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Abstract

The identification of reliable transcriptome biomarkers requires the simultaneous consideration of regulatory and target
elements including microRNAs (miRNAs), transcription factors (TFs), and target genes. A novel approach that integrates
multivariate survival analysis, feature selection, and regulatory network visualization was used to identify reliable biomarkers
of ovarian cancer survival and recurrence. Expression profiles of 799 miRNAs, 17,814 TFs and target genes and cohort clinical
records on 272 patients diagnosed with ovarian cancer were simultaneously considered and results were validated on an
independent group of 146 patients. Three miRNAs (hsa-miR-16, hsa-miR-22*, and ebv-miR-BHRF1-2*) were associated with
both ovarian cancer survival and recurrence and 27 miRNAs were associated with either one hazard. Two miRNAs (hsa-miR-
521 and hsa-miR-497) were cohort-dependent, while 28 were cohort-independent. This study confirmed 19 miRNAs
previously associated with ovarian cancer and identified two miRNAs that have previously been associated with other
cancer types. In total, the expression of 838 and 734 target genes and 12 and eight TFs were associated (FDR-adjusted P-
value ,0.05) with ovarian cancer survival and recurrence, respectively. Functional analysis highlighted the association
between cellular and nucleotide metabolic processes and ovarian cancer. The more direct connections and higher centrality
of the miRNAs, TFs and target genes in the survival network studied suggest that network-based approaches to
prognosticate or predict ovarian cancer survival may be more effective than those for ovarian cancer recurrence. This study
demonstrated the feasibility to infer reliable miRNA-TF-target gene networks associated with survival and recurrence of
ovarian cancer based on the simultaneous analysis of co-expression profiles and consideration of the clinical characteristics
of the patients.
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Introduction

Ovarian cancer, the most malignant gynecologic neoplasm, is

the fifth leading cause of cancer deaths among women.

Approximately 45% of ovarian cancer patients survive more than

five years after initial diagnosis and less than 20% surpass this

milestone once the cancer has disseminated [1]. Few gene

expression profiles have been consistently related to ovarian

cancer [2,3]. This may be due to the limited simultaneous

consideration of the transcripts and transcript regulators associated

with ovarian cancer.

MicroRNAs (miRNAs) are small, non-coding RNA molecules

that bind to complementary sequences on target mRNA

transcripts, and thus, regulate gene expression at the post-

transcription stage. Transcription factors (TFs) are a different

type of regulator. These proteins bind to specific DNA sequences

in the promoter region, promoting or repressing transcription into

mRNA, and thus, regulate genes at a pre-transcription stage [4].

TFs and miRNAs can regulate each other and both can regulate

the expression of target genes. TF-miRNA-target genes can

function as onco or tumor suppressor networks, triggering global

alterations of genetic programs implicated in cell proliferation,

differentiation, apoptosis, and invasiveness in cancer.

Few associations between ovarian cancer and miRNAs or TF

have been validated in independent studies [2,3]. Several reasons

may be behind the limited understanding of the regulatory

networks associated with ovarian cancer. First, most studies

associate ovarian cancer to genes (miRNAs or TFs) on an

individual basis instead of considering multiple profiles simulta-

neously. Second, even when studies analyze multiple genome

profiles simultaneously, the relationship between target genes and

regulatory miRNAs and TFs are not used. Third, most studies do

not consider clinical or cohort-dependent factors when character-

izing associations between expression profiles and ovarian cancer.

Lastly, most studies consider the binary qualitative trait presence

or absence of cancer, and more quantitative measurements such as

survival and recurrence are not evaluated.

The main objectives of this study were a) to develop a model to

identify and characterize miRNAs, TFs, and target genes

associated with ovarian cancer survival, and b) use this information

to identify TF-miRNA-target gene networks associated with

survival in ovarian cancer. Our overarching hypothesis was that

reliable gene expression biomarkers of cancer can be obtained
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from the consideration of all components in a network simulta-

neously. A systems biology approach was used to investigate the

simultaneous association between multiple miRNAs, TFs, and

target genes and cancer survival or recurrence, accounting for

non-genetic patient-to-patient sources of variation, and the

corresponding networks were analyzed. Results were validated in

an independent data set. The study also identified enriched

functional categories and pathways of genes associated with cancer

survival and recurrence. Understanding the molecular basis of

ovarian cancer is key to developing improved prognostic indicators

and effective therapies. Given the heterogeneity of this disease,

improvements in long-term survival might be achieved by

translating recent insights at the molecular and clinical levels into

personalized individual treatment strategies.

Materials and Methods

Training Data Set
Clinical information. Survival, recurrence, cohort, and

genomic expression information from 272 patients diagnosed with

ovarian cancer was obtained from The Cancer Genome Atlas

(http://cancergenome.nih.gov/) repository (Accessed September

2009) [5]. Cohort factors analyzed include treatment received

(only chemotherapy, 93%; chemotherapy plus another treatment,

5%; and any treatment other than chemotherapy, 2%); pre-

adjuvant therapy (yes, 8% or no, 92%); additional treatment (only

chemotherapy, 41%; chemotherapy plus another treatment, 14%;

and any treatment other than chemotherapy, 45%); tumor stage

(stage I or II, 4%; stage III, 88%; stage IV, 8%); tumor grade

(grade I or II, 4%; any grades other than I or II, 96%); tumor

residual disease (no macroscopic disease, 26%; 1–20 mm, 61%;

greater than 20 mm, 13%); recurrence (yes, 58% or no, 42%), and

age at diagnosis (in years). Preadjvant therapy refers to any

treatment that the patient received prior to surgery and sample

collection. Tumor stage refers to the pathological stage of the

tumor in AJCC format (Primary Tumor: T; Stage 1:1A; 1B; 1C;

Stage II: IIA; IIB; IIC; Stage III: IIIA; IIIB; IIIC; Stage IV: IV).

Tumor grade is the numeric value used to express the degree of

abnormality of cancer cells and is a measure of differentiation and

aggressiveness. Tumor residual disease is the measure of the largest

remaining nodule. Age refers to the age in years of the individual

at the time of diagnosis of ovarian cancer. These cohort factors

were accounted for in the analysis because of their known

association with survival [6].

Expression profiling. The expression levels of 799 miRNAs

were measured using the Agilent 8 6 15K Human microRNA

platform (Agilent Technologies, http://www.genomics.agilent.

com/). The expression levels of 17,814 TFs and target genes were

measured using the Agilent Custom Gene Expression G4502A_07

human gene platform. The transcriptome data is available at

(https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm). The

expression measurements were quantile normalized (probe level),

collapsed within the miRNA, TF or gene, and log2 transformed

following the procedures available in Beehive (http://stagbeetle.

animal.uiuc.edu/Beehive) [7] and previously described in [8–10].

Model and Profile Selection
Two ovarian cancer response variables were studied: 1) survival

time from diagnosis to death (months from diagnosis to death); and

2) recurrence time from diagnosis to recurrence (months from

diagnosis to recurrence). Information on comorbidities or cause of

death was unavailable, thus the first variable describes the time-

dependent likelihood of death, conditional on a prior ovarian

cancer diagnostic, irrespective of cause of death or comorbidity.

An ovarian cancer predictive model that simultaneously consid-

ered all miRNAs and cohort information was used to identify

general (or cohort-independent) and personalized (or cohort-

dependent) biomarkers. This model overcame limitations of prior

studies which ignored the simultaneous association by only

analyzing one miRNA at a time or ignoring possible cohort

relationships.

A biomarker identification pipeline was implemented based on

the multivariate Cox survival analysis and complementary feature

selection strategies [8,9,11]. The Cox proportional hazard model

assumes a parametric model to test the association between the

covariates and the hazard ratio (HR) of the event. After

transformation, the hazard (instant probability) of event (death

or recurrence) was modeled with a linear combination of a

baseline hazard and explanatory covariates including all the

cohort variables, the expression profiles of all genome variables

(miRNAs, TFs, or gene targets), and the interaction between them

[12]. Stepwise and forward selection strategies were used to

identify the expression profiles associated with survival or

recurrence because of the complementary advantages of these

strategies. Profiles remained in the hazard predictive model after

consideration of other biomarkers at P-value ,0.1. The significant

profiles from the previous stepwise and forward model were

included in a model that was subjected to a stepwise selection. This

step allowed the identification of broad or general associations

between profiles and ovarian cancer hazards that can be used as

population prognostic biomarkers. The relaxed P-value threshold

allowed detection of profiles that may have weak associations

among large sets of profiles and stronger associations as the set was

streamlined. In the second step, the interaction between the

selected profiles and cohort indicators were evaluated using the

stepwise approach. This step allowed the identification of cohort-

dependent associations between profiles and the hazard of ovarian

cancer death or recurrence that can be used as individualized

predictive biomarkers. In the third step, all selected profiles and

interactions were combined and further streamlined using the

stepwise method. The association between the ovarian cancer

hazards and the cohort factors and expression profiles was

visualized by plotting the probability of survival predicted from

the Cox model against time.

