
Distributional Learning of Appearance
Lewis D. Griffin1,2*, M. Husni Wahab1, Andrew J. Newell1,2

1Computer Science, University College London, London, United Kingdom, 2Complex, University College London, London, United Kingdom

Abstract

Opportunities for associationist learning of word meaning, where a word is heard or read contemperaneously with
information being available on its meaning, are considered too infrequent to account for the rate of language acquisition in
children. It has been suggested that additional learning could occur in a distributional mode, where information is gleaned
from the distributional statistics (word co-occurrence etc.) of natural language. Such statistics are relevant to meaning
because of the Distributional Principle that ‘words of similar meaning tend to occur in similar contexts’. Computational
systems, such as Latent Semantic Analysis, have substantiated the viability of distributional learning of word meaning, by
showing that semantic similarities between words can be accurately estimated from analysis of the distributional statistics
of a natural language corpus. We consider whether appearance similarities can also be learnt in a distributional mode. As
grounds for such a mode we advance the Appearance Hypothesis that ‘words with referents of similar appearance tend to
occur in similar contexts’. We assess the viability of such learning by looking at the performance of a computer system that
interpolates, on the basis of distributional and appearance similarity, from words that it has been explicitly taught the
appearance of, in order to identify and name objects that it has not been taught about. Our experiment tests with a set of
660 simple concrete noun words. Appearance information on words is modelled using sets of images of examples of the
word. Distributional similarity is computed from a standard natural language corpus. Our computation results support the
viability of distributional learning of appearance.
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Introduction

We start with an informal motivation. For many viewers the two

objects shown in Figure 1 are unfamiliar; but if asked which is an

adze most will get it right. This seems to be an act of visual

identification without it being one of visual recognition. Asked how

they knew, a typical account is: they had heard the word before,

were not sure what it was, but from the context in which it was

said they thought that it was some kind of tool, perhaps used in

heavy work; so they choose the object that looked more like the

tools used in heavy work which they were familiar with such as

axes or mauls. The heuristic which seems to underwrite this

process is:

Appearance Hypothesis (AH): words that occur in similar contexts

tend to have referents with similar appearance

We hypothesise that children make use of the AH when they are

learning the meaning of words. Consider a child who does not

know what a pear looks like. When she starts to hear the word used

she can track the company it keeps and deduce, by application of

the AH, some words whose meaning she does know that should

look similar; and thus develop a an approximate idea of its

appearance. When the child sees something that looks more like

this idea than it looks like any category that she does know she can

venture that it is a pear. She can then start to build up an

understanding of the appearance of pear based on direct

experience rather than generalization, perhaps after seeking

confirmation for the guess by trying out the word pear at a suitable

juncture. We will return repeatedly to this example.

Of course, whether such a mechanism is used in human

language acquisition can only truly be tested through experiments

with children, but it could be ruled out if it was shown that the AH

was ineffective either because it was false or very weak. In this

paper we make a computational assessment of the AH to see if it

can be ruled out. The computational assessment will require us to

combine methods most commonly encountered within cognitive

science and within computer science. From cognitive science we

will use methods that measure the similarity of the contexts within

which words are found based on a representative corpus of natural

language. From computer science we will use methods that

compute similarities between images, and similarities between

categories of objects based on images of them.

Before the computational section, in the remainder of the

introduction, we give a more formal motivation and discussion of

previous related research. We start with a discussion of word

meaning as a component of semantic knowledge. We consider the

puzzle of the rapid rate of acquisition of word meanings (i.e.

language) exhibited by children and describe two modes for this

acquisition: associationist where an instance is clearly labelled by

language (‘this is a lion’ or ‘a chapel is a small house of worship

usually associated with a main church’) and distributional where

meaning is extracted from the statistics of words heard in passing.

We then consider the narrower problem of learning the visual

appearance part of word meaning, and how this can take place in

the associationist and distributional modes of language acquisition.
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We review methods used in machine vision to learn appearances

in case it has any special lessons for the process in humans.

Semantic Knowledge, Language & Meaning
Human cognition organizes the world into categories (e.g. cats,

bridges, theorems). Knowledge relating to categories is called

semantic. Elements of semantic knowledge can be of internal or

external type. Those of internal type are specific to individual

categories and come in a variety of characters: perceptual (e.g.

dogs look like S), motoric (e.g. buttons move likeM) or amodal (e.g.

London is the capital city of the UK). Those of external type

interrelate multiple categories (e.g. a finger is part of a hand, a cap

is a kind of clothing, zebras look like horses, a scallop is akin to

a mussel) [1].

Via the relation of meaning, language connects to the categories

that human cognition imposes on the world. The nature of the

relationship is subtle and has been discussed in Philosophy and

Psychology. Some points of argument established within Philos-

ophy are: (i) meaning within a brain and within a language-using

community may need to be distinguished [2]; (ii) there may be

a distinction between the referents of a word and the connection of

the word to those referents [3]; (iii) the connection may be via

a descriptive criteria [4] or through a causal relationship [5].

Within Psychology the emphasis of enquiry has been on: meaning

for individuals; the implementation of meaning through the

relations that a word holds with other mental items; and the

acquisition of meanings. Regarding the implementation of mean-

ings within brains, two possibilities have been suggested: through

relations involving only words, and through relations between

words and sense or motor data. It is generally agreed that it is

untenable for the meaning of all words to arise from word relations

alone, as then a connection to the external world would either be

lacking [6] or at least of the wrong sort [7]. Regarding acquisition

of meanings, more commonly called language acquisition, a crucial

datum that needs to be explained is the rate: modern adult

humans have semantic knowledge of between 30,000 [8] and

70,000 [9] categories, hence acquired at an average rate of 10 per

day during childhood years.

Associationist Language Acquisition
Accounting for the rate of language acquisition is taken to be an

instance of Plato’s problem, more generally referring to apparent

gaps between the richness of knowledge and the paucity of

opportunities for learning afforded by the environment [10]. The

task for Psychology is to identify modes of learning which are

jointly adequate to bridge the gap.

