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Abstract

The signaling system is a fundamental part of the cell, as it regulates essential functions including growth, differentiation,
protein synthesis, and apoptosis. A malfunction in this subsystem can disrupt the cell significantly, and is believed to be
involved in certain diseases, with cancer being a very important example. While the information available about intracellular
signaling networks is constantly growing, and the network topology is actively being analyzed, the modeling of the
dynamics of such a system faces difficulties due to the vast number of parameters, which can prove hard to estimate
correctly. As the functioning of the signaling system depends on the parameters in a complex way, being able to make
general statements based solely on the network topology could be especially appealing. We study a general kinetic model
of the signaling system, giving results for the asymptotic behavior of the system in the case of a network with only
activatory interactions. We also investigate the possible generalization of our results for the case of a more general model
including inhibitory interactions too. We find that feedback cycles made up entirely of activatory interactions (which we call
dynamically positive) are especially important, as their properties determine whether the system has a stable signal-off state,
which is desirable in many situations to avoid autoactivation due to a noisy environment. To test our results, we investigate
the network topology in the Signalink database, and find that the human signaling network indeed has only significantly
few dynamically positive cycles, which agrees well with our theoretical arguments.
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Introduction

Biochemical interactions in a cell form complex networks with

its elements carrying out many different tasks [1]. An important

part is the signal transduction system which allows the cell to adapt

to the environment. The working of this signaling system has been

actively studied, both theoretically and experimentally, with

databases now being available with growing information about

the specific proteins making up the signal transduction network

and their interactions [2–6]. As the signaling system is an essential

part of the cell, a disruption in its functioning is believed to be a

significant factor in many diseases, especially in cancer [7–9].

Thus, a better understanding of the signaling system will possibly

allow more effective treatments. Also, from a theoretical point of

view, the study of cell signaling can reveal how biochemical

interactions are able to form a complex self-organizing system,

capable of processing information in a noisy environment.

The signaling system is naturally modeled as a directed graph:

the nodes are the protein species possibly present in a cell, and an

edge points from node i to node j if protein species i affects protein

species j. A kinetic model is usually a set of ordinary differential

equations where the independent variables represent the concen-

tration of the possible states of the proteins. An edge in the graph

implies that the some of the variables associated with protein i is

present on the right-hand-side of the equations concerning some of

the variables associated with protein j.

In this paper we investigate the general mathematical model

introduced by Heinrich et al. [10,11]. We follow the simple

hypothesis that activation in the signaling system should only occur

as a result of an external or internal signal (e.g. a receptor is

activated) [11,12]. While in some cases this is not true (a signal

only tunes the output [13]), this might prove as a correct basic

principle for the part of the system which has to respond to the

stimuli. Mathematically, this means that the signal-off state of the

dynamical system describing the signaling network has to be stable

and also attractive in the absence of stimulation so that the system

will relax to it, and will not be spontaneously activated by any

noise present [12].

The original model of Heinrich et al. includes only positive

interactions: a protein species activating other proteins. In this

case, we identify the global attractor of the system, which is

reached in the presence of any constant external inputs. The

addition of inhibitory interactions gives rise to more complex

behavior generally, but the property of whether the network has a

stable signal-off state is preserved. To assess our theoretical

arguments, we investigate the human signaling network found in

the Signalink database [4], and find that having a stable signal-off

state indeed seems to be an important factor shaping the network

topology.
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Results

A Network Model with Positive Links
A possible model of the signaling network is that of Heinrich

et al. [10,11]. In this model, each protein has two possible states

(active and inactive, activation is achieved via phosphorylation),

with only proteins in their active state interacting with others. A

protein can become activated by another protein or by a

stimulated receptor which is considered to be the external input

driving the system. Deactivation occurs via phosphatases, which

are considered to work independently of the rest of the system.

This model is general in the sense that multiple interconnected

signaling pathways can be included in one network, while it

contains only simple activating interactions. This means that this

model is targeted at the propagation of some signal (primarily

considering, but not restricted to an external stimulus getting into

the cell’s nucleus) not including some advanced features like

adaptation which require a more specialized treatment [6,13].