The test of no association between the miRNA, TF, gene or

cohort prognostic markers and the HR between cohort groups and

the 95% confidence interval limits follow a Chi-square distribu-

tion. Hazard ratio estimates .1 (,1) indicate an increase in the

hazard (decrease in the hazard) or decrease in survival probability

(increase in survival probability) per unit increase in the level of

gene expression. A False Discovery Rate (FDR)–adjusted P,0.05

and |HR/expression unit| .1.15 thresholds were used to identify

molecular factors associated with ovarian cancer survival or

recurrence. The analysis was implemented using PROC PHREG

in SAS [13].

The Cox model assumes proportional hazards across the period

studied. This assumption can be expressed as parallel survival

functions across the levels of expression profiles or cohort variables

in the model. This assumption was tested for the two hazards

considered, and there was no indication of significant departure

from the assumption. Furthermore, visualization of the survival

and residuals did not suggest departure from the model

assumptions. There was no indication of significant departure

from the proportional hazards assumption, also confirmed by the

overlap on miRNAs, TFs, and genes between survival indicators.

Biomarkers identified in this study were searched against the

ovarian cancer and cancer literature based on independent data

sets.

Networks Associated with Ovarian Cancer Survival
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Functional Enrichment and miRNA-TF-target Gene
Networks

The known and predicted relationships between miRNAs, TFs,

and target genes were obtained from the MIR@NT@N resource

(http://maia.uni.lu/mironton.php, [14]). Only the relationship

between transcription factors, miRNAs, and target gene supported

by a mapping score .0.85 that correspond to a median P-value

,161023 and 90% of the relationships with P-values ,161022

were considered. The enrichment of Gene Ontology (GO, http://

www.geneontology.org/) [15] molecular functions and biological

processes and KEGG (http://www.genome.jp/kegg/) [16,17]

pathways was studied among the target genes associated with

ovarian survival and recurrence. Two functional analyses were

evaluated. The first functional analysis consisted on Fisher’s exact

(two-tailed) test implemented in DAVID v6.7 (http://david.abcc.

ncifcrf.gov/) [18] was used to identify the functional categories

enriched among all target genes associated (FDR-adjusted P-value

,0.05) with survival or recurrence [8,9]. Categories that had at

least 5 genes and were significant at FDR-adjusted P-value ,0.1

were considered enriched. This analysis offered a baseline

understanding of the categories associated with ovarian cancer.

The second functional analysis consisted on a set enrichment

analysis [19] of all target genes regardless of the significance level

of the association with ovarian cancer survival or recurrence. This

analysis considered the association between survival or recurrence

and gene expression through the sorting of the target genes by the

magnitude, sign, and standard error of the estimate in the

underlying scale or loge(HR). Positive estimates correspond to HRs

.1 and thus lower survival or higher risk of recurrence.

Conversely, negative estimates correspond to HRs ,1 and thus

higher survival or lower risk of recurrence. The set enrichment

analysis implemented in Babelomics v4.3 (http://babelomics.

bioinfo.cipf.es/) [19] was used to apply a segmentation test that

identifies for asymmetrical distributions of functional categories

between the genes ranked from negative to positive loge (HR)

estimates for ovarian cancer survival or recurrence. Categories

significant at FDR-adjusted P-value ,0.05 and having at least 75

genes were considered enriched. The less stringent threshold used

for the Fisher’s enrichment analysis relative to the set enrichment

analysis was motivated by the higher number of target genes

analyzed in the second analysis relative to the first analysis. The

genes associated with ovarian cancer hazard were also searched

against the Dragon database of ovarian cancer genes (http://apps.

sanbi.ac.za/ddoc/) [20]. The networks of TFs, miRNAs, and

target genes significantly associated with ovarian cancer survival or

recurrence (P-value ,0.01) were depicted using Cytoscape

(http://www.cytoscape.org/) [21], an open source software

platform for visualizing networks and including attributes. The

distribution and connectivity of the TFs, miRNAs, and target

genes within sub-networks and the overall network were

characterized.

Validation Data Set
The associations between expression profiles and ovarian cancer

survival or recurrence identified based on P-values and charac-

terized based on HR estimates were validated on an independent

data set of 146 patients obtained from the TCGA repository. Two

indicators of the reliability of the predictive profiles in the

independent validation were considered. First, mean square error

(MSE) was used as measure of the lack of adequacy of the cohort-

independent and -dependent expression profiles to accurately

predict the time to death or recurrence in the training and

validation data sets. Second, additional validation of the detected

profile association was gained from the study of the correlation of

the estimates (loge(HR)) corresponding to each profile between

training and validation data sets. The Pearson and Spearman

correlations of the profile associations with death and recurrence

between the training and validation data sets were computed.

Results and Discussion

Table 1 summarizes the number and distribution of individuals

studied across levels of the cohort covariates considered in the

training and validation data sets. The median age at diagnosis was

60.2 years and 59.6 years for the training and validation data sets,

respectively. These were consistent with the National Cancer

Institute reports that the median age at diagnosis for cancer of the

ovary (from 2004–2008) was 63 years of age and the median age at

death was 71 years of age [22]. The range of age at diagnosis was

57 years (ages from 27 to 84 years) and 52 years (ages from 37 to

89 years) for the training and validation data sets, respectively. The

median time for survival and recurrence for the training set was

2.4 years and 47.4 months and for the validation set were 3.3 years

and 58. 7 months, respectively. The Pearson and Spearman

correlation coefficients between both events (age at death and at

recurrence) were 0.72 and 0.77 (P-value ,0.0001), respectively in

the training data set and 0.69 and 0.68 (P-value ,0.0001),

respectively in the validation data set. These statistics were in

agreement with previously documented survival rates of ovarian

cancer: 1 year: 77.5%, 2 year: 64%, 3 year: 54.4%, 5 year: 43.9%,

8 year: 37.8%, 10 year: 36.4% [22]. Median survival for patients

was 25.7 months for early treatment patients and 27.1 months for

those patients in a delayed treatment group [22].

The distribution of observations per cohort variable level in the

training and validation sets was consistent (Table 1). The

representation of treatment, preadjuvant therapy, additional

treatment, tumor stage, tumor grade, tumor residual disease,

and recurrence was comparable between data sets. None of the 15

sample source sites dominated the representation in either training

or validation set.

The correlations between the observed and predicted time-to-

death and time-to-recurrence were approximately 0.60. Higher

correlations (0.8 on average) were observed when only the lower

times-to-event were considered because more observations were

available and more precise predictions could be obtained.

Prediction of longer time-to-event intervals were associated with

higher uncertainty due to fewer observations within cohort

variable levels, and thus lower correlations between training and

validation data sets. The moderate correlation between the two

time-to-event analyses suggests the differences in the magnitude

and direction of genomic and environmental effects on ovarian

cancer survival and recurrence.

miRNA Biomarkers of Ovarian Cancer Survival and
Recurrence

Tables 2 and 3 list the 16 and 14 miRNAs simultaneously

associated with ovarian cancer survival and recurrence detected by

the three-step feature selection approach and supporting literature

references. The vast majority of the miRNAs associated with

survival detected in this study have been reported by other studies.

This level of validation reaffirms the validity of the approach

undertaken and of the results presented. Of the 16 miRNAs

associated with survival, 12 miRNAs have been previously

associated with ovarian cancer (hsa-miR-144, hsa-miR-16, hsa-

miR-182*, hsa-miR-521, hsa-miR-18b*, hsa-miR-19a*, hsa-miR-

22*, hsa-miR-381, hsa-miR-485-3p, hsa-miR-509-3-5p, hsa-miR-

148a, and hsa-miR-106b) and one miRNA has been associated

Networks Associated with Ovarian Cancer Survival
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with cervical cancer (hsa-miR-329; [23]. The literature review

supporting these results was summarized in Table 2.

Of the miRNAs previously associated with ovarian cancer, the

trends of all 12 miRNA were consistent with those reported in

previous studies. Hsa-miR-144 (HR = 1.30), hsa-miR-16

(HR = 2.07), hsa-miR-182* (HR = 2.35), hsa-miR-18b*

(HR = 1.95), hsa-miR-19a* (HR = 1.75), and hsa-miR-106b

(HR = 1.57) were over-expressed in all 3 ovarian tumor histologic

subtypes relative to normal primary human ovarian surface

epithelium cultures [24]. The consistency between the detected

and previously reported trends further supports the biomarker

detection strategy presented.

Hsa-miR-182 was also up-regulated in ovarian carcinoma in

Stage III/IV epithelial ovarian carcinoma versus normal tissue

[25] and has been associated with higher death hazard in

glioblastoma multiforme patients receiving chemotherapy plus

radiation and targeted treatment [8]. The region containing hsa-

miR-182 was amplified in 28.9% of the epithelial ovarian cancer,

implying an oncogene-type function, and possibly targets genes

forkhead box O1, forkhead box O3 (FOXO1;FOXO3) which are

involved in promoting differentiation and grown inhibition (tumor

suppressors,(25)). Hsa-miR-18b* and hsa-miR-16 were found to

robustly distinguish ovarian cancer tumors from normal tissue and

were significantly up-regulated in ovarian cancer [26]. Hsa-miR-

16 (HR = 2.07) has been shown to be up-regulated in serous

ovarian carcinoma versus normal ovarian tissues, as well as up-

regulated in stage III/IV ovarian cancer versus normal ovarian

tissue [25,27]. Hsa-miR-22 (HR = 0.25) was under-expressed in 3

Table 1. Number and distribution of individuals analyzed for post-diagnostic survival and post-diagnostic recurrence and levels of
the cohort factors considered.