The most obvious mode for learning the meaning of a word is

direct associationist i.e. perceptual experience of an example along

with a label (e.g. ‘look a tiger’). Unambiguous labellings are no

doubt desirable but not strictly necessary as children are known to

be expert at inferring what a speaker is referring to [11]; using

heuristics such as excluding as candidates anything the child

already knows the name of [12]. Moreover, the label need not

always be co-present with the referent on all occasions. Algorithms

for semi-supervised learning that cover such cases have been

developed in Psychology [13] and in Computer Science [14]. The

general idea is that a learner can learn an approximate meaning

for a word based on a small number of instances of associationist

learning, can then use that approximate meaning to identify

unlabelled instances of the word, and can then use these further

instances to refine the learnt meaning, and so on. So long as the

labels are not too often applied erroneously, the learnt meaning

will incrementally improve.

Indirect associationist acquisition of meaning occurs when only

a proxy for the referent of the word is present. The proxy can be

a model, a photograph, an illustration etc. or a linguistic

description or definition. This is the mode used when one learns

from the statement ‘a petard is a small bomb used to blow up gates

Figure 1. Objects from unfamiliar categories. On the left a cor anglais (a woodwind instrument), on the right an adze (a woodworking tool).
doi:10.1371/journal.pone.0058074.g001
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and walls when breaching fortifications’. As already noted, there

would be a ‘grounding’ problem if all meanings were learnt like

this [6], but this is not a problem in practice.

Even with these extensions and variants the associationist mode

seems insufficient to bridge the gap; and no variety of it accounts

for the adze example we gave earlier, where a meaning for a word

(rough and ready by all means, but good enough to allow visual

identification in the right circumstances) seems to have been

acquired simply through hearing the word used without it ever

being present, described or defined.

Distributional Language Acquisition
It has been suggested that, in addition to the direct and indirect

associationist modes by which language can facilitate the

acquisition of word meanings, there is a further distributional mode.

In such a distributional mode, meaning is not delivered in discrete

morsels (e.g. ‘look, a tiger!’ or ‘a petard is a small bomb used…’),

but instead in statistical patterns, weakly and diffusely present,

across bodies of natural language. This is the mode we were

indicating when we described in the opening paragraph to this

paper how a subject might explain their understanding of a word

such as adze – ‘‘they had heard the word before, were not sure

what it was, but from the context in which it was said they thought

that it was some kind of tool, perhaps used in heavy work’’.

The possibility of such a distributional mode of learning rests

upon the following, originating in the works of Harris, Firth and

Weaver [15–17]:

Distributional Principle (DP): words that occur in similar contexts

tend to have similar meanings.

Explicit tests of the DP, first by Rubenstein & Goodenough

[18], later by Landauer & Dumais [19] and most recently by

Rohde et al. [20], have found good support for it. These studies

vary in how ‘context’ and ‘similarity of contexts’ is defined.

Contexts may be defined by windows of fixed length (e.g. 64

words) around an instance of a word, with flat or tapered

weighting; or they may be defined more syntactically, for example

within the containing sentence or paragaraph. Within a context

the occurrence of all words may be tracked, or stop words such as

‘the’ may be ignored. Occurrence counts may be transformed in

numerous ways e.g. by log-transformation. Vectors of possibly-

transformed occurrence counts can be projected into lower-

dimensional spaces. Finally, context feature vectors can be

compared using Euclidean distances, inner products or correla-

tion.

Of the various methods of defining contexts and their similarity,

the Latent Semantic Analysis (LSA) method introduced by

Landauer & Dumais deserves special comment. LSA is remarkable

for two reasons. First that it introduced the use of a dimensionality

reduction step in the processing of context distribution descriptors.

Second that it has been a very impactful method, and an

important stimulus in the rise of the technologically significant

field of computational semantics [21]. A recent comparison of

methods of distributional similarity shows that dimension re-

duction is a useful component but not of decisive importance [20].

The comparative study produced overall figure-of-merit scores

based on a battery of 17 lexical-semantic tasks. Across the 15

methods compared, scores ranged from 26.4 for the HAL-400

model derived from the work of Burgess & Lund [22], up to 73.4

for the study authors’ method COAL-SVD-800 which uses the

best of everything including dimensionality reduction. A pure LSA

method scored 61.6, while the authors’ method without di-

mensionality reduction (COALS-14K) scored 69.2.

Although suggestive, the power of methods such as COALS and

LSA that infer semantic similarities from distributional ones, does

not mean that distributional learning is used in human language

acquisition. Experimental evidence that pertains to this issue is

scarce. The most relevant are results which showed that the

semantic similarity of words can be effected by manipulating the

contexts in which the words appear [23]. Although supportive of

distributional learning in humans, these results are for adult

subjects and so the relevance for the main phase of language

acquisition can be doubted.

Human Learning of Appearance
The previous two sections were concerned with mechanisms for

learning word meaning in general. We now narrow the focus to

a particular aspect of meaning – visual appearance – and consider

how that may be learnt.

Learning visual appearances in associationist mode is complex

but it is not contentious that it does occur. In direct associationist

mode, when an instance is present physically or pictorially,

invariant encodings of sense data may be compiled into semantic

knowledge and linked to the heard or read label. In indirect

associationist mode, when the referent is present only linguistically

(e.g. ‘a griffin is a lion with eagle’s wings’), there are several

plausible possibilities: the information may be stored linguistically;

an invariant sense data encoding may be directly constructed; or

sense data may be synthesised through an imaginative process, and

an invariant encoding constructed from it.

The concern in this paper is whether the appearance parts of

word meanings can also be learnt in a distributional mode. We

believe that they can, at least partially. What makes it possible is

the principle stated at the beginning of the paper and now

restated.

Appearance Hypothesis (AH): words that occur in similar contexts

tend to have referents with similar appearance

The AH provides the basis for a mechanism to learn

appearances in a distributional mode. Our example scenario is

a child who does not yet know the appearance of pear. The child

could attend to the words surrounding pear in speech and text (i.e.

the contexts); could summarize the (distributional) statistics of these

contexts; and could then compare these statistics to those of words

which she did know the appearance of. She might (for example)

realize that the distributional statistics of pear were similar to those

of apple; and dis-similar to those of train. Then, when some

unfamiliar object presented itself, which was sufficiently similar in

appearance to apple and/or sufficiently dis-similar to train, she

could apply the AH and guess that the object was a pear, and then

either assume that the guess was correct and treat the incident like

a regular opportunity for associationist learning, or more

cautiously try saying the word looking for confirmation.