The Equations Considered
Using mass action kinetics, the system can be described by the

following ordinary differential equations:

dx̂xi

dt
~{bix̂xizexxi

X
j=i

eaaij x̂xjzexxiSi(t), ð1Þ

where x̂xi and exxi are the concentrations of the i-th protein in the

active and inactive state respectively. The bi constants describe the

deactivation of the i-th protein with its rate being independent of

the other protein concentrations. The elements of the matrix eaaij

describe the activation of protein i by protein j. We assume that all

bi are positive, all eaaij are nonnegative and the diagonal elements

are all zero: eaaii~0. The term Si(t) is an external signal affecting

the i-th protein, with Si being positive for proteins receiving input,

and zero for all others. We will assume that the external signal is

constant or changes on a time scale significantly larger than the

rest of the system, and write Si(t)~si. We also make the

assumption that the total concentration of each protein species is

constant: x̂xizexxi~Ci, which allows us to write Eq. (1) in a

dimensionless form:

dxi

dt
: _xxi~{bixiz(1{xi) siz

X
j=i

aijxj

 !
, ð2Þ

where we defined xi:x̂xi=Ci and aij:Cjeaaij . Note that now all

xi[½0,1�. Also, the new matrix elements aij are scaled by the total

protein concentration Cj , meaning that the change of total

concentrations (e.g. by the synthesis of proteins) can be represent-

ed in this model by varying the elements of the matrix aij . We

chose not to include the effects of concentration changes in the

model itself, but this allows the comparison of two systems where

the Cj concentrations differ.

In the following, we will denote the vector with components xi

by x. Throughout this paper we interpret relations between

vectors component-wise, e.g. x§y (or xwy) means that xi§yi

(xiwyi respectively) for all i.

If we have no external signal (all si are zero), the off-state (when

xi:0 for all i) is always a stationary solution. In the special case,

when the network contains no cycles (i.e. a cascade), the off-state is

always stable and globally attractive; a finite-time signal has a

response which relaxes to the off-state exponentially [10]. If the

network contains cycles, the off-state can be unstable and a

nonzero solution of Eq. (2) can persist even in the absence of an

external signal. Linear stability of the off-state with respect to the

network topology was investigated by Kartal and Ebenhöh [12].

We now give the general attractor of this system in the presence of

arbitrary constant inputs.

The relation of Eq. (2) with the interaction graph of the protein

network is quite natural. An edge i?j implies that xi is present in

the equation concerning _xxj . The aij matrix in Eq. (2) can be

considered as the appropriately weighted adjacency matrix of the

interaction graph.

The General Attractor
We can make a general statement about the solutions of Eq. (2)

which hold for any possible combination of coefficients aij and bi

with any combination of stationary inputs si. In this section we

summarize our results. Proof of our statements is presented in the

Methods section.

Eq. (2) always has exactly one stable stationary solution which is

globally attractive with respect to the valid range of initial

conditions xi[½0,1�, and may have other stationary solutions which

are unstable. Despite that Eq. (2) describes a nonlinear system, no

more complex behavior is possible; the system started from any

initial condition which is not itself an unstable stationary solution

relaxes to the unique stable stationary solution.

The main idea is that if there is a linearly stable stationary

solution of Eq. (2), then a Lyapunov function can be used to show

that it is attractive for any initial condition from the x§x� region.

This implies that there can be no other stable stationary solutions

as their basins of attraction would overlap. Considering the region

where for at least one coordinate xivx�i , we use the properties of

the Jacobian matrix Jij~Li _xxj of the system to prove that regardless

of the initial condition (except for a possible unstable stationary

solution) the system will reach the x§x� region where the

Lyapunov function is applicable. Also, using the properties of the

Jacobian matrix, we prove the existence of at least one linearly

stable stationary solution.

Our results extend the those of Kartal and Ebenhöh [12];

considering the system described by Eq. (2), they examined linear

stability and concluded that a linearly stable off-state is a

significant property of real-world signaling networks. Using our

results, it follows that a stable stationary solution is globally

attractive; if the off state is linearly stable, the system will

eventually return to it after any external signal has been shut off.

Networks with Inhibitory Interactions
We examined the generalization of Eq. (2) to include inhibitory

interactions. We considered the case when a protein in its

activated state can deactivate other proteins, which can be

described by the following equations:

dxi

dt
~{bixiz(1{xi) siz

X
j=i

aijxj

 !
{xi

X
j=i

cijxj : ð3Þ

Here the elements of the cij matrix describe the deactivation of

protein i by protein j. We assume that all cij are nonnegative with

the diagonal elements being zero. If we set all cij~0, we get back

the system (2). Computing the Jacobi matrix for the off-state

(considering the case when the external signal si is zero), we get

that it does not include the cij matrix. This means that the linear

stability of the off-state depends only on the elements of the matrix

aij and the deactivation rate constants bi. If the off-state for some
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particular system with only positive interactions is stable, then it

remains stable if we add inhibitory interactions.