Survival Recurrence

Training Set Validation Set Training Set Validation Set

Number Percent Number Percent Number Percent Number Percent

Total 272 146 157 92

N1 Censored 107 39% 75 51% 31 20% 38 41%

Treatment2 Chemo3 253 93% 101 69% 150 96% 67 72%

Chemo_Other4 14 5% 25 17% 5 3% 18 20%

Other5 5 2% 20 14% 2 1% 7 8%

Preadjuvant Therapy6 Yes 21 8% 36 25% 7 4% 25 27%

No 251 92% 110 75% 150 96% 67 73%

Additional Treatment7 Chemo3 113 41% 49 34% 106 67% 45 49%

Chemo_Other4 37 14% 35 24% 34 22% 35 38%

Other5 122 45% 62 42% 17 11% 12 13%

Tumor Stage8 I_II9 12 4% 17 12% 5 3% 9 10%

III10 239 88% 89 61% 143 91% 59 64%

IV11 21 8% 40 27% 9 6% 24 26%

Tumor Grade12 I or II13 12 4% 45 31% 6 4% 35 38%

Rest14 260 96% 101 69% 151 96% 57 62%

Tumor Residual Disease15 016 71 26% 52 36% 34 22% 30 33%

1_2017 167 61% 60 41% 102 65% 40 43%

.2018 34 13% 34 23% 21 13% 22 24%

Recurrence19 Yes 157 58% 92 63% 157 100% 92 100%

No 115 42% 54 37% 0 0% 0 0%

1N: Number of patients;
2Treatment: Type of treatment received;
3Chemo: Only chemotherapy;
4Chemo_Other: Chemotherapy plus another treatment;
5Other: Any treatment other than chemotherapy;
6Preadjuvant Therapy: Any treatment that the patient received prior to surgery and sample collection;
7Additional Treatment: Treatment given after initial first round treatment;
8Tumor Stage: pathological stage of the tumor in AJCC format (Primary Tumor: T; Stage I: IA; IB; IC; Stage II: IIA; IIB; IIC; Stage III: IIIA; IIIB; IIIC; Stage IV: IV);
9I_II: Stage I or II ovarian cancer;
10III: Stage III ovarian cancer;
11IV: Stage IV ovarian cancer;
12Tumor Grade: Numeric value used to express the degree of abnormality of cancer cells;
13I or II: Grade I or II tumor;
14Rest: Any tumor grades other than I or II;
15Tumor Residual Disease: Measure of the largest remaining nodule;
160: No macroscopic disease;
171_20:1–20 mm;
18.20: Greater than 20 mm;
19Recurrence: Return of cancer.
doi:10.1371/journal.pone.0058608.t001

Networks Associated with Ovarian Cancer Survival
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ovarian tumor histologic subtypes relative to normal primary

human ovarian surface epithelium cultures [24]. Hsa-miR-22 was

also down -regulated in Stage III/IV epithelial ovarian carcinoma

versus normal and up-regulated in primary versus recurrent serous

papillary ovarian carcinomas [25]. Hsa-miR-148a (HR = 0.78)

was down-regulated in ovarian cancer cell lines and may be

involved in the carcinogenesis of ovarian cancer through

deregulation of cell proliferation [28]. Hsa-miR-509-3-5p

Table 2. MicroRNAs associated with post-diagnostic survival and supporting independent studies.

MicroRNA P-Value Estimate Hazard Ratio (95% C.I.1) Relevant Literature References

hsa-miR-22* ,.0001 21.4007 0.25 (0.14 to 0.44) [24,25,30,33,36]O

hsa-miR-770-5p ,.0001 21.2946 0.27 (0.16 to 0.47) NA

hsa-miR-485-3p ,.0001 20.8158 0.44 (0.30 to 0.66) [28]O

hsa-miR-16 ,.0001 0.7249 2.07 (1.53 to 2.79) [24,25,27]O

hsa-miR-144 ,.0001 0.2644 1.3 (1.14 to 1.49) [24]O

ebv-miR-BHRF1-2* 0.0001 1.4787 4.39 (2.06 to 9.33) NA2

hsa-miR-182* 0.0001 0.8547 2.35 (1.51 to 3.65) [24,25,72,73]O

hsa-miR-381 0.0001 0.6801 1.97 (1.40 to 2.79) [31]O

hsa-miR-509-3-5p 0.0001 20.3725 0.69 (0.57 to 0.83) [74]O

hsa-miR-19a* 0.0002 0.5574 1.75 (1.31 to 2.33) [24]O

hsa-miR-573 0.0007 0.6298 1.88 (1.31 to 2.70) NA

hsa-miR-329 0.0031 21.4082 0.25 (0.10 to 0.62) [23]Z

hsa-miR-106b 0.0024 0.4525 1.57 (1.17 to 2.11) [24,25]O

hsa-miR-18b* 0.0042 0.6678 1.95 (1.24 to 3.08) [24,26]O

hsa-miR-521 0.0051 1.3416 I_II3 = 2.10 (0.89 to 4.97) [30]O

Rest4 = 0.55 (0.40 to 0.76)

hsa-miR-148a 0.0063 20.2493 0.78 (0.65 to 0.93) [28]O

1C.I.: Confidence Interval;
2NA: No information found; OAssociated with Ovarian Cancer; ZAssociated with other cancer type;
3I_II: Grade I or II tumor;
4Rest: Any tumor grades other than I or II.
doi:10.1371/journal.pone.0058608.t002

Table 3. MicroRNAs associated with post-diagnostic recurrence on a cohort-independent or -dependent manner and supporting
independent studies.

MicroRNA P-Value Estimate Hazard Ratio (95% C.I.1) Relevant Literature References

hsa-miR-550* ,.0001 22.1165 0.12 (0.05 to 0.29) NA

hsa-miR-22* ,.0001 21.4397 0.24 (0.12 to 0.46) [25,33,36,75]O

hsa-miR-223 ,.0001 0.5267 1.69 (1.36 to 2.12) [33,36,75]O

hsa-miR-146a ,.0001 20.4869 0.62 (0.49 to 0.77) [75]O

hsa-miR-497 0.0001 1.5869 Chemo3 = 0.84 (0.69 to 1.03) [34,35]O

1.125 C_O4 = 0.53 (0.20 to 1.41)

Other5 = 0.17 (0.08 to 0.35)

hsa-miR-214* 0.0001 0.7059 2.03 (1.41 to 2.91) [2,25,36,75]O

ebv-miR-BHRF1-2* 0.0028 1.092 2.98 (1.46 to 6.10) NA

hsa-miR-96 0.0065 0.1984 1.22 (1.06 to 1.41) [26,34,37,75]O

hsa-miR-924 0.0102 1.3019 3.68 (1.36 to 9.92) NA

hsa-miR-28-3p 0.0109 1.1811 3.26 (1.31 to 8.09) NA2

hsa-miR-369-3p 0.0130 0.4208 1.52 (1.09 to 2.12) [38]Z

1C.I.: Confidence Interval;
2NA: No information found;
OAssociated with Ovarian Cancer;
ZAssociated with other cancer type;
3Chemo: Only chemotherapy;
4C_O: Chemotherapy plus another therapy;
5Other: Any therapy other than chemotherapy.
doi:10.1371/journal.pone.0058608.t003

Networks Associated with Ovarian Cancer Survival

PLOS ONE | www.plosone.org 5 March 2013 | Volume 8 | Issue 3 | e58608



(HR = 0.69) was over-expressed in stage I ovarian cancer relative

to stage III ovarian cancer with a p-value = 0.017 and fold-

change = 4.01 [29]. Both, hsa-miR-521 and hsa-miR-381 were

over-expressed in platinum resistant versus platinum sensitive

ovarian cancer [30,31].

The evaluation of clinical factor dependent associations between

miRNAs and ovarian cancer survival offer insights into general

and condition-specific biomarkers. Of the 16 miRNAs associated

with ovarian cancer survival, 15 exhibited general (clinically

independent) associations with survival, meanwhile hsa-miR-521

had a tumor grade-dependent association with survival. The

hazard of ovarian cancer death increased 2.10 per unit increase in

hsa-miR-521 level in patients that have grade I or II tumors and

decreased 0.55 per unit increase in the miRNA in patients that

have higher level tumors. The survival plot in Figure 1 depicts the

association between the probability of ovarian cancer survival and

the interaction between miRNA expression and tumor grade.

Lower expression of hsa-miR-521 was associated with the lowest

and highest probability of survival in the presence of high (Rest)

and low (I and II) grade tumors, respectively.