Our aim in this paper is to state and to test the AH, but we also

consider whether there are already established grounds to believe

it. We illustrate two possible arguments in figure 2. The first

argument (upper route of figure 2) builds on the DP and has been

expressed by Landauer & Dumais as follows:

‘‘Because, purely at the word level, rabbit has been indirectly

preestablished to be something like dog, animal, object, furry,

cute, fast, ears, etc., it is much less mysterious that a few

contiguous pairings of the word with scenes including the

Distributional Learning of Appearance
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thing itself can teach the proper correspondences. LSA

could easily learn that the words rabbit and hare go with

pictures containing rabbits and not to ones without, and so

forth.’’ [19]

The logic being used here is to combine the DP with the

following additional (implicit) hypothesis:

Similarity Contribution Hypothesis (SCH): appearance simi-

larity contributes to semantic similarity

to reach the conclusion AH. We note that (i) SCH is

a substantive claim – if visual appearance was assessed by retail

barcode (a reasonable strategy for a warehouse robot for example)

then it would not be true; and (ii) although SCH is intuitively

reasonable, hard evidence for it is lacking.

The second argument (lower route of figure 2) proceeds from

different premises. It is founded on the:

Symbol Inter-dependency Hypothesis (SIH): language is

structured in such a way that many relationships that can also be

found in the embodied world are structured in language. Language

thereby provides a shortcut to the embodied relations in the world

[24,25].

The SIH can be traced back to C.S. Pierce [26] but has been

more recently elaborated by Louwerse [24,25]. Evidence support-

ive of the SIH includes: the correlation between the length of

words and the rarity of their referents [27]; word order reflecting

spatial layout [28]; and that the co-occurrence statistics of

adjectives are predictive of their modality [29].

We see three advantages to the argument for the AH based on

the SIH (lower route) over that based on the DP (upper route): (i)

no unproven supplementary premise is needed, (ii) the possibly

troublesome concept of semantic similarity is not used, and (iii) we

avoid the disconcerting step of inferring a weak correlation

between D and A from weak correlations between D and S, and S

and A. On the other hand, the argument based on DP avoids the

SIH, and the SIH while fascinating is broad, possibly vague and

definitely contentious. Regardless of which prior grounds for the

AH are preferred, for our computational experiments we simply

test the AH against the evidence.

Machine Learning of Appearance
The gap between experience and knowledge does not seem as

challenging for Machine Vision as it does for Human Vision. The

difference is the possibility of tireless associationist learning. For

example, supervised learning algorithms [30] that can learn the

appearance of an object category from at least 10, ideally 103,

labelled examples have been developed [31]. Implemented for the

adult repertoire of categories such an approach requires around

107 labelled training images. With the advent of the internet,

assembling such a database is now possible.

Reliably labelled databases with 107 images are constructable by

manual means. Databases larger than this can be assembled using

automated methods but the labels will inevitably be incomplete,

erroneous and ambiguous. Methods that can learn from such

poorly labelled data are being developed. For example, as learning

proceeds the training images can be refined by progressively

removing poorly labelled images [32], and by progressively

localizing objects within the images [33]. There are also

approaches that train many categories in parallel, and are

therefore able to deal with images with multiple labels only one

of which is correct [34], or to pick the best label out of a range of

alternatives [35]. There are even approaches that combine all of

the above to deal with images with multiple objects and multiple

labels [36]. Additionally, methods of semi-supervised learning, as

described earlier, can make use of completely unlabelled data, so

long as there is some labelled data to initialize the process [37].

While the most dramatic advances in Computer Vision are

currently coming from scaling up the associationist mode, there

Figure 2. Arguments leading to the Appearance Hypothesis.
doi:10.1371/journal.pone.0058074.g002
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are other methods being developed that do not fit into that mould.

They all aim at some form of cross-category generalization but are

diverse in nature and vary in their locus of application. They

include:

N optimizing the low-level features used as the basis of

identification across a set of categories rather than separately

for each category [38];

N optimizing a decision tree for categorization [39,40];

N identifying an object on the basis of its pattern of similarities to

2000+ fixed categories [41];

N identifying a category on the basis of detection of attributes

(e.g. striped, lives in water), the detection of which is trained

across categories [42,43];

N and effectively increasing training data by treating an image

labelled with one category as also being a weakly-labelled

instance of a semantically-related category [44].

Methods

We wish to assess whether the tendency expressed in the

Appearance Hypothesis (AH) is sufficiently strong to be the basis of

distributional learning of appearance. We do this by constructing

a computational model learning system and testing whether it can

acquire knowledge where it has had no associationist opportunity

to do so. The AH is supported if the system performs significantly

better than chance at an identification task and a naming task,

both illustrated in figure 3.

For either type of task. the system is prepared for testing by

simulating periods of (i) associationist learning of various

appearances, not including for two particular test words (e.g.

cherry and bridge); and (ii) exposure to natural language from which

it can extract distributional statistics. For the identification task, we

then present the system with unlabelled appearance data for cherry

and for bridge and have it make its best guess at identifying which of

the appearances is of cherry. For the naming task we present it with

a single unlabelled appearance (say cherry) and have it make its best

guess as to whether the appearance is that of cherry or bridge.

Our model learning system has three data and three algorithmic

components. The data components are:

N a corpus of natural language for computation of distributional

similarities,

N a set of words whose appearances have to be learnt, and

N appearance data in the form of images for the testing words

The algorithmic components are:

N an image-based measure of appearance similarity,

N a measure of distributional similarity, and

N algorithms for the identification and naming tasks based on

appearance and distributional similarities.

Data
As the basis for computing distributional similarities, we used

the British National Corpus (BNC) [45] which is made up of

written texts and transcribed speech. The text has been pre-

processed to remove punctuation, parentheses and unclear

utterances; and the words of the text have been converted to

standardized word tokens with consistent conjugation, pluralisa-

tion etc. (e.g. ‘mouse’ replaces ‘mice’). This yields 4.26105 distinct

word tokens spread over 9.66107 words. The 1st, 10th, 100th,

1000th, 10,000th and 100,000th most common word tokens are

‘the’, ‘he’, ‘between’, ‘sorry’, ‘tenor’ and ‘uniimog’; and they occur

6.06106, 1.26106, 9.16104, 1.16103, 420 and 6 times re-

spectively. The words we use in the experiment (W660) occur in

the corpus with varying frequency. The rarest is ‘jack-in-the-box’

which occurs 12 times, the most common is ‘people’ which occurs

1.26105 times. The median frequency is 1436.