This is also true for the global attractive properties of the off-

state; stability of the off-state implies that it is globally attractive

even in the presence inhibitory interactions. The Lyapunov-

function defined for the system with only positive interactions can

be applied in this case too. Computing the derivative of this

Lyapunov-function, we get that the terms containing the inhibitory

interactions are nonpositive for all possible x, meaning that if a

Lyapunov-function was valid in a network with positive interac-

tions, then it remains valid after the addition of negative

interactions (see the Methods section, especially Eqs. (8) and (15)).

A consequence of this property is that if we are interested in the

stability of the off-state of a particular network, then we have to

consider only the positive interactions between its nodes; we can

restrict ourselves to the analysis of the subgraph which includes the

positive links only. Behavior of the system in the absence of an

external signal depends on the properties of the strongly connected

components of that subgraph.

In the case when we have an external signal or the off-state is

unstable, we cannot make a general statement about the solutions

of Eq. (3). Numerical simulations show cases of monostability,

multistability and periodic solutions, suggesting that the inclusion

of inhibitory interactions might be necessary to account for a more

complex behavior than which can result from Eq. (2), including a

wide range of possible input–output patterns [14].

General Two-state Networks
A more general model of the signaling network would have the

following form:

dxi

dt
~fi xi,fxjgj[Ai

� �
{gi xi,fxjgj[Ci

� �
{hi(xi)zVi(xi,t) : ð4Þ

Eq. (4) is a possible generalization of Eq. (3). In this case too,

every protein has two states, and only proteins in the active state

can activate or deactivate other proteins. Ai denotes the set of

nodes which can activate node i and Ci is the set of nodes which

can deactivate node i (i.e. there is a positive or negative edge

between nodes i and j[Ai or Ci). We assume, that for each (i,j)
pair, node j belongs to at most one of the sets Ai and Ci. We also

restrict the activation term fi to be nonnegative and a monoton-

ically decreasing function of xi, and monotonically increasing

function of all xj[Ai. The deactivations term gi is also

nonnegative, and a monotonically increasing function of xi and

all xj[Ci. We also require the hi term describing the spontaneous

deactivation of protein i to be positive for all xi=0, thus the

concentration of the proteins relaxes to 0 if there are no activating

interactions. The term Vi represents the external input on protein

i. Of course, to ensure that the solutions stay in the xi[½0,1�
interval, we need to require that fi(xi~1)~0, Vi(xi~1)~0,

gi(xi~0)~0 and hi(xi~0)~0 (these conditions will arise

naturally if we derive Eq. (4) from some kinetic model where the

total protein concentrations are preserved). Generally, we do not

need the fi, gi, hi, Vi functions to be continuous or differentiable; if

however, we want to carry out the linear stability analysis of a fixed

point, then differentiability is required at least in some neighbor-

hood of the fixed point. The most important consequence of the

conditions prescribed on Eq. (4) is that the concentration of each

protein relaxes to 0 if it receives no activatory interactions or

external input.

Giving the general solutions of a model like Eq. (4) can prove

very difficult, with chaotic solutions possible in many cases [15].

This is why methods where a statement about the solutions of the

model can be made based only on the network topology can prove

very useful.

Consequences of the Network Topology
The structure of Eq. (4) gives a very simple requirement for the

system to have a nonzero solution in the absence of an external

signal. We can notice that the only positive term on the right-

hand-side of our equations is that describing activation, i.e. the

term corresponding to positive links between proteins. If there are

no cycles made up entirely of positive links (in the following

sections we shall refer to these as dynamically positive cycles), then the

system will relax to its off-state if there is no external signal. This is

the generalization of the results we got for the specific model

described by Eq. (3). The main assumption for this to be true is

that in the absence of activatory interactions, each protein relaxes

to its inactive state (e.g. via dephosphorylation by phosphatases).

The requirement that a nonzero solution in the absence of an

external signal can only persist if there are dynamically positive

cycles holds true even if we include more complex processes, e.g.

multiple phosphorylation.