Similarly to the findings for survival, the majority of the

miRNAs associated with recurrence have been previously

associated with ovarian cancer, thus reaffirming the reliability of

the feature selection approach implemented. Among the 14

miRNAs associated with recurrence in ovarian cancer (Table 3),

9 have been previously linked to ovarian cancer (hsa-miR-146a,

hsa-miR-15b, hsa-miR-16, hsa-miR-206, hsa-miR-214*, hsa-miR-

22*, hsa-miR-223, hsa-miR-497, and hsa-miR-96), and one had a

previous association with paired lung primary tumors (hsa-miR-

369-3p). Table 3 summarizes the literature review supporting the

detected associations.

The trends of the 9 miRNA previously linked to ovarian cancer

and also found in this study were consistent with previously

reported. Hsa-miR-146a (HR = 0.62) was under-expressed in

ovarian tumor histologic subtypes relative to normal primary

human ovarian surface epithelium cultures [24]. Hsa-miR-206

(HR = 0.59) was down-regulated in ovarian cancer cell lines versus

normal [32]. Hsa-miR-22 (HR = 0.24) was over-expressed in

recurrent ovarian cancer versus primary ovarian cancer [33]. This

miRNA also was down-regulated in ovarian carcinoma in early

stage versus late stage; down-regulated in Stage III/IV epithelial

ovarian carcinoma versus normal; and up-regulated in primary

versus recurrent serous papillary ovarian carcinomas [25]. Hsa-

miR-497 (in this study HR Chemo = 0.84; Chemo_Other = 0.53;

Other = 0.17) was down-regulated in ovarian cancer cell line

versus normal ovarian cell lines [34,35]. Hsa-miR-16 (HR = 2.76)

up-regulated in serous ovarian carcinoma versus normal ovarian

tissues, as well as up-regulated in stage III/IV ovarian cancer

versus normal ovarian tissue as well [25–27]. Hsa-miR-214

(HR = 2.03) was over-expressed ovarian tumor histologic subtypes

relative to normal primary human ovarian surface epithelium

cultures [24]. In a study of epithelial ovarian cancer, hsa-miR-214

was differentially expressed in those with recurrence compared

with those without recurrence in both a training and validation set.

Tumor tissue samples from those with recurrence were up-

regulated compared with those without recurrence in epithelial

ovarian cancer [36]. Hsa-miR-214 expression was associated with

high grade and late stage tumors, was up-regulated in ovarian

cancer tumor tissues, and has a potential role in recurrence [25].

Hsa-miR-214 was also found to play a role in ovarian cancer by

targeting PTEN [2].

Hsa-miR-223 (HR = 1.69) was over-expressed in all 3 ovarian

tumor histologic subtypes relative to normal primary human

ovarian surface epithelium cultures [24]. Hsa-miR-223 was over-

expressed in recurrent ovarian cancer versus primary ovarian

cancer [33]. Hsa-miR-223 was up-regulated in tumor tissue

sample from those with recurrence compared with those without

recurrence in epithelial ovarian cancer [36]. Hsa-miR-96

(HR = 1.22) was over-expressed in ovarian cancer cell lines versus

normal ovarian cell lines [24,26,34,37]. Hsa-miR-369-3p

(HR = 1.52), associated with ovarian cancer recurrence in this

study, was similarly up-regulated in paired lung primary tumors

[38].

The study of interactions between miRNA expression and

cohort factors supported the identification of individualized

biomarkers. General associations between miRNAs and recur-

rence irrespective of cohort factors were identified for 13 miRNA.

A treatment-dependent association between risk or hazard of

recurrence and hsa-miR-497 was identified. The hazard for

ovarian cancer recurrence decreased with increasing miRNA level

in patients for all three treatments (Chemo, Chemo_Other,

Other), and the hazard was lowest (0.17) for individuals receiving

the Other treatment. Figure 2 depicts the association between the

probability of non-recurrence interaction between level of hsa-

miR-497 and treatment. The probability of non-recurrence was

distinctively lower in patients with low miRNA levels receiving

Chem treatment, however was not different between patients

receiving Chemo or Chemo and Other treatments when the levels

of miRNA were high.

Transcription Factors and Target Genes Associated with
Survival and Recurrence

In total, the expression of 838 and 734 target genes and 12 and

eight TFs were associated (FDR-adjusted P-value ,0.05) with

ovarian cancer survival and recurrence, respectively. The TFs

associated with ovarian cancer survival and recurrence and

supporting literature review are listed in Tables 4 and 5,

respectively.

The four TFs significantly associated with both ovarian cancer

survival and recurrence (early growth response 1 (EGR1), early

growth response (EGR2), FBJ murine osteosarcoma viral oncogene

homolog (FOS), and transforming growth factor beta 1(TGFB1),

exhibited trends consistent with previous studies. EGR1

(HR = 1.15 for survival and recurrence) has a key role in

carcinogenesis and cancer recurrence, and exhibits increased

expression in gastric cancer tissues relative to normal mucosa [39].

The positive association between EGR2 and hazard uncovered in

this study (HR = 1.17 for survival and recurrence) was confirmed

with reports that this TF plays a key role in the PTEN-induced

apoptotic pathway. Furthermore, studies suggest that this TF may

be a promising target molecule for gene therapy to treat a variety

of cancers [40]. FOS expression (HR = 1.15; 1.13 for death and

recurrence in this study, respectively) has been associated with

ovarian cancer, and is a molecular predictor of recurrence and

survival in epithelial ovarian carcinomas [41]. TGFB1 (HR = 0.46;

0.56 for death and recurrence in this study, respectively) has been

linked to ovarian cancer [42–44], and may play an important role

in ovarian cancer biology with potential effects on tumor growth

and angiogenesis [45].

Transcription factors associated with survival. Eight

TFs were solely associated with the hazard of ovarian cancer

death: circadian locomotor output cycles kaput (CLOCK), estrogen

receptor 2 (ESR2), v-ets erythroblastosis virus E26 oncogene

homolog 2 (ETS2), histone deacetylase 3 (HDAC3), homeobox A1

(HOXA1), v-myc myelocytomatosis viral oncogene homolog

(MYC), nuclear receptor subfamily 5, group A, Member 1

(NR5A1), and POU class 2 homeobox 2 (POU2F2), and their

trends were in agreement with previous studies. MYC (HR = 1.27)
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contributes independently to ovarian and breast pathogenesis

when over-expressed [46], and was more frequently detected in

malignant ovarian tumors when compared with benign ovarian

tumors [47,48]. ESR2 (HR = 0.66) was significantly lower in

ovarian cancer cell lines and tissues than in their corresponding

normal counterparts [49]. ESR2 has been associated with

malignant ovarian epithelial cells [50] and may be a susceptibility

marker for epithelial ovarian cancer [51].

The opposite association between POU2F2 expression and

ovarian cancer hazard (HR = 0.64) detected in this study was

consistent with reports that this TF, a member of the POU

homeodomain family of transcriptional regulators critical for

Figure 1. Probability of ovarian cancer survival for patients that have lower grade (I and II) tumors (black lines) or higher (Rest)
grade tumors (gray lines) and high (dashed lines) or low (solid line) levels of hsa-miR-521.
doi:10.1371/journal.pone.0058608.g001

Figure 2. Probability of ovarian cancer non-recurrence for patients receiving the treatment chemotherapy only, chemotherapy
along with another treatment, or some other treatment or combination of treatments except chemotherapy that have high or low
levels of hsa-miR-497.
doi:10.1371/journal.pone.0058608.g002
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normal embryonic development, was associated with down-

regulation of B-cell CLL/lymphoma 2 (BCL-2) that results in

apoptosis [52]. Over-expression of ETS2 has previously been

shown in human esophageal squamous cell carcinoma and breast

cancer [50,53]. This TF also plays a role in regulation of the

production of TF MYC, also significantly associated with increased

hazard (HR = 1.27) in ovarian cancer in this study [54]. These

findings were in agreement with the positive association between

ETS2 and ovarian cancer death hazard detected in this study

(HR = 1.32). Defects in NR5A1 (HR = 0.53 in this study) can result

in arrest of ovarian function [55]. The relationship between

CLOCK and ovarian cancer survival detected in the present study

(HR = 0.81) agrees with the report that variations in the

epigenetics of CLOCK may lead to increased risk of breast cancer

[56], and that in women with breast cancer, there was significantly

less methylation of the CLOCK promoter region [57]. Similar to

this study, HDAC (HR = 1.63) was over-expressed in 80% of cases

of ovarian cancer, with no significant difference in the expression

profiles between histological subtypes [58]. Suppression of HOXA1

(HR = 0.71) has been linked to an increase of invasive cancer cells

in human pancreatic cancer [59].

Transcription factors associated with recurrence. Four

TFs were only associated with the hazard of ovarian cancer

recurrence, and their trends were all consistent with previous

work: CCCTC-binding factor (CTCF), Myogenic Differentiation

1(MYOD1), SRY (sex determining region Y)-Box 18 (SOX18), and

TATA Box Binding Protein (TBP). CTCF (HR = 1.71) plays a role

in breast cancer [60,61], and MYOD1 (HR = 0.77) has previously

been associated with cervical cancer [62,63]. SOX18 (HR = 0.77),

a member of the SOX family of transcription factors involved in

the determination of the cell fate, has been proposed as a useful

target for human cancer treatment [64,65]. Consistent with our

findings on ovarian cancer, TBP (HR = 1.63), which is highly

expressed in the ovary, has elevated expression in human colon

carcinomas [66].