For words which our system will learn the appearances of we

used a diverse set (denoted W660) of 660 categories taken from

a children’s vocabulary picture book [46]. Examples are: starfish,

bus, airport, hole and house. The 660 were chosen from the 1000 in

the source reference by taking only nouns, with single word names,

and with entries in WordNet [9]. For use in supplementary

computations, the words were grouped by the authors into 21

categories, for example ANIMAL and TRANSPORT. We also

defined two nested subsets of the main set of categories:

W4205W660 are the categories that have image collections in

ImageNet [47]; and W935W420 are the categories for which

ImageNet also provides encodings of the images in terms of the

widely-used SIFT local image descriptor [48].

For each word in W660 we collected 50 images using the

‘Google Images’ web search tool. For words in W420 we also

collected the 50 images from the ImageNet database [47]. Images

were retrieved from Google Images using searches with options

enabled to return only full-colour, jpeg-encoded, photo images.

1% of images were found to be exact or near-duplicates. After

removing these, the first 50 images return by the search were used.

The thumbnail versions of the images, made by Google, were used

rather than the originals. Their mean size was 1086123 pixels. For

ImageNet, the first 50 colour images in each category were used,

resized to thumbnails.

Appearance Similarity
There are many ideas about how the appearance of a category

is represented neutrally: for example: feature lists, prototypes, or

unanalyzable neural nets; each of which can be concerned with

object-centred or view-based descriptions of individual objects. In

our experiment we model the appearance aspect of word meaning

using sets of images showing different example referents of the

word. This is similar to a multiple prototype model of categories in

cognitive science [49], and, in the sphere of machine learning, to

a nearest neighbour approach [50] where examples of the data are

used as the model of the population. Because we use an image

rather than a 3-D geometrical model for each prototype, our

representation is of the view-based type, rather than the object-

centred [51].

We use a set of 50 images to model the appearance of each

category. The images within a set vary in viewpoint, lighting and

surrounding context as well as showing different instances of the

category. Jointly the images in a set characterize the distribution of

perceptual impressions that referents of a word may give rise to.

We distinguish between appearance similarity, which relates

two words, and image similarity, which relates two images. We

define appearance similarity in terms of image similarity. The

similarity between two appearances is the mean similarity between

each image in an appearance set to the most similar image in the

other appearance set.

The measures of image similarity that we use are based on

histogram type encodings of the images (see figure 4). Histogram

encodings give detailed counts of the micro-elements that appear

within an image, but give no information on how these elements

are arranged. We use colour histograms and texton histograms.

Colour histograms represent the distribution of colours present

within an image e.g. 7% black, 1% red, 12% brown, etc. Texton

Distributional Learning of Appearance
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histograms represent the distribution of local structural elements

present within the image e.g. 3.1% horizontal dark line segments,

0.8% light blobs, 0.3% T-junctions etc. We also present results

when both types of encoding are used together, with the

expectation that this will give performance greater than each

individually.

Our use of histogram encodings for images parallels the use of

bag-of-word type encodings for text analysis. In both cases,

information about the counts of different elements present is

retained, while information on their arrangement is discarded. In

both cases, even though the discarded arrangement information is

expected to be extremely rich, performance which is surprisingly

sensitive to semantic content has still been obtained [21,52–54]. It

is not difficult to produce examples for images [55] and text [56]

where the discarded information is crucial; and it is widely

believed that a new generation of encodings, which are sensitive to

texton arrangement [57] and word order [58], will eventually lead

to improved performance in systems that automatically determine

the semantic content of images and documents. At present though

the incremental performance for these more advanced systems is

relatively modest, and at the expense of considerable increase in

algorithm complexity and computational cost.

Histogram encodings use the counts recorded in a system of bins

that partition the relevant feature space. In text analysis the space

is words, and there is consensus that good bins are sets of words

that have the same stemmed form. In image analysis, comparison

of binning systems is still an active area of research [59]. In this

work we use bin systems that we have developed elsewhere. For

colour-based image encoding we used a system of 11 bins

corresponding to the Basic Colours (black, grey, white, red,

orange, yellow, green, blue, purple, pink, brown) [60]. Each bin is

a connected region of the RGB cube; they are disjoint and their

union is the full cube. We have previously shown that this is

a simple and effective colour encoding with grip on semantic

content [61]. For texton-based image encoding we use a system of

529 bins which partition the space of possible local image patches.

We have previously shown that encoding images using a histogram

of these textons gives state-of-the-art performance on match-to-

sample problems on a range of texture databases [62]. In this

paper we propose, as many have done before [63], to use what has

proved effective for image texture analysis for image semantic

analysis. Below, we review textons in general and then give some

details of our particular system of textons.

Textons, when the term was originally coined, were intended to

correspond to qualitatively distinct image structures that were

detected by pre-attentive vision [64]. Typical lists of likely textons

had 5–10 candidates including edges, line segments, line endings,

and junctions. Since then the meaning of texton has shifted to

Figure 3. The identification and naming tasks. In our experiments, the appearance of a word is modelled using a set of images of examples of
that word, which in the figure we illustrate as a pile of images. The identification task is to determine which of two unlabelled novel appearances
should be paired with a word (in this case cherry). The correct answer is on the right. The naming task is to determine which of two labels (in this case
cherry and bridge) should be paired with an appearance. The correct answer is cherry. In both types of task the system is provided with knowledge of
the appearance of a set of words (in the figure six) disjoint from those involved in the task.
doi:10.1371/journal.pone.0058074.g003
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operationally, rather than semantically, specified categories of

local image structure; and typical systems have used hundreds or

thousands of textons [65]. A range of operational definitions of

a texton have been proposed including: patches closer to

a prototype patch than to any other of a set of prototypes [66],

distinctive ordinal structures within a patch [67], distinctive

patterns of response to linear filters [68].

For this work we use a system of 529 textons. Each pixel of the

image is classified as manifesting one of these 529 textons in its

neighbourhood. The first step in the classification process is to

compute oriented Basic Image Features (oBIFs) on the basis of the

responses of a bank of six 2-D derivative-of-Gaussian linear filters.