On the other hand, a general network will possibly contain

dynamically positive cycles. In this case, the stability of the off-state

will depend on the nature of the functions involved in Eq. (4). Still,

using the property that in the absence of activatory interactions,

each protein relaxes to its inactive state, we can conclude that only

the strongly connected components (SCCs) formed entirely by

positive links (i.e. dynamically positive SCCs) are relevant. This means

that instead of examining the properties of the whole network, we

only have to evaluate the subnetworks which contain the points in

each dynamically positive SCC. For the whole system to have a

stable off-state, each of these subnetworks is required to have a

stable off-state. This is the extension of the ideas in [12] to

networks which include both activatory and inhibitory interac-

tions. As every dynamically positive cycle can possibly give rise to

an unstable off-state, having as few such cycles as possible (while

retaining the biological functionality of the network) might be

desirable to avoid an unwanted activation due to variations in

parameter values (e.g. the total concentration of the signaling

proteins depends on the expression level of the corresponding

genes). In the following section, we test this hypothesis on the

human signaling network in the Signalink database.

Analysis of the Signalink Network
The Signalink database contains information about proteins

and interactions present in three species: Caenorhabditis elegans,

Drosophila melanogaster and Homo sapiens, which were manually

collected from the literature [4,16]. The interactions are labeled as

either activation or inhibition. The networks of both C. elegans and

D. melanogaster show a very simple topology with only a few cycles

in them, while the human network has a largest SCC of 81

proteins and a total of 777041 cycles (see table 1). We carried out

further analysis on the largest SCC of the human network,

measuring the number of dynamically positive cycles. We

compared the results with the same computed for random

networks generated from the original database. We used three

methods for network generation. In method (a) we exchanged the

sign among randomly chosen pairs of edges, keeping the start and

end nodes on both edges. Note that this method preserves the total

number of positive or negative edges (if both edges had the same

sign, no alteration was made). In method (b) we exchanged the

endpoints of randomly chosen pairs of edges, thus also affecting

the network topology (but in this case keeping the sign of the

edges). Method (c) is an extension of method (b), where we also
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exchanged the sign of the chosen pair of edges with probability

p~0:5.

Based on our theoretical arguments, we expected the real

network to have as few dynamically positive cycles as possible.

With respect to the stability of the off-state, having no such cycles

would be ideal, while this might not be acceptable as dynamically

positive cycles could serve a specific purpose. The network in the

Signalink database had 13 dynamically positive cycles. We

compared this value with the number of such cycles in 200000
random graphs for each method, where each random graph was

generated by making 10000 exchanges in the original network.

For all three methods, the distribution of the number of

dynamically positive cycles is fat-tailed; number of such cycles

spans more than five orders of magnitude. The percentile plot of

the measured distribution shows that the majority of the random

graphs generated has more dynamically positive cycles than the

actual value (see Fig. 1, pay attention to the logarithmic scaling of

the y-axis). The ratio of graphs having 13 or less dynamically

positive cycles is 1:72% for method (a), 0:039% for method (b) and

1:7525% for method (c). This suggests that the number of

dynamically positive cycles in the real network is significantly

low. This implies, that the number of such cycles is indeed an

important property of the signaling network, and while having

some such cycles might not be avoidable, a small number is

desirable.

From a theoretical view, the importance of dynamically positive

cycles arises from two preliminary hypotheses; the assumption that

each protein in the network relaxes to its inactive state if it does not

receive activatory interactions; and the requirement that the

signaling system has a stable off-state. Finding only a significantly

small number of dynamically positive cycles in the human

signaling network suggests that these hypotheses are valid for a

large part of the system.

Dynamically Positive Cycles in the Human Network
In the case of the human signaling network in the Signalink

database, we identified 13 dynamically positive cycles, which form

5 SCCs (three of which consist of only two nodes each). These 5
SCCs are all connected in one way with path made up of positive

interactions. Table 2 lists the Uniprot IDs [17] of the proteins

involved in them, while Fig. 2 shows the interactions between

them.