Target gene biomarkers of ovarian cancer survival and

recurrence. Among the target genes associated with ovarian

cancer survival, 16 were identified in the Dragon database of

ovarian cancer genes: acetylcholinesterase (ACHE); BCL2-antag-

Table 4. Transcription factors associated with ovarian cancer survival.

Transcription Factor Estimate Hazard Ratio (95% C.I.1) Relevant Literature References

CLOCK 0.0097 0.81 (0.58 to 1.11) [56,57]Z

EGR1 0.0065 1.15 (1.03 to 1.28) [39]Z

EGR2 0.0038 1.17 (1.06 to 1.30) [40,76]Z

ESR2 0.0065 0.66 (0.49 to 0.88) [49–51]O

ETS2 0.0098 1.32 (0.99 to 1.76) [50,53]Z

FOS 0.0056 1.15 (1.03 to 1.28) [77]O

HDAC3 0.0093 1.63 (1.13 to 2.37) [58]O

HOXA1 0.0096 0.71 (0.53 to 0.97) [59]Z

MYC 0.009 1.27 (1.05 to 1.54) [46,47,78]O

NR5A1 0.0086 0.53 (0.34 to 0.82) [55]O

POU2F2 0.008 0.64 (0.45 to 0.93) [52]Z

TGFB1 0.0054 0.46 (0.32 to 0.66) [42–45]O

1C.I.: Confidence Interval;
2NA: No information found;
OAssociated with Ovarian Cancer;
ZAssociated with other cancer type.
doi:10.1371/journal.pone.0058608.t004

Table 5. Transcription factors associated with ovarian cancer recurrence.

Transcription Factor Estimate Hazard Ratio (95% C.I.1) Relevant Literature References

CTCF 0.0063 1.71 (1.11 to 2.64) [60,61]Z

EGR1 0.0076 1.15 (1.03 to 1.28) [39]Z

EGR2 0.0054 1.17 (1.05 to 1.31) [40,76]Z

FOS 0.0092 1.13 (1.01 to 1.27) [41]O

MYOD1 0.0075 0.77 (0.63 to 0.95) [62,63]Z

SOX18 0.0082 0.77 (0.62 to 0.95) [64,65]Z

TBP 0.0088 1.63 (1.19 to 2.24) [66]Z

TGFB1 0.0088 0.56 (0.39 to 0.80) [42–45]O

1C.I.: Confidence Interval;
OAssociated with Ovarian Cancer;
ZAssociated with other cancer type.
doi:10.1371/journal.pone.0058608.t005
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onist/killer 1 (BAK1); B-cell CLL/lymphoma 2 (BCL2); CD44

molecule (Indian blood group) (CD44); CD63 molecule (CD63);

cadherin 13, H-cadherin (heart) (CDH13); cyclin-dependent kinase

inhibitor 2B (p15, inhibits CDK4) (CDKN2B); colony stimulating

factor 1 receptor (CSF1R); cathepsin D (CTSD); discoidin domain

receptor tyrosine kinase 1 (DDR1); galactose-1-phosphate uridylyl-

transferase (GALT); kallikrein-related peptidase 9 (KLK9); mitogen-

activated protein kinase kinase 1 (MAP2K1); mitogen-activated

protein kinase kinase 3 (MAP3K3); MYC, and platelet-derived

growth factor receptor, alpha polypeptide (PDGFRA). Likewise,

among the genes associated with ovarian cancer recurrence, 9

were identified in the Dragon database: ACHE; BAK1; breast

cancer 1, early onset (BRCA1); CD44; CTSD; DDR1; KLK9; antigen

identified by monoclonal antibody Ki-67 (MKI67), and topoisom-

erase (DNA) II alpha 170 kDa (TOP2A).

Validation. Two indicators of the reliability of the predictive

profiles in the independent validation were considered. The

relative increment in MSE of the model including the cohort-

independent and dependent-expression profiles between the

training and validation data set were 13.4% and 15.4% for

survival and recurrence, respectively. As expected, the predictive

equation offered a better description of the data used to develop

the equation (i.e. the training data set), and a small difference

between training and validating data was expected due to

sampling effects such as between-patient variation. The small

increase in MSE between the training and validating data set was a

first, global indicator of the similar profile-hazard relationship

identified in both independent data sets and of the replicability of

our findings. Second, the Pearson (and Spearman) correlations of

the profile associations with death and recurrence between the

training (e.g. Tables 2, 3, 4, 5) and validation data sets were 89.7%

(84.5%) and 87.3% (82.4%), respectively. The cross-validation

results and the agreement between the literature review and the

present findings further suggest that the detected profiles

associated with ovarian cancer are likely to be replicable.

Experimental confirmation of the findings is needed.

Functional Gene Groups Associated with Ovarian Cancer
Survival and Recurrence

The functional analyses of the target genes associated with

ovarian cancer uncovered enriched pathways and processes, many

of which were previously associated with ovarian cancer. Analysis

of the significant target genes associated with ovarian cancer

survival using a Fisher exact test uncovered enrichment of

biological processes including ribonucleotide biosynthetic process

(P-value ,0.002, 14 genes) and immune response (P-value

,0.0004, 49 genes) and the KEGG pathways lysosome (P-value

,0.001, genes15) and epithelial cell signaling (P-value ,0.001,

genes 11). Likewise, analysis of the significant target genes

associated with ovarian cancer recurrence using a Fisher exact

test uncovered enrichment of biological processes including the

NAD metabolic process (P-value ,0.001, 6 genes), M phase (P-

value ,0.002, 24 genes), and pyrimidine-and nicotineamide-

nuclotide metabolic processing (P-value ,0.02, 6 genes).

The set enrichment analysis of all target genes segmented by

their positive or negative association with survival or recurrence

offered additional insights into the functional categories differen-

tially represented among gene groups. Table 6 lists the GO

biological processes differentially (FDR-adjusted P-value ,0.05,

.75 genes) represented between the genes that have negative or

positive associations with death and recurrence hazard. Two GO

biological processes had significant differential enrichment be-

tween the genes segmented by low and high hazard of ovarian

cancer death. Likewise, 12 GO biological processes had significant

differential enrichment between the genes associated with low and

high hazard of ovarian cancer recurrence. Table 6 includes the

corresponding characterization of the differential enrichment

(loge(odds ratio)), and the statistical significance level. A loge(odds

ratio) .0 (,0) indicates that the category was more (less) enriched

among the genes with lower hazard relative to the genes with

higher hazard of death or recurrence. Among the significant

categories, all were characterized by loge(odds ratio) .0,

indicating that there were more genes pertaining to the category

in the low hazard group relative to the high hazard group.

Figures S1 and S2 depict the relation between the GO biological

processes associated with the hazards of ovarian cancer death and

recurrence inferred from the set enrichment analysis, respectively.

Processes associated with general metabolism were differentially

enriched among the genes associated with ovarian cancer death.

Processes associated with nucleotide metabolism and transcription

were enriched among the genes associated with ovarian cancer

survival recurrence. The processes identified by the set enrichment

analyses were consistent with the results from the significant gene

list enrichment analyses. The results from our functional analyses

of target genes associated with ovarian cancer survival and

recurrence were in agreement with previous studies. Transcrip-

tome analysis has shown that suppression of NOTCH signaling in

ovarian cancer cells led to down-regulation of genes in pathways

involved in cell-cycle regulation and nucleotide metabolism [67].

The inhibition of cell proliferation in an ovarian cancer cell line in

response to a differentiation-inducing agent was related to a shift

in the direction of the purine metabolism from anabolism to

catabolism [68]. Inhibition of cell metabolism has been proposed

as an effective treatment against human epithelial ovarian

carcinomas [69].

microRNA-transcription Factor-target Gene Networks of
Survival and Recurrence

In gene regulatory networks, TFs and miRNAs regulate each

other and the expression of target genes [70]. The binding sites of

TFs and genes can be the target of miRNAs and other TFs.

Transcription factors regulate genes at the DNA level, while

miRNAs regulate gene expression post-transcriptionally [14].

Applying previously advocated approaches, this study combined

TF and miRNA target prediction together with context-linked

(cohort) information and experimental genome-wide co-expression

data to identify biologically meaningful molecular interactions

[14,71]. The networks of TFs, miRNAs, and target genes

significantly associated with survival or recurrence (P-value

,0.01), were reconstructed using Cytoscape. The reconstructed

molecular networks that integrate the pattern of association between

TFs, miRNAs, target genes and survival or recurrence aid in the

identification of robust network biomarkers of ovarian cancer.

Figures 3 and 4 depict a global network of the miRNAs, TFs

and target genes (irrespective of significance) for ovarian cancer

survival and recurrence, respectively. These general networks

include six and four TFs, 15 and 13 miRNAs and 167 and 89

target genes associated with survival and recurrence, respectively.