These linear filters are a good model of the responses of V1 simple

cells [69]. Based on the responses of these filters, when centred on

a pixel, the pixel is classified into one of 23 different oBIF classes:

flat, light blob, dark blob, eight orientations of slope, four

orientations of light line, four orientations of dark line, four

orientations of saddle [70]. oBIFs, it will be observed, roughly

correspond to the original idea of texton. However, partitioning

local image patch space into only 23 bins does not lead to

histogram encodings with the greatest semantic grip: generally

systems with 100–1000 textons are found to work best. To produce

a larger number of textons, based on oBIFs, we compute oBIFs at

two filter scales (s[ 1:1, 2:2f g) and consider the ordered pair of the

fine scale oBIF and the coarser scale oBIF to specify the texton at

a pixel, giving 529= 232 possible textons in our system.

To compute the similarity of two images we compare their

histogram encodings using the Bhattacharyya distance [71] as in

our previous work [61,62]. The Bhattacharyya distance is

a standard cosine distance, but operates on the square-rooted

rather than raw histograms. Let u and v be colour or texton

histograms, with their values normalized so that they have unit

sum. Treat u and v as vectors. Then

dbhatt u,vð Þ : ~ cos{1
ffiffiffi

u
p : ffiffiffi

v
p

ð Þ. Square-rooting makes the dimen-

sions of the representation approximately homoscedastic, which

prevents well-populated bins from having excessive influence on

the distance.

Recapping what was said at the beginning of the section, image

similarities (computed as Bhattacharyya distances) are used to

compute appearance similarities. Appearance similarities are

computed as the mean similarity between each image in an

appearance set to the most similar image in the other appearance

set. Each appearance is modelled by a set of 50 images.

Distributional Similarity
A precise implementation of distributional similarity is needed

for a computational experiment. Choices need to be made about

(i) exactly what a context is, (ii) how a distribution of contexts will

be represented, (iii) how distributions of contexts will be compared,

and (iv) what data source will be used to compute distributional

statistics.

For data source we use the British National Corpus (BNC) [45]

which is made up of written texts and transcribed speech. The text

is pre-processed to remove punctuation, parentheses and unclear

utterances. The words are converted to standardized word tokens,

with consistent conjugation, pluralisation etc. (e.g. ‘mouse’ replaces

‘mice’). This yields 4.26105 distinct word tokens spread over

9.66107 words. The 1st, 10th, 100th, 1000th, 10,000th and

100,000th most common word tokens are ‘the’, ‘he’, ‘between’,

‘sorry’, ‘tenor’ and ‘uniimog’; and they occur 6.06106, 1.26106,

9.16104, 1.16103, 420 and 6 times respectively. The words we use

in the experiment (W660) occur in the corpus with varying

frequency. The rarest is ‘jack-in-the-box’ which occurs 12 times,

the most common is ‘people’ which occurs 1.26105 times. The

median frequency is 1436.

Our choices for definition for context, representation of

distributions of contexts and comparison of these distributions

are guided by two factors. First we hope to get good correlation

between distributional and appearance similarity. Second we want

the computations needed to be plausibly implemented by

Figure 4. Image encodings used. (a) an example image for the category cinema, (b) each pixel is classified as one of the eleven Basic Colours, (c)
the histogram of these is the color-based image encoding; (d,e) each pixel is classified as one of the 23 oriented Basic Image Features (oBIFs) at a fine
and a coarse scale (f) a detail from e (slightly north-west of centre) showing the orientations of the oBIFs, (g) the histogram of ordered pairs of fine
and coarse scale oBIFs is the texton-based image encoding, (h) a zoomed detail from g.
doi:10.1371/journal.pone.0058074.g004
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children’s brains during language acquisition. Based on these

considerations we have choosen to use the COALS-14K method

for computing distributional similarity [20].

COALS stands for ‘Correlated Occurrence Analogue to Lexical

Semantics’; 14K is the dimensionality of the vector of values used

to represent contextual statistics. Each vector represents the

distribution of contexts for a single target word. The slots of the

vector represent the tendency of each of the 14K most common

words (excluding approximately 300 function words such as ‘the’

and ‘two’) to appear within the contexts of the target word.

Context is defined as within four tokens before or after each

occurrence of the target word.

The values stored within the vectors are not simple occurrence

counts. Since the rates of appearance of different words vary over

so many orders of magnitude such counts are difficult to compare

meaningfully between words. Instead, the values are based on

binary correlation coefficients that express the tendency of a word

to occur in the context of a target word, taking into account the

two words’ independent occurrence frequencies. These binary

correlation coefficients are clipped at zero, since negative values

are assumed due to noise, and passed through a decelerating non-

linearity (a square root function). The final square rooting step is

without theoretical justification but with clear empirical effective-

ness [20].

The distributional similarity between two words is computed

from comparison of their 14K dimensional vectors. In particular,

we compute one minus the correlation between the values of the

vectors. This gives non-negative values, with smaller numbers

indicating greater distributional similarity.

To provide some anchoring for the performance of distributional

similarity (which we denote as DST) we have also computed the

following methods of word similarity which are frequently used in

machine learning when concordance with possible modes of

human learning is not an aim:

PTH: The length of the shortest path between the words along

the edges of the WordNet hypernymy lattice, all edges counting

equally. This measure, and also JCS and VEC which are defined

next, were computed using v2.06 of the implementations described

in [72].

JCS: A refinement of PTH that weights edges according to

frequency statistics measured on a natural language corpus: edges

are shorter the more common the hyponym [73].

VEC: Like DST, this measures distributional similarity between

words [15], quantified by similarity of their second order co-

occurrence statistics [74], but unlike DST which is based on co-

occurrence within small contextual neighbourhoods in a large

natural language corpus, VEC is based on co-occurrence within

larger, expertly-constructed text samples. The samples used are

expanded WordNet definitions which are the concatenation of the

Wordnet definition of a word and all those words linked to it in the

WordNet hypernymy and holonymy lattices [75].

NGD: Normalized-Google-Distance estimates the semantic

similarity of pairs of words based on their co-occurrence within

web pages. Computation is based on the Google Hits Counts for

individual words and for their conjunction [76,77].

ORT: Measures orthographic-similarity i.e. similarity of the

letter sequences in two words. We implement this using a metric

developed for comparison of nucleotide sequences [78]. The

measure gives the score for the optimal alignment between the

sequences; where the score is the number of matches versus

mismatches, insertions and deletions.