Methods

Metzler Matrices
Let A, a square matrix, with elements Aij , be a Metzler matrix,

meaning that Aij§0 for all i=j, while the diagonal elements can

be negative [16]. Let us consider the case when at least one

element of the diagonal is negative. Let a be the minimum of the

diagonal: a:mini Aiiv0. Then the matrix A can be written in

the form A~bAA{DaDI, where bAA is nonnegative and I is the identity

matrix. The matrices bAA and A have the same eigenvectors with the

corresponding eigenvalues only being shifted by a. For the matrixbAA we can apply the Perron-Frobenius theorem [17] getting that bAA
has a real largest eigenvalue (l̂l1§0 such that Dl̂li Dƒl̂l1 for all other

eigenvalues) with the corresponding eigenvector having only

nonnegative elements. For the original matrix A, we have

l1~l̂l1{DaD, and for the real part of all other eigenvalues

Reliƒl1. In the following sections we will refer to l1 as the

largest eigenvalue.

In the case of Eq. (2), the Jacobian matrix is a Metzler matrix:

the diagonal elements are negative, while the off-diagonal elements

Jij are positive when protein j affects protein i, and zero otherwise.

While in a general setting J will not be symmetric, the Perron-

Frobenius theorem guarantees that the eigenvalue with the largest

real part will be real, and the corresponding u eigenvector can be

chosen to have (real) nonnegative elements. In the case, when the

signaling network is strongly connected (i.e. every node can be

reached via directed links from every other node) the correspond-

ing J matrix will be irreducible. In this case the Perron-Frobenius

theorem also states that u will have only positive elements [17].

The Derivative of the Lyapunov Function
Let us consider Eq. (2) and presume that there exists a stationary

solution x� which is linearly stable. We will prove the existence of

at least one such stationary state in the next section. Let J� denote

the Jacobian matrix computed at the stationary solution:

J�ij:
L

Lxj

dxi

dt
Dxi~x�

i
~dij({bi{

X
k=i

aikx�k{si)zaij(1{x�i ): ð5Þ

Linear stability means that all eigenvalues of J� have negative

real parts. A Lyapunov function can be constructed showing that

for all initial conditions x(0)
§x� the system relaxes to the

stationary solution x�. First let us rewrite Eq. (2) for new variables

y:x{x�:

Table 1. Signalink networks.

species # of SCCs
# of proteins in the
largest SCC # of cycles

H. sapiens 5 81 777041

D. melanogaster 2 5 7

C. elegans 3 4 4

Comparision of the signaling networks of the three species present in the
Signalink database.
doi:10.1371/journal.pone.0057653.t001

Figure 1. Percentile plot of dynamically positive cycles in
random networks. The lines intersect with the actual value at 1:72%
for method (a) (i.e. 1:72% of all random networks generated had 13 or
fewer dynamically positive cycles), 0:039% for method (b), and 1:7525%
for method (c).
doi:10.1371/journal.pone.0057653.g001
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dyi

dt
~{yi biz

X
j=i

aijx
�
j zsi

 !
z(1{yi)

X
j=i

aijyj

{x�i
X
j=i

aijyj

ð6Þ

Notice that if y§0 for some t0 then y§0 will hold for all t§t0.

Since the solutions of Eq. (6) are continuous functions of t, the

system can only leave the y§0 region if at some time t1, at least

one component is zero. Substituting yi~0 into Eq. (6) and

assuming that yj§0 for all j=i, we will have a nonnegative

derivate (recall that all aij§0 and 0vx�i v1):

dyi

dt
Dyi~0~(1{x�i )

X
j=i

aijyj§0 : ð7Þ

This allows us to define a Lyapunov function which is valid in

the y§0 region (note that this will imply that our Lyapunov

function is valid for all x§x�, not just some neighborhood of it).

The form of this Lyapunov function is:

L(y)~
X

i

Ai
1

2
y2

i zyi

� �
ð8Þ

where the Ai positive constants need yet to be chosen in an

appropriate way. We have L(y)§0 and L(y)~0uy~0. We need

to choose the A coefficients in a way which gives dL=dtƒ0 and

dL=dt~0uy~0. Computing the time derivative of L we get:

dL

dt
~{

X
i

Aiyi biz
X
k=i

aikx�kzsi

 !

z
X

i

Ai(1{x�i )
X
j=i

aijyj

 !
{f (y),

ð9Þ

where

f (y)~
X

i

Aiy
2
i biz

X
j=i

aij(yjzx�j )zsi

 !

z
X

i

Aiyix
�
i

X
j=i

aijyj

 !
:

ð10Þ

For all y§0, f (y) is nonnegative. This allows us to disregard f (y)
and only focus on the first part of the derivative, which can be

written in a simpler way using the Jacobian matrix in the

stationary solution defined in Eq. (5):

dL

dt
ƒ

X
j

yj J�TA
� �

j
ð11Þ

where in parentheses the vector of coefficients Ai is multiplied by

the transpose of the Jacobian matrix J�. We get a negative result

for all possible y§0 if all components are negative.

