) 0.0005 (0.0003, 0.0008) 0.63 (0.24, 0.96) 0.86

7/14/2010 0.17 (0.15, 0.19) 60.61 (20.20, 176.77) 0.0015 (0.0010, 0.0025) 0.0010 (0.0007, 0.0015) 0.72 (0.34, 0.98) 0.86

7/30/2010 0.08 (0.07, 0.10) 95.96 (35.35, 303.03) 0.0009 (0.0006, 0.0017) 0.0006 (0.0003, 0.0008) 0.64 (0.25, 0.97) 0.85

8/28/2010 0.14 (0.12, 0.15) 85.86 (20.20, 358.59) 0.0007 (0.0005, 0.0012) 0.0005 (0.0004, 0.0008) 0.81 (0.44, 0.99) 0.86

9/11/2010 0.09 (0.08, 0.10) 70.71 (25.25, 237.37) 0.0006 (0.0004, 0.0011) 0.0004 (0.0002, 0.0006) 0.64 (0.23, 0.97) 0.84

9/26/2010 0.11 (0.09, 0.12) 63.13 (10.10, 384.09) 0.0006 (0.0004, 0.0010) 0.0004 (0.0002, 0.0007) 0.76 (0.26, 0.99) 0.94

10/10/2010 0.18 (0.17, 0.20) 65.66 (25.25, 161.62) 0.0011 (0.0008, 0.0019) 0.0007 (0.0004, 0.0011) 0.64 (0.27, 0.96) 0.86

10/16/2010 0.21 (0.18, 0.23) 75.76 (20.20, 287.88) 0.0017 (0.0011, 0.0031) 0.0010 (0.0002, 0.0017) 0.62 (0.09, 0.97) 0.96

11/13/2010 0.16 (0.15, 0.18) 65.66 (15.15, 313.13) 0.0011 (0.0007, 0.0019) 0.0007 (0.0003, 0.0012) 0.73 (0.24, 0.98) 0.94

Notes: NSR is noise to signal ratio and R2 is linear model fit of leave-one-out cross validation between modeled and observed h. Parameter estimates represent mean of
posterior distribution and values inside the parenthesis are quantile based 5% and 95% credible intervals.
doi:10.1371/journal.pone.0058704.t002
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models will improve current and future landscape modeling of

humid temperate forests.

Supporting Information

Figure S1 Spatial distribution of deciduous (oaks
[Quercus alba-QUAL, Q. prinus-QUPR, Q. rubra-QURU,
Q. velatina-QUVE], hickories [Carya cordiformis-
CACO, C. glabra-CAGL, C. ovata-CAOV, C. tomentosa-
CATO], maples [Acer saccharum-ACSA, A. rubrum-
ACRU]) and conifer (pines [Pinus strobus-PIST, P.
virginiana -PIVI] and eastern hemlock [Tsuga canaden-
sis-TSCA]) trees across the Susquehanna Shale Hills
Critical Zone Observatory.
(TIF)

Figure S2 Distribution of deciduous (Acer saccharum-
ACSA, A. rubrum-ACRU, Carya cordiformis-CACO, C.
glabra-CAGL, C. ovata-CAOV, C. tomentosa-CATO,
Quercus alba-QUAL, Q. prinus-QUPR, Q. rubra-QURU)
and evergreen (Tsuga canadensis-TSCA, Pinus strobus-
PIST, P. virginiana-PIVI) species across a gradient of (a–
c) time averaged volumetric soil (10 cm) water content
(haverage: m3 m23), (d–f) change in h from budburst to
closed canopy, 11 day were added to closed canopy to
account for the lag between L and h; and (g–i) change in
leaf area index (L: m2 m22) from budburst to closed
canopy. Vertical lines represent the center (mode) of the

distribution. Density curves were calculated from the values

sampled at each tree location (total trees = 1832).

(TIF)

Figure S3 Examples of different timing of budburst,
maturity and senescence in (a) deciduous (maple [Acer
rubrum-ACRU] and oak [Quercus prinus-QUPR], and
(b) evergreen (eastern hemlock [Tsuga canadensis-

TSCA] and pine [Pinus virginiana-PIVI] trees. Each point

is an average of posterior mean of leaf area index (L: m2 m22) for

all trees within a species across the landscape and error bar

represents standard error of mean.

(TIF)

Figure S4 Figure showing leave-one-out cross-valida-
tion to assess the model goodness of fit. Dotted line

represents 1:1 line and solid line is the slope of linear regression

between observed and modeled value of Leaf area index (L:

m2 m22).

(TIF)

Figure S5 Figure showing leave-one-out cross-valida-
tion to assess the model goodness of fit. Dotted line

represents 1:1 line and solid line is the slope of linear regression

between observed and modeled value of surface (10 cm) soil water

content (h: m3 m23).

(TIF)

Script S1 Example data and R script used in this paper.

(ZIP)
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