Trial Algorithm
Even with the computation of distributional and appearance

similarities fixed there is still freedom in how to use the AH on

each trial of the identification and naming tasks. One approach,

which we call PROXY, is to focus on word pairs which are highly

similar distributionally and in appearance. To continue with the

example of trying to identify a pear despite never having seen one,

the PROXY approach would roughly correspond to guessing that

anything unrecognized that looked sufficiently like apple, orange and

banana was a pear. An approach at the opposite extreme, which we

call FOIL, focuses on word pairs that are highly dissimilar

distributionally and in appearance. For the pear example this

roughly corresponds to guessing that unrecognized things that look

very different to trains, whales and waterfalls are pears. We evaluate

the PROXY and FOIL approaches in supplementary results, but

in the main experiment we steer a middle course with an approach

which we call MIRRORING that makes use of the full range of

word pairs from highly similar to highly dissimilar.

The MIRRORING approach is based on the idea that when

a word is paired with its correct appearance then the pattern of

distributional similarities within the word domain should mirror

the pattern of appearance similarities within the visual domain.

We quantify the quality of the mirroring by the correlation

coefficient between the similarity values in the two domains. When

the pairing of word and appearance is correct this correlation

coefficient will tend to be more positive (better mirroring) than

when the pairing is incorrect. Figure 5 shows the distributional and

appearance similarity data from an identification trial and

a naming trial where the MIRRORING approach choose the

correct answer.

PROXY approaches make use of a set of most-similar words-

linked-with-appearances, and FOIL approaches use a set of least-

similar. For identification tasks the set is distributionally similar to

the word with unknown appearance; for naming tasks the set is

appearance similar to the appearance with unknown name. For

both approach we use the symbol k to parameterize the size of the

most-similar set, and optimize k.

Conditions Computed
For our main result we computed the correct rate for

identification and naming tasks using word similarity based on

distributional statistics, appearance similarity based on colour &

texture and the MIRRORING algorithm for choosing the

response to each task. We assessed the effect of the system already

knowing 2, 4,…,256, 512 or 658 appearances. Each assessment

was based on performance in 105 trials. Separately in every trial,

the appropriate number of words was randomly selected from the

full set of 660 to be the already-known appearances. Also

randomly selected were a further two words: call these C and R

for correct and rival. For identification, the task for the system was

to guess whether word C should be paired with the appearance of

C or the appearance of R; for naming, whether the word C or the

word R should be paired with the appearance of C.

For supplementary analysis we varied several aspects of our

main computation and looked at how task performance changed.

For word similarity we used other measures (PTH, JCS, VEC, NGD

and ORT) in addition to distributional based (DST). For

appearance similarity we used colour alone and textons alone in

addition to both together. For task algorithm we used PROXY

and FOIL in addition to MIRRORING. In total we evaluated

54= 66363 combinations.

For the variants in appearance similarity, colour alone and

textons alone work as described earlier i.e. appearance similarity is

based on image similarity, and image similarity is based on

Distributional Learning of Appearance
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comparison of colour or texton histograms. For colour and texture

combined, the main condition, we found that the most effective

way to combine them was at the task stage rather than when

computing pairwise image similarities. Specifically, in each task we

computed answers using colour similarity and texton similarity

separately. We then determined which of the two types of

similarity gave the more unequivocal answer and used that. For

example, if we were using MIRRORING and colour produced

correlations of 0.3 and 0.1 for the two possible pairings, whereas

textons produced correlations of 0.4 and 0.5, we would follow the

colour-based scores (since D0:3{0:1DwD0:4{0:5D) and so choose

the first pairing.

For the PROXY and FOIL strategies, the parameter k was

optimized. For small numbers of already-known appearances k~1
was optimal for both strategies, but optimal k increased with the

number of appearances already-known. For PROXY it rose to

k~4 for 658 already-known; for FOIL it rose to k~16.

Results

Even with only two appearances already known to it, the

computer system we have described, using distributional similar-

ities (DST), colour & texture and the MIRRORING algorithm

achieves 54% correct at the identification task and 53% at the

naming task. Both scores are marginally above the baseline chance

levels of 50%. As figure 6 shows, as the number of already-known

appearances increases, so do the performance scores; reaching

87% and 84% for identification and naming respectively for the

maximum of 658 already-known.

We have computed confidence intervals for the performance

rates plotted in figure 6 using bootstrap resampling [79] of words

used, images in each appearance set, and trials. In all cases the

95% confidence intervals are no greater than 62.5%. Addition-

ally, we have confirmed that 50% is the true baseline by repeatedly

randomly permuted the pairing of words and appearances, and

recomputing results. After permuting, mean performance at either

Figure 5. Example trials of identification and naming. The left column illustrates an example identification task, the right an example naming
task. In both tasks the aim is to choose a correct pairing of a word and an appearance over an incorrect one. The plots in the upper row show data for
the correct pairings, those in the lower for the incorrect. Each scatter plot relates to a different pairing of word (W) and appearance (A). For example,
the top-left plot relates to SW ,AT~Sbeans,beansT, the pairing of the word beans with the appearance of beans; while the bottom-right plot relates
to SW ,AT~Ssnake,pianoT, the word snake with the appearance of piano. x is a variable ranging over the words of known appearance. Each
scatterplot has a point for each possible value of x. The horizontal coordinate of the points indicates SW W , xð Þ, the word similarity; and the vertical
coordinate indicates SA x,Að Þ the appearance similarity. For both axes, values nearer the origin indicate greater similarity. The correlation of the
points in a plot is visually indicated by the green covariance ellipses, and nearby them we give the correlation value. In both examples, the more
positive correlation is in the upper row, so the correct pairing is identified.
doi:10.1371/journal.pone.0058074.g005
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task was 50.0% with a standard deviation of 0.4%. These statistical

tests show that the performance we have demonstrated is

significantly better than chance.

Our best results are still well short of 100%, so there is

a possibility that the scores seen arise from a heterogenous

performance across the set of words used. For example, maybe the

AH is strongly true for animal words and untrue for non-animal;

or maybe it is strongly true for highly specific words such as

shepherdess and wheelbarrow and untrue for others. To assess this we

have computed the identification and naming rates separately for

each word as it takes the role C, in combination with every other

word taking the role R. The rates were computed using 658

already-known appearances. The identification and naming scores

were averaged together. The uniformity or otherwise of these

word-specific scores was assessed by stratifying the set of words in

two ways: by a partitioning into 21 categories (e.g. PLANT,

DEVICE, etc.), and by semantic depth which is low for

semantically coarser words such as animal, and higher for more

specific words such as squirrel. Depth was quantified using the

hypernymy path distance from the root node ‘entity’ in WordNet.