In the case of a strongly connected network, using that J�T is a

Metzler matrix, we get that the eigenvector corresponding to its

largest eigenvalue can be chosen to have only positive elements

(see the previous section). If the stationary solution x� is linearly

Figure 2. Dynamically positive cycles in the human network. The node labels are UniProt IDs, green arrows represent activatory interactions,
while the red arrow is an inhibitory link. The dashed blue arrow between nodes P23458 and O15169 represents a path made entirely of activatory
links.
doi:10.1371/journal.pone.0057653.g002
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stable, the largest eigenvalue of J�T is negative. In this case,

choosing the A vector of coefficients to be the corresponding

eigenvector, we have Aw0 and J�TAv0. This choice gives a

Lyapunov function which is valid for all y§0.

In the case of a network with multiple SCCs, we can choose the

A vector to be a linear combination of the eigenvectors of the

submatrices corresponding to each separate strongly connected

component. For this, let us reorder the xi independent variables in

such way, that the SCCs form blocks in J�. In a network with n

SCCs, we get a matrix with the following structure:

J�T~

JT
1 0 . . . 0

JT
12 JT

2
..
.

..

.
P

..

.

JT
1n . . . . . . JT

n

0BBBBBB@

1CCCCCCA ð12Þ

Here Ji is the Jacobian matrix of the i-th SCC at the stationary

solution x� and Jij represents interaction between the i-th and j-th

SCC (e.g. the second SCC affects the first if J12 has nonzero

elements). All elements above the diagonal blocks are zero (links

between two distinct SCCs can be only in one direction). The

stationary solution x� requires that all JT
i have only eigenvalues

with negative real parts. Combining this with the fact that all JT
i

are now irreducible Metzler-matrices, we get that each submatrix

will have a real largest eigenvalue liv0 and corresponding real

eigenvector uiw0. Now we can choose the A vector in Eq. (8) to

be a ‘‘linear combination’’ of these eigenvectors:

A~ a1u1,a2u2, . . . anunð Þ. Of course we need to have aiw0 for

all i. With this, we have:

B:J�TA~

a1JT
1 u1

a1JT
12u1za2JT

2 u2

..

.

Pn{1

i~1

aiJ
T
inuizanJT

n un

0BBBBBBB@

1CCCCCCCA: ð13Þ

The first block in the resulting B vector will be negative for any

a1w0. All other blocks can be separated into two terms with

opposite sign:

Bj~
Xj{1

i~1

aiJ
T
ij uizajJ

T
j uj , j§2: ð14Þ

The summation will yield a nonnegative result, and the last term

will be negative. Starting from j~2 and heading consecutively to

j~n, we can always choose aj constants that are big enough for Bj

to be negative. In this way, we have constructed a suitable A
vector of coefficients for the Lyapunov function in Eq. (8).

Using the properties of the Lyapunov function, we get that for

any initial condition x§x� the system will converge to its

stationary solution x�. This also means that there can be at most

one stable stationary solution; if there were more, their basins of

attraction would overlap.

Note that our arguments presented for the networks with

multiple SCCs do not actually require that we know the

eigenvalues of J�; knowing that each submatrix Ji has only

negative eigenvalues is sufficient. Of course, in a general setting the

submatrices are not independent: Ji will be affected by Jj possibly

for any jvi. A rather special case is that when we have subsystems

that all have stable off-states: any arrangement of these subsystems

which does not include feedback loops will also have a stable off-

state.

The Lyapunov-function for the Off-state in the Presence
of Inhibitory Interactions

Here we consider the special case of Eq. (3) when all si~0 and

the off-state is linearly stable (i.e. all eigenvalues of the Jacobian

matrix are negative). We can define the Lyapunov function for this

system in a way similar to the previous section:

L~
X

i

Ai
1

2
x2

i zxi

� �
ð15Þ

where we require all Ai to be positive. Computing the time

derivative we get a form similar to Eq. (9):

dL

dt
~
X

j

xj J�TA
� �

j
{f (fxjg) ð16Þ

where J� is the Jacobian matrix in the off-state, and f is

nonnegative, and the inhibitory interactions only appear in f .