Figures S3 and S4 depict local sub-networks of significant

miRNAs, TFs, and targets all significantly associated with ovarian

cancer survival and recurrence, respectively. These targeted

networks include six and three TFs, 14 and 13 miRNAs and 71

and 56 target genes associated with survival and recurrence,

respectively.

The difference in topology between global networks offers

insights into the most effective therapies to ameliorate both

phenotypes. The networks of survival and recurrence differ in

interconnectivity and relation between driver and passenger

Networks Associated with Ovarian Cancer Survival
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genomic units. The survival network includes a larger number of

driver TFs and miRNAs and a much larger number of target

genes that translates into a more driver-centric connectivity than

in the recurrence network. Up-regulated miRNAs (red nodes

indicate higher hazard of death) appear to dominate as hubs in the

survival network, meanwhile a similar number of up and down-

regulated miRNAs were hubs in the recurrence network. There

were more up than down-regulated TFs in the survival network

and no down-regulated TFs in the recurrence network.

For the general and targeted survival networks, four edges was the

most frequent shortest path length and was near double the number of

paths of length two or three. For the general recurrence networks, four

edges was the most frequent shortest path length and was near triple

the number of paths of length two or three, meanwhile the distribution

of path length was fairly uniform from two to six edges. This pathway

comparison indicates that the connections between miRNAs, TFs and

target genes were more direct for survival than for recurrence. This

result was consistent with the distribution of shared neighbors and

average neighborhood connectivity. This distribution was dominated

by one shared neighbor in both survival and recurrence networks.

However, two and three shared neighbors were more common in the

recurrence network. The median average neighborhood connectivity

was 15 and seven for the general survival and recurrence networks,

respectively. Betweeness and closeness centrality measurements

confirmed these trends. Also the centralization of the survival network

was double that of the recurrence network meanwhile the density of the

networks follows an approximately inverse relationship. The more

direct connections and higher centrality of the survival network suggest

that network-based approaches to prognosticate or predict ovarian

cancer survival may be more effective than those for ovarian cancer

recurrence.

Conclusions
This study demonstrated the feasibility to infer reliable miRNA-TF-

target gene networks associated with survival and recurrence of ovarian

cancer based on the simultaneous analysis of co-expression profiles and

consideration of the clinical characteristics of the patients. The

expression of three miRNAs (hsa-miR-16, hsa-miR-22*, and ebv-

miR-BHRF1-2*), four TFs (FOS, EGR2, EGR1, and TGFB1) and 308

genes were associated with the hazard of ovarian cancer survival and

recurrence. Both hsa-miR-16 and hsa-miR-22* were previously linked

to ovarian cancer and exhibited trends in this study similar to those in

independent studies. The expression of TFs FOS, EGR1, and EGR2

was positively associated with ovarian cancer hazard, meanwhile the

expression of TGFB1 was negatively associated with the hazard. These

overlapping results suggest the importance of these biomarkers in the

recurrence of ovarian cancer and are a strong lead for further

experimental validation. This study confirmed 19 miRNAs previously

associated with ovarian cancer and identified two miRNAs that have

previously been associated with other cancer types. Three miRNAs

were associated with both ovarian cancer survival and recurrence and

27 miRNAs were associated with only one hazard. Two miRNAs (hsa-

miR-521 and hsa-miR-497) were cohort-dependent, while 28 were

cohort-independent. Empirical confirmation of these general and

cohort-dependent findings could lead to improved prognostic and

predictive tools. In total, the expression of 838 and 734 target genes and

Table 6. Differentially enriched Gene Ontology biological processes among all target genes segmented by low and high hazard of
ovarian cancer death or recurrence identified by set enrichment analyses.

2 hazard
genes1

+ hazard
genes2 Loge

3 FDR-

Trait and GO Category
GO
identifier

In
GO

Not
in GO

In
GO

Not
in GO

(odds
ratio)

adjusted
P-value4

Survival

regulation of cellular metabolic process GO:0031323 218 502 198 766 0.52 1.46E202

regulation of metabolic process GO:0019222 229 491 214 750 0.49 1.47E202

Recurrence

nucleobase, nucleoside, nucleotide and nucleic acid metabolic process GO:0006139 117 175 321 1034 0.77 3.91E205

RNA processing GO:0006396 29 263 49 1306 1.08 5.96E203

nitrogen compound metabolic process GO:0006807 122 170 354 1001 0.71 1.94E204

regulation of gene expression GO:0010468 84 208 237 1118 0.64 5.48E203

gene expression GO:0010467 109 183 291 1064 0.78 3.91E205

regulation of transcription GO:0045449 78 214 213 1142 0.67 5.48E203

cellular metabolic process GO:0044237 264 223 492 668 0.47 8.33E203

cellular biosynthetic process GO:0044249 106 186 342 1013 0.52 3.13E202

RNA metabolic process GO:0016070 80 212 219 1136 0.67 5.48E203

transcription GO:0006350 82 210 219 1136 0.71 3.22E203

regulation of nitrogen compound metabolic process GO:0051171 84 208 237 1118 0.64 5.48E203

macromolecule biosynthetic process GO:0009059 97 195 283 1072 0.63 5.42E203

12 hazard genes: number of genes that have a negative association between the hazard of ovarian cancer death (higher survival) or recurrence and expression.
2+ hazard genes: number of genes that have a positive association between the hazard of ovarian cancer death (lower survival) or recurrence and expression.
3Loge(Odds Ratio): values .1 indicate that the category was more enriched among the genes that have a negative association with hazard than among the genes that
have a positive association with hazard; values ,1 indicate that the category was more enriched among the genes that have a positive association with hazard than
among the genes that have a negative association with hazard; Extreme values indicate higher difference in the enrichment percentages between the negative and
positive association groups. Values close to zero indicate similar enrichment percentages between positive and negative association groups.
4FDR-adjusted P-value: False discovery rate adjusted P-value of the log odds ratio test. Enrichment at FDR-adjusted Pvalue ,0.05) and $75 genes in the category.
doi:10.1371/journal.pone.0058608.t006
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Figure 3. Network of microRNAs, transcription factors, and target genes associated with survival in ovarian cancer. (Node Shape:
microRNA = diamond, target gene = circle, transcription factor = square; Node Color: Red indicates increased hazard with high expression, Green
indicates decreased hazard with high expression; Node Size: larger indicates a more extreme association (P-value ,0.006), smaller indicates a less
extreme association.).
doi:10.1371/journal.pone.0058608.g003
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12 and eight TFs were associated (FDR-adjusted P-value ,0.05) with

ovarian cancer survival and recurrence, respectively. Functional

analysis highlighted the association between cellular and nucleotide

metabolic processes and ovarian cancer. The more direct connections

and higher centrality of the miRNAs, TFs and target genes in the

survival network suggest that network-based approaches to prognos-

ticate or predict ovarian cancer survival may be more effective than

those for ovarian cancer recurrence. The understanding the biology

and molecular pathogenesis of ovarian cancer is key to developing

improved prognostic indicators and effective therapies.

Supporting Information

Figure S1 Relation between the Gene Ontology biolog-
ical processes associated with ovarian cancer death
inferred from the set enrichment analysis.
(TIF)

Figure 4. Network of microRNA, transcription factors, and target genes associated with ovarian cancer recurrence. (Node Shape:
microRNA = diamond, target gene = circle, transcription factor = square; Node Color: Red indicates increased hazard with high expression, Green
indicates decreased hazard with high expression; Node Size: larger indicates a more extreme association (P-value ,0.006), smaller indicates a less
extreme association.).
doi:10.1371/journal.pone.0058608.g004
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Figure S2 Relation between the Gene Ontology biolog-
ical processes associated with ovarian cancer recur-
rence inferred from the set enrichment analysis.

(TIF)

Figure S3 Targeted sub-network of microRNAs, tran-
scription factors, and target genes associated with
ovarian cancer survival. (Node Shape: microRNA = diamond,

target gene = circle, transcription factor = square; Node Color:

Red indicates increased hazard with high expression, Green

indicates decreased hazard with high expression; Node Size: larger

indicates a more extreme association (HR $ |1.6|), smaller

indicates a less extreme association.)

(TIF)

Figure S4 Targeted sub-network of microRNAs, tran-
scription factors, and target genes associated with post-
diagnostic recurrence in ovarian cancer. (Node Shape:

microRNA = diamond, target gene = circle, transcription fac-

tor = square; Node Color: Red indicates increased hazard with

high expression, Green indicates decreased hazard with high

expression; Node Size: larger indicates a more extreme association

(HR $ |1.6|), smaller indicates a less extreme association.)

(TIF)

Author Contributions

Conceived and designed the experiments: SLR-Z. Analyzed the data:

KRD. Contributed reagents/materials/analysis tools: SLR-Z KRD. Wrote

the paper: SLR-Z KRD.

References

1. Hu X, Macdonald DM, Huettner PC, Feng Z, El Naqa IM, et al. (2009) A miR-

200 microRNA cluster as prognostic marker in advanced ovarian cancer.
Gynecol Oncol 114(3): 457–464.