The results by category are shown at the right of figure 7. The

only category whose mean performance is not significantly above

chance is SHAPE. Of the other twenty, SUBSTANCE and TOY

have mean performance significantly lower than the mean for all

categories; and ANIMAL, STRUCTURE, PLANT, CLOTHING,

TRANSPORT and GEOGRAPHICAL AREA significantly greater.

Looking at the variation across categories (s.d. 8%), together with

the counts for different categories shown at the left of figure 7, we

conclude that overall performance cannot be accounted for by

a semantic category of words performing much better than the

rest.

The results by semantic depth are shown at the bottom of

figure 7. Linear regression confirms a modest upwards trend

meaning that deeper (more specific) categories are slightly more

easily identified and named using distributional learning; each unit

increase in depth increases mean performance by 0.9% [0.3%,

1.6%]. However the effect is modest and performance is

signifigantly above chance except for the very small number of

words at the shallowest depth.

Supplementary Results
Figure 8 shows the effect of varying several parts of the

computational system: the measure of word similarity, the measure

of appearance similarity, and the algorithm used to answer each

trial on the basis of the similarities. The figure shows that for all

combinations the performance at identification and naming

increases with the number of appearances already known, just as

it did for the main result. It also shows that the combination

,DST, colour & texture, MIRRORING. used for the main

result was the best combination. It shows that of the measures of

word similarity: DST performs best followed in order by VEC, JCS,

NGD and PTH tied, and ORT performs worst; but even with ORT,

performance is significantly above chance. For appearance

similarity: colour & textons together work better than either

alone; and all perform significantly above chance. For task

algorithm: MIRRORING is best, PROXY intermediate, and

FOIL is worst; but even with FOIL, performance is significantly

above chance.

Table 1 presents supplementary results showing how our results

are effected by the choice of textons used for appearance

similarity, and by the sources of the images used. These results

are included to allow calibration against other work. To assess the

influence on our results of having used Google Image to assemble

image data, we instead sourced images from ImageNet, whose

images have been quality controlled for label correctness.

Comparison of scores C and D in Table 1 shows that we found

only negligible difference. To assess the influence on our results of

having used textons derived from oBIFs, we instead used textons

based on the Scale Invariant Feature Transform (SIFT) [48] which

are more widely known. For this we made use of the SIFT-based

texton encodings available on ImageNet for images for some

Figure 6. Identification and naming results. Plots show correct rates versus number of already-known appearances for the identification and
naming tasks illustrated in figure 3. The baseline chance performance rate for these tasks is 50%. The response to each trial was choosen using the
MIRRORING strategy illustrated in figure 5, with the word similarity (SW) being implemented using Distributional Similarity (DST) and the appearance
similarity (SA) being implemented using Colour and Textons. At the highest point of the curves an error bar indicates the 95% confidence interval for
the maximum performance obtained. Other confidence intervals are not shown but are no larger in magnitude.
doi:10.1371/journal.pone.0058074.g006
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words. Comparison of scores A and B in Table 1 shows that oBIFs

perform at least as well as SIFT. The assessments of sensitivity to

image source and texture feature were made using reduced sets of

categories because of data availability. Potentially performance on

these reduced sets could be different than the full sets, but the

similarity of scores B and C, and D and E argues against that.

Discussion

In this discussion we relate our model to previous work, and

consider its accuracy as a model of a possible mode of learning in

humans.

Relation to Previous Work
We have presented evidence in support of three findings:

1) The Appearance Hypothesis (AH): words that occur in similar

contexts tend to have referents with similar appearance

2) By exploiting the AH a computational system can demon-

strate distributionally-learnt knowledge of the appearance of

words by performing better-than-chance visual identification

of categories of object that it has no associationally-learnt

knowledge of.

3) In the computational system, bringing all words and

appearances already known to bear (with the MIRRORING

algorithm) is more effective than using only the highly -similar

or dissimilar.

Findings (1)–(3) have been shown to hold fairly uniformly across

a diverse, large (660) set of words. Using the same numbering, the

relation of these findings to previous work is as follows.

Figure 7. Words used in the experiment with variation of performance by category and semantic depth. The figure is organized by
category varying vertically, and semantic depth varying horizontally. The histogram at top shows the distribution of depths for the full set of words in
W660. The histogram at left, together with the leftmost column of the table, shows the number of words in each category. The other columns give
example words (and their depths) for each category. The plots to the right and below show experimental results. At right is shown the word-specific
correct rate averaged across the category. The error bars show the 95% confidence intervals of these means. The dashed line is the mean across all
words. Categories with means significantly below average have red symbols, significantly above green, others grey. The plot below the table shows
mean word-specific performance as a function of semantic depth. Error bars indicate 95% confidence intervals for the means. The best-fit linear
function is overlaid.
doi:10.1371/journal.pone.0058074.g007
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1) Correlation between lexical similarity and appearance

similarity has been reported before but always with important

differences from the current report: using subject-generated

physical features rather than image-based visual features

[80,81]; using lexical similarity based on manually con-

structed semantic ontologies, or web-querying of co-occur-

rence, and with a limited range and number of categories

[82]; using lexical similarity based on manually constructed

semantic ontologies and without analysis of statistical

significance [83,84]; using lexical similarity based on

manually constructed semantic ontologies [85].

2) Identification of unfamiliar objects has been previously

demonstrated [82] but only with lexical similarities that are

based on information sources that go beyond pure distribu-

tional, and only with a small number (10) of words, all from

a narrow range (mammals).

3) The only algorithm assessed previously [82] depends on the

most similar words only, so if of the PROXY type.

Figure 8. Effect of varying components of the computational system. Plots show correct rates versus number of known appearances for
various combinations of word similarity, appearance similarity and trial algorithm. The unvaried components in each row are fixed at the best option.
So, for example, the word similarity measure used for the middle row is DST. In all cases, baseline performance is 50%. Within each column, the solid
black curve is the same in all plots, and the same as figure 6. At the highest point of these curves an error bar indicates the 95% confidence interval
for the maximum performance obtained. Other confidence intervals are not shown but are no larger in magnitude.
doi:10.1371/journal.pone.0058074.g008

Table 1. Effect on performance of image source and texton
system used.