Using the same argument as in the previous section, we can choose

an appropriate Aw0 vector which will give a positive Lyapunov

Table 2. Dynamicaly positive SCCs of the human network.

# proteins in SCC # of proteins reachable through positive edges

1 Q08334, Q8IU57 2 112

2 P23458, P35568 2 109

3 Q06124, O60674 2 10

4 O15169, P49841, Q8N752, P17612, Q99835, O95996, P48730 7 67

5 P46531, P84022, P16220, Q13485 4 26

Proteins given by their UniProt ID. The table displays the number of proteins that can be affected by each dynamically positive SCC through positive interactions, thus
staying activated if the given SCC stays in an autoactivated state. These are not independent: all SCCs can be reached from the first, all except the first can be reached
from the second, and the fifth can be reached from the fourth (see also Fig. 2).
doi:10.1371/journal.pone.0057653.t002
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function and a negative time derivative. This means that the

system will reach its stationary solution x~0.

The Existence of a Stable Stationary Solution and Global
Convergence

One SCC. Let us first consider a network that is strongly

connected. In this case, the corresponding Jacobian matrix is

irreducible. As all the off-diagonal elements are nonnegative, this

implies that the dynamics of Eq. (2) is strongly monotone [18,19].

This allows us to apply the Hirsch convergence theorem, which

gives that the system converges to a stable stationary solution if

started from any initial condition (except for a set with zero

measure) [18]. Using the Lyapunov function defined in the

previous sections, we can further state that there is exactly one

stable stationary solution: each such solution x� is attractive at least

for initial conditions x§x�, which means that multiple stable

stationary solutions would have overlapping basins of attraction.

The Hirsch theorem is valid only for strongly connected

systems; now we present an alternative proof of the existence and

attractive properties of the stable stationary solution of the system

in Eq. (2) which can be readily generalized for systems which

consist of multiple SCCs.

For simplicity we will refer to the right-hand-side of Eq. (2) as f
(with components fi: _xxi). Notice that in the absence of an external

signal (si~0), the origin is a stationary solution. If it is linearly

stable, then the Lyapunov function (8) proves that it is globally

attractive. Thus in the further analysis we will consider either the

case when the origin is unstable (which we will refer to as case (i))

or that when there is an external signal (case (ii), note that now

fiw0 for at least one i component). In these cases, we will first

show that there is a nonzero stable stationary solution x� which

can be connected to the origin with a path where fw0. Next we

can prove that for each x initial condition which is not itself an

unstable stationary solution, the system will reach the x§x�

region where the Lyapunov function presented earlier is valid.

The existence of a stable stationary solution. We denote

the Jacobian matrix at the origin by J0. Multiplying the Jacobian

matrix with a unit vector e gives that how the components of f
change, if we move in the direction pointed by e (i.e.

f(ee)~f(0)zeJ0ezO(e2)).

In case (i), all derivatives in the origin are zero and the Jacobi

matrix there has a real positive eigenvalue l with a corresponding

positive eigenvector u. This implies that in the direction of u, all

components of f are increasing; as all fi are continuous and

infinitely differentiable, it follows that there is a set in the

neighborhood of the origin, where fw0.

In case (ii), at least one derivative fi is positive at the origin (the

others may be either positive or zero). In this case, we only need to

find a direction where the zero components are increasing. This

means that we need to find a positive vector v for which the vector

w:J0v has wiw0 for values of i, where fi(0)~0 (the other

components can be negative or zero in this case). Considering that

J0 is a Metzler matrix, this is always possible.

Thus in both cases, we get that there is a set P in the

neighborhood of the origin, where all derivatives are positive:

P: x : x§0, f(x)w0f g ð17Þ

We further require that P is connected and that the origin is an

accumulation point of P (0 [ �PP). Now let us consider the closure of

P, �PP, which contains points, where f§0. Note that both P and �PP
are bounded: fi(x)v0 if xi~1. Let Q be the set of points in �PP

which are ‘‘farthest away’’ from the origin:

Q: x[�PP : Vy[�PP, DyDƒDxDf g : ð18Þ

Now we can easily prove that every point in Q is a stable

stationary solution. For this, let us consider a point x[Q. From the

definition of Q, it follows, that there will be some points v[P which

are close to x. All these points must satisfy DvDƒDxD. Now let us

assume that x is not a stable stationary solution. This means that x
is either an unstable stationary solution or a point where some

components of f are positive, and some (or possibly none) are zero.