2. Yang H, Kong W, He L, Zhao JJ, O’Donnell JD, et al. (2008) MicroRNA
expression profiling in human ovarian cancer: miR-214 induces cell survival and

cisplatin resistance by targeting PTEN. Cancer Res 68(2): 425–433.

3. Shih I, Davidson B (2009) Pathogenesis of ovarian cancer: Clues from selected

overexpressed genes. Future Oncol 5(10): 1641–1657.

4. Zaret KS, Carroll JS (2011) Pioneer transcription factors: Establishing

competence for gene expression. Genes Dev 25(21): 2227–2241.

5. Cancer Genome Atlas Research Network (2008) Comprehensive genomic

characterization defines human glioblastoma genes and core pathways. Nature

455(7216): 1061–1068.

6. von Gruenigen VE, Huang HQ, Gil KM, Gibbons HE, Monk BJ, et al. (2010) A

comparison of quality-of-life domains and clinical factors in ovarian cancer
patients: A gynecologic oncology group study. J Pain Symptom Manage 39(5):

839–846.

7. Smith BJ, Ko Y, Southey BR, Rodriguez-Zas SL (2007) BEEHIVE - A suite of

tools to manage, analyze and interpret honey bee microarray experiments. Cold
Spring Harbor, NY. May 6–8.

8. Delfino KR, Serao NV, Southey BR, Rodriguez-Zas SL (2011) Therapy-,

gender- and race-specific microRNA markers, target genes and networks related
to glioblastoma recurrence and survival. Cancer Genomics Proteomics 8(4):

173–178.

9. Serao NV, Delfino KR, Southey BR, Beever JE, Rodriguez-Zas SL (2011) Cell

cycle and aging, morphogenesis, and response to stimuli genes are individualized
biomarkers of glioblastoma progression and survival. BMC Med Genomics 4:

49.

10. Delfino KR, Southey BR, Sweedler JV, Rodriguez-Zas SL (2010) Genome-wide

census and expression profiling of chicken neuropeptide and prohormone

convertase genes. Neuropeptides 44(1): 31–44.

11. Fox J (2002) Cox proportional-hazards regression for survival data: Web

appendix to An R and S-PLUS companion to applied regression. Available: http://cran.
r-project.org/doc/contrib/Fox-Companion/appendix-cox-regression.pdf. Ac-

cessed 25 January 2012.

12. Clark TG, Bradburn MJ, Love SB, Altman DG (2003) Survival analysis part I:

Basic concepts and first analyses. Br J Cancer 89(2): 232–238.

13. Schaubel DE, Wei G (2007) Fitting semiparametric additive hazards models

using standard statistical software. Biom J 49(5): 719–730.

14. Le Bechec A, Portales-Casamar E, Vetter G, Moes M, Zindy PJ, et al. (2011)

MIR@NT@N: A framework integrating transcription factors, microRNAs and

their targets to identify sub-network motifs in a meta-regulation network model.
BMC Bioinformatics 12: 67.

15. Gene ontology. Available: http://www.geneontology.org/. Accessed 2 February
2012.

16. KEGG. Available: http://www.genome.jp/kegg/. Accessed 2 February 2012.

17. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes.

Nucleic Acids Res 28(1): 27–30.

18. Sherman BT, Huang da W, Tan Q, Guo Y, Bour S, et al. (2007) DAVID

knowledgebase: A gene-centered database integrating heterogeneous gene
annotation resources to facilitate high-throughput gene functional analysis.

BMC Bioinformatics 8: 426.

19. Medina I, Carbonell J, Pulido L, Madeira SC, Goetz S, et al. (2010) Babelomics:

An integrative platform for the analysis of transcriptomics, proteomics and

genomic data with advanced functional profiling. Nucleic Acids Res 38(Web
Server issue): W210–3.

20. Dragon database of ovarian cancer genes. Available: http://apps.sanbi.ac.za/
ddoc/. Accessed 30 December 2011.

21. Killcoyne S, Carter GW, Smith J, Boyle J (2009) Cytoscape: A community-based
framework for network modeling. Methods Mol Biol 563: 219–239.

22. American Cancer Society. Available: http://www.cancer.org/. Accessed 30
December 2011.

23. Martinez I, Gardiner AS, Board KF, Monzon FA, Edwards RP, et al. (2008)

Human papillomavirus type 16 reduces the expression of microRNA-218 in

cervical carcinoma cells. Oncogene 27(18): 2575–2582.

24. Wyman SK, Parkin RK, Mitchell PS, Fritz BR, O’Briant K, et al. (2009)

Repertoire of microRNAs in epithelial ovarian cancer as determined by next

generation sequencing of small RNA cDNA libraries. PLoS One 4(4): e5311.

25. Dahiya N, Morin PJ (2010) MicroRNAs in ovarian carcinomas. Endocr Relat

Cancer 17(1): F77–F89.

26. Miles GD, Seiler M, Rodriguez L, Rajagopal G, Bhanot G (2012) Identifying

microRNA/mRNA dysregulations in ovarian cancer. BMC Res Notes 5: 164.

27. Nam EJ, Yoon H, Kim SW, Kim H, Kim YT, et al. (2008) MicroRNA

expression profiles in serous ovarian carcinoma. Clin Cancer Res 14(9): 2690–

2695.

28. Zhou X, Zhao F, Wang ZN, Song YX, Chang H, et al. (2012) Altered

expression of miR-152 and miR-148a in ovarian cancer is related to cell

proliferation. Oncol Rep 27(2): 447–454.

29. Eitan R, Kushnir M, Lithwick-Yanai G, David MB, Hoshen M, et al. (2009)

Tumor microRNA expression patterns associated with resistance to platinum

based chemotherapy and survival in ovarian cancer patients. Gynecol Oncol

114(2): 253–259.

30. Yang N, Kaur S, Volinia S, Greshock J, Lassus H, et al. (2008) MicroRNA

microarray identifies let-7i as a novel biomarker and therapeutic target in human

epithelial ovarian cancer. Cancer Res 68(24): 10307–10314.

31. Boren T, Xiong Y, Hakam A, Wenham R, Apte S, et al. (2009) MicroRNAs and

their target messenger RNAs associated with ovarian cancer response to

chemotherapy. Gynecol Oncol 113(2): 249–255.

32. Dahiya N, Sherman-Baust CA, Wang TL, Davidson B, Shih I, et al. (2008)

MicroRNA expression and identification of putative miRNA targets in ovarian

cancer. PLoS One 3(6): e2436.

33. Laios A, O’Toole S, Flavin R, Martin C, Kelly L, et al. (2008) Potential role of

miR-9 and miR-223 in recurrent ovarian cancer. Mol Cancer 7: 35.

34. Zhang L, Huang J, Yang N, Greshock J, Megraw MS, et al. (2006) microRNAs

exhibit high frequency genomic alterations in human cancer. Proc Natl Acad

Sci U S A 103(24): 9136–9141.

35. Wang W, Peng B, Wang D, Ma X, Jiang D, et al. (2011) Human tumor

microRNA signatures derived from large-scale oligonucleotide microarray

datasets. Int J Cancer 129(7): 1624–1634.

36. Marchini S, Cavalieri D, Fruscio R, Calura E, Garavaglia D, et al. (2011)

Association between miR-200c and the survival of patients with stage I epithelial

ovarian cancer: A retrospective study of two independent tumour tissue

collections. Lancet Oncol 12(3): 273–285.

37. Yamada Y, Enokida H, Kojima S, Kawakami K, Chiyomaru T, et al. (2011)

MiR-96 and miR-183 detection in urine serve as potential tumor markers of

urothelial carcinoma: Correlation with stage and grade, and comparison with

urinary cytology. Cancer Sci 102(3): 522–529.

38. Baffa R, Fassan M, Volinia S, O’Hara B, Liu CG, et al. (2009) MicroRNA

expression profiling of human metastatic cancers identifies cancer gene targets.

J Pathol 219(2): 214–221.

39. Kobayashi D, Yamada M, Kamagata C, Kaneko R, Tsuji N, et al. (2002)

Overexpression of early growth response-1 as a metastasis-regulatory factor in

gastric cancer. Anticancer Res 22(6C): 3963–3970.

40. Unoki M, Nakamura Y (2003) EGR2 induces apoptosis in various cancer cell

lines by direct transactivation of BNIP3L and BAK. Oncogene 22(14): 2172–

2185.

41. Mahner S, Baasch C, Schwarz J, Hein S, Wolber L, et al. (2008) C-fos

expression is a molecular predictor of progression and survival in epithelial

ovarian carcinoma. Br J Cancer 99(8): 1269–1275.

42. Tanaka Y, Kobayashi H, Suzuki M, Kanayama N, Terao T (2004)

Transforming growth factor-beta1-dependent urokinase up-regulation and

promotion of invasion are involved in src-MAPK-dependent signaling in human

ovarian cancer cells. J Biol Chem 279(10): 8567–8576.