Source of Images

ImageNet Google Images

Texton System SIFT oBIFs SIFT oBIFs

Word Set W93 A: 82% B: 83%

W420 C: 83% D: 82%

W660 E: 82%

SIFT is the Scale Invariant Feature Transform, amd oBIFs are oriented Basic
Image Features – alternative methods for analyzing local image structure. To
allow comparison between rows, all scores are correct rates for the
identification task given 64 already-known appearances. Baseline performance
is 50%; confidence intervals are not wider than 62.5%.
doi:10.1371/journal.pone.0058074.t001
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Accuracy of the Model
The purpose of our computational model was to demonstrate

that a distributional mode of learning appearances was a viable

possibility for human language acquisition. We have presented

a computational model of such a mode of learning, and so would

like to conclude that the mode is viable. Our computational model

of this mode has to use a particular algorithm to do its learning,

but we do not claim that this particular algorithm is efficient or

likely to be used by human learners.

Even with our limited agenda of demonstrating the viability of

a particular mode of learning for humans, we have to be cautious

about the conclusions that we draw since they are based on

a model, not on critical observations of the real system (i.e.human

learners). Conclusions based on models are only as reliable as the

models are accurate. In this section we review the abstractions of

our model, and consider their accuracy. We consider the tasks the

system has to perform, the set of words used for testing, the

computations of distributional and appearance similarity, and the

data needed for those computations.

We first consider the realism of the identification and naming

tasks our model learner is assessed on. Each trial of the

identification task had only one rival appearance that had to be

distinguished from the correct appearance. In human learning,

identification scenarios (e.g. ‘pass me the trumpet’) could easily

involve cluttered scenes containing many rival categories of object.

Excluding objects that can be recognized as belonging to a known

category [12], what then counts is the number of unknown

categories present in the scene: the range 1–10 seems to cover

most plausible scenarios. Similarly, each trial of the naming task

had only one rival category name that the system had to

distinguish from the correct one. In human learning, the number

of rival names would be determined by the number of words with

known distributional statistics but unknown appearance that the

learner is carrying around in memory. We can find no data on

this, but the range 10–100 seems reasonable. We have investigated

how our model performs when there is more than one rival. Full

results are shown in figure 9, and summary results are as follows.

For the identification task, for 3 rivals, which is in the middle of the

plausible range, the system gets 69% of trials correct, compared to

a chance baseline of 25%. For the naming task, for 32 rivals, which

is in the middle of the plausible range, the system gets 18% of trials

correct, compared to a chance baseline of 3%. In both cases,

distributional learning seems to offer something useful in trials

which match the number of rivals of human scenarios.

Although the 660 categories we have used are a much wider set

than the ten categories of mammal used in the closest previous

work [82], they still account for only 2% of those known by an

adult. There is evidence pointing both ways relating to what we

might expect if the current experiment was scaled up to a larger set

of categories. Pessimistically, Deng et al. (2010) have shown that

machine vision performance does not necessarily generalize from

small to larger numbers of categories [83]. Optimistically, the

other 98% of words known by typical adults on reference on

average more specific categories than the ones we have tested with;

and the trend shown in figure 7 (bottom) was that distributional

learning of appearance was slightly easier for more specific words.

Our study has ignored the effect of the order in which words are

learnt. A simple computation suggests that when this is controlled,

distributional learning may become much more effective, so our

model as it stands will have under-estimated its viability.

Specifically, we considered identification performance based on

four already-known appearances. Using the standard combination

,DST, colour & textons, MIRRORING. our learning system

scores on average 61% for randomly choosen quadruples of

known appearances. We then searched for the quadruple of

appearances that gave the best identification performance.

Searching all eight billion possible quadruples was not possible,

so we looked instead for the best among 103 choosen at random.

We found that with the appearances of carriages, lake, snake and

wardrobe already-known the system achieves an identification score

of 73% – more than twice the improvement over baseline of

a random quadruple of known-appearances.

The neurobiological plausibility of the computations our model

learning system performs needs to be considered. For distribu-

tional similarity, we compute the co-occurrence rates of pairs of

words within four words of each other, compared to their

independent rates of occurrence. This is readily implementable

with standard models of neural networks. The number of co-

occurrence rates (660614,000<107) is large; but since most are

zero, with efficient coding and algorithms, this is easily within the

capacity of available neural resources. We chose not to use the

dimensionality reduction step of LSA in our procedure for

computing distributional similarities to avoid any contention

about whether it was neurobiologically plausible. For appearance

similarity we require global histograms of quantized local colour

and local image structure as measured by the output of linear

filters resembling V1 simple cells [69]. Both computations are

readily implementable using standard models of neural machinery.

On the issue of quantity of data, for distributional similarity we

have used a 100 million word standard corpus of written and

spoken English. This is undoubtedly large compared to the

linguistic environment of a child. For appearance similarity, we

have used 50 images per category. This does not strike us as

particularly large when used to the model categories whose

appearance is already known, but is large when modelling an

unfamiliar category to be identified. We used so many in order to

make up for the crudeness of our measures of appearance

similarity. How far this number can be reduced, as more

sophisticated models of appearance similarity are developed and

employed, remains to be seen.

In summary, the aspects of our model that are at the greatest

distance from the phenomenon of human learning concern

amounts of data, particularly the size of the natural language

corpus used for estimating distributional similarities. The volume

of data that we are using may cause us to over-estimate the

viability of a distributional mode of learning appearance. On the

other hand, we have noticed one aspect – order of learning words

– that we have ignored, which may have caused us to under-

estimate viability.

Conclusion
We have demonstrated that the patterns of similarity that occur

within language and within appearances are sufficiently correlated

to allow a distributional mode of learning the appearance part of

word meaning. This mode allows some approximate knowledge of

the appearance of the referents of a word to be learnt without

there having been any opportunities for associationist learning of

the meaning of that word. This provides a possible explanation for

how it is that many viewers can identify which of the objects in

figure 1 is the adze, and more generally for how children can learn

so many appearances so quickly.

Our results only bear on the viability of such a mode of learning,

not on whether children actually use such a mode. There is

evidence that children are sensitive to some statistical aspects of

language [86], and that child-directed speech of the amount

experienced by a child is adequate for extracting distributional

information powerful enough to infer the syntactic category of

words [87], but whether children are sensitive to distributional
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statistics and, if they are, whether they make use of these for

generalizing appearance in the way that we have described

remains to be shown. Such investigations are a task for the

proposed new Science of Learning grounded in Psychology,

Machine Learning and Neuroscience [88].
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