In both cases, we will reach a contradiction by proving that there

are some points y[P for which DyDwDxD. Using that the Jacobi

matrix in x is a Metzler matrix and employing similar arguments

as for J0, we can find a positive vector u which points in a

direction where again all components of f become positive. A

more precise formulation of this is the following. Without the loss

of generality, we can assume that the first m components of f(x)
are zero, and the rest are positive (the order of the components is

arbitrary). Of course, m can be the total number of components in

the case when x is assumed to be an unstable stationary solution.

Using the very same arguments which we employed for the

construction of the original P set, we have that Auw0, such that

J(x)uð Þiw0 for all iƒm. Using that f is a continuous and

differentiable function of its variables, we have that Aaw0 such

that f(xzbu)w0,Vb[(0,a). Now we have to employ the fact that

x[Q. This means that there are points in P which are close to x:

Vew0,Av such that f(v)w0, DvDvDxD and Dx{vDve (of course, v[P).

Furthermore, again using that f is continuous and differentiable,

we have, that for small values of e, v can arise as a linear

approximation: Adw0 and Aw such that J(x)wð Þiw0,Viƒm, and

also, Vc[(0,d) we have DxzcwDvDxD and f(xzcw)w0 (i.e. we

consider a line pointing from x into P).

Using these u and w vectors, we can now prove that Ab1w0
such that xzb1u:y[P. As uw0, we will have ywx, resulting in a

contradiction. We have already seen that f (y)w0 for the

appropriate choice of b1; as we require P to be connected, we

need to show that y can be connected by a continuous curve to

some other points known to be in P. A such curve can be defined

as z(t)~xzb1z1(t), where.

z1(t)~m(t)uzn(t)w, t[½0,1�, ð19Þ

and we require m(t) and n(t) to be continuous functions with m(t)
monotonically increasing and n(t) monotonically decreasing with

boundary conditions m(0)~0, m(1)~1, n(0)~1 and n(1)~0.

Notice that z(0)[P, for small enough b1. The derivatives along this

curve will be:

f z(t)ð Þ~f(x)zb1J(x)z1(t)zO(b2
1): ð20Þ

Considering the second term, we have that J(x)z1(t)ð Þiw0,

Vt[½0,1�, and Viƒm (these components are just the sum of two

positive numbers). This implies that Ab1w0 such that f(z(t))w0,

Vt[½0,1�. As z(0)[P, we have that z(t)[P, Vt[½0,1� also. Applying

this to y:z(1) and using that DyDwDxD, we have reached a

contradiction: if x[Q, no such y could exist (this was the definition

of Q). As our basic assumption was that x is not a stable stationary

solution, it follows that Vx[Q must be a stable stationary solution.

Since �PP is bounded and nonempty, also Q is nonempty, which

means that there is at least one stable stationary solution. Applying
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the Lyapunov function presented previously, we get that there is

exactly one stable stationary solution.

Convergence. Considering the �PP set defined above, we have

seen that it contains two special points of interest: the origin and

the stable stationary solution x� of the system. (both of these are

accumulation points of the set P). Using that the derivatives in Eq.

(2) are all continuous and infinitely differentiable functions, it

follows that we can construct a curve r(t), connecting the origin

and x� which is contained in the set P:

r(0)~0, r(1)~x�, r(t)[P Vt[(0,1): ð21Þ

There are of course infinitely many such curves, but any one of

them is suitable. We will refer to an arbitrary such curve as r(t).
For every point on that curve, we will consider the following N-

dimensional rectangle (if x has N components):

R(t)~
[N
i~1

x : xi~ri(t)orxi~1,rj(t)ƒxjƒ1Vj=i
� 	

: ð22Þ

For any of these R(t) rectangles in the 0vtv1 range, we have

that the f derivative vectors point toward the ‘‘inside’’, in which

the stable stationary solution resides. If any coordinate is xi~1, its

derivative will be negative. On the other hand, if some coordinate

is xi~ri(t), the corresponding derivative will be positive, since

f(r(t))w0 and the Jacobi matrix at any point has nonnegative off-

diagonal elements. This implies that the solution of Eq. (2) is a

flow, which heads into the x§x� region, meaning that the system

started from any initial condition will eventually reach this region,

where the Lyapunov function defined earlier guarantees its

convergence to x�.