Networks Associated with Ovarian Cancer Survival

PLOS ONE | www.plosone.org 13 March 2013 | Volume 8 | Issue 3 | e58608



43. Sunde JS, Donninger H, Wu K, Johnson ME, Pestell RG, et al. (2006)

Expression profiling identifies altered expression of genes that contribute to the
inhibition of transforming growth factor-beta signaling in ovarian cancer.

Cancer Res 66(17): 8404–8412.

44. Do TV, Kubba LA, Du H, Sturgis CD, Woodruff TK (2008) Transforming
growth factor-beta1, transforming growth factor-beta2, and transforming growth

factor-beta3 enhance ovarian cancer metastatic potential by inducing a Smad3-
dependent epithelial-to-mesenchymal transition. Mol Cancer Res 6(5): 695–705.

45. Inan S, Vatansever S, Celik-Ozenci C, Sanci M, Dicle N, et al. (2006)

Immunolocalizations of VEGF, its receptors flt-1, KDR and TGF-beta’s in
epithelial ovarian tumors. Histol Histopathol 21(10): 1055–1064.

46. Guan Y, Kuo WL, Stilwell JL, Takano H, Lapuk AV, et al. (2007) Amplification
of PVT1 contributes to the pathophysiology of ovarian and breast cancer. Clin

Cancer Res 13(19): 5745–5755.
47. Wisman GB, Hollema H, Helder MN, Knol AJ, Van der Meer GT, et al. (2003)

Telomerase in relation to expression of p53, c-myc and estrogen receptor in

ovarian tumours. Int J Oncol 23(5): 1451–1459.
48. Chen CZ (2005) MicroRNAs as oncogenes and tumor suppressors. N Engl J Med

353(17): 1768–1771.
49. Suzuki F, Akahira J, Miura I, Suzuki T, Ito K, et al. (2008) Loss of estrogen

receptor beta isoform expression and its correlation with aberrant DNA

methylation of the 5’-untranslated region in human epithelial ovarian
carcinoma. Cancer Sci 99(12): 2365–2372.

50. Li AJ, Baldwin RL, Karlan BY (2003) Estrogen and progesterone receptor
subtype expression in normal and malignant ovarian epithelial cell cultures.

Am J Obstet Gynecol 189(1): 22–27.
51. Lurie G, Wilkens LR, Thompson PJ, McDuffie KE, Carney ME, et al. (2009)

Genetic polymorphisms in the estrogen receptor beta (ESR2) gene and the risk

of epithelial ovarian carcinoma. Cancer Causes Control 20(1): 47–55.
52. Heckman CA, Duan H, Garcia PB, Boxer LM (2006) Oct transcription factors

mediate t(14;18) lymphoma cell survival by directly regulating bcl-2 expression.
Oncogene 25(6): 888–889.

53. Xu D, Dwyer J, Li H, Duan W, Liu JP (2008) Ets2 maintains hTERT gene

expression and breast cancer cell proliferation by interacting with c-myc. J Biol
Chem 283(35): 23567–23580.

54. Al-azawi D, Ilroy MM, Kelly G, Redmond AM, Bane FT, et al. (2008) Ets-2 and
p160 proteins collaborate to regulate c-myc in endocrine resistant breast cancer.

Oncogene 27(21): 3021–3031.
55. Lourenco D, Brauner R, Lin L, De Perdigo A, Weryha G, et al. (2009)

Mutations in NR5A1 associated with ovarian insufficiency. N Engl J Med

360(12): 1200–1210.
56. Dodson H (2011) Women with variants in ‘‘CLOCK’’ gene have higher risk of

breast cancer. Yale Office of Public Affairs and Communications. Available:
http://opac.yale.edu/news/article.aspx?id = 7261. Accessed 24 January 2012.

57. Hoffman AE, Yi CH, Zheng T, Stevens RG, Leaderer D, et al. (2010) CLOCK

in breast tumorigenesis: Genetic, epigenetic, and transcriptional profiling
analyses. Cancer Res 70(4): 1459–1468.

58. Nakagawa M, Oda Y, Eguchi T, Aishima S, Yao T, et al. (2007) Expression
profile of class I histone deacetylases in human cancer tissues. Oncol Rep 18(4):

769–774.
59. Ohuchida K, Mizumoto K, Lin C, Yamaguchi H, Ohtsuka T, et al. (2012)

MicroRNA-10a is overexpressed in human pancreatic cancer and involved in its

invasiveness partially via suppression of the HOXA1 gene. Ann Surg Oncol
19(7): 2394–2402.

60. Filippova GN, Qi CF, Ulmer JE, Moore JM, Ward MD, et al. (2002) Tumor-
associated zinc finger mutations in the CTCF transcription factor selectively

alter tts DNA-binding specificity. Cancer Res 62(1): 48–52.

61. Docquier F, Farrar D, D’Arcy V, Chernukhin I, Robinson AF, et al. (2005)

Heightened expression of CTCF in breast cancer cells is associated with

resistance to apoptosis. Cancer Res 65(12): 5112–5122.

62. Hiranuma C, Kawakami K, Oyama K, Ota N, Omura K, et al. (2004)

Hypermethylation of the MYOD1 gene is a novel prognostic factor in patients

with colorectal cancer. Int J Mol Med 13(3): 413–417.

63. Muller HM, Fiegl H, Widschwendter A, Widschwendter M (2004) Prognostic

DNA methylation marker in serum of cancer patients. Ann N Y Acad Sci 1022:

44–49.

64. Azuma T, Seki N, Yoshikawa T, Saito T, Masuho Y, et al. (2000) cDNA

cloning, tissue expression, and chromosome mapping of human homolog of

SOX18. J Hum Genet 45(3): 192–195.

65. Young N, Hahn CN, Poh A, Dong C, Wilhelm D, et al. (2006) Effect of

disrupted SOX18 transcription factor function on tumor growth, vasculariza-

tion, and endothelial development. J Natl Cancer Inst 98(15): 1060–1067.

66. Johnson SA, Dubeau L, Kawalek M, Dervan A, Schonthal AH, et al. (2003)

Increased expression of TATA-binding protein, the central transcription factor,

can contribute to oncogenesis. Mol Cell Biol 23(9): 3043–3051.

67. Chen X, Thiaville MM, Chen L, Stoeck A, Xuan J, et al. Defining NOTCH3

target genes in ovarian cancer. Cancer Res 72(9): 2294–2303.

68. Zoref-Shani E, Lavie R, Bromberg Y, Beery E, Sidi Y, et al. (1994) Effects of

differentiation-inducing agents on purine nucleotide metabolism in an ovarian

cancer cell line. J Cancer Res Clin Oncol 120(12): 717–722.

69. Gao Z, Xu X, McClane B, Zeng Q, Litkouhi B, et al. (2011) C terminus of

clostridium perfringens enterotoxin downregulates CLDN4 and sensitizes

ovarian cancer cells to taxol and carboplatin. Clin Cancer Res 17(5): 1065–1074.

70. Drakaki A, Iliopoulos D (2009) MicroRNA gene networks in oncogenesis. Curr

Genomics 10(1): 35–41.

71. Wu M, Chan C (2011) Learning transcriptional regulation on a genome scale: A

theoretical analysis based on gene expression data. Brief Bioinform 13(2): 150–

161.

72. Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, et al. (2007) MicroRNA

signatures in human ovarian cancer. Cancer Res 67(18): 8699–8707.

73. Zhang L, Volinia S, Bonome T, Calin GA, Greshock J, et al. (2008) Genomic

and epigenetic alterations deregulate microRNA expression in human epithelial

ovarian cancer. Proc Natl Acad Sci U S A 105(19): 7004–7009.

74. Eitan R, Kushnir M, Lithwick-Yanai G, David MB, Hoshen M, et al. (2009)

Tumor microRNA expression patterns associated with resistance to platinum

based chemotherapy and survival in ovarian cancer patients. Gynecol Oncol

114(2): 253–259.

75. Wyman SK, Parkin RK, Mitchell PS, Fritz BR, O’Briant K, et al. (2009)

Repertoire of microRNAs in epithelial ovarian cancer as determined by next

generation sequencing of small RNA cDNA libraries. PLoS One 4(4): e5311.

76. Unoki M, Nakamura Y (2001) Growth-suppressive effects of BPOZ and EGR2,

two genes involved in the PTEN signaling pathway. Oncogene 20(33): 4457–

4465.

77. Mayr D, Hirschmann A, Marlow S, Horvath C, Diebold J (2008) Analysis of

selected oncogenes (AKT1, FOS, BCL2L2, TGFbeta) on chromosome 14 in

granulosa cell tumors (GCTs): A comprehensive study on 30 GCTs combining

comparative genomic hybridization (CGH) and fluorescence-in situ-hybridiza-

tion (FISH). Pathol Res Pract 204(11): 823–830.

78. Chen CH, Shen J, Lee WJ, Chow SN (2005) Overexpression of cyclin D1 and c-

myc gene products in human primary epithelial ovarian cancer. Int J Gynecol

Cancer 15(5): 878–883.

Networks Associated with Ovarian Cancer Survival

PLOS ONE | www.plosone.org 14 March 2013 | Volume 8 | Issue 3 | e58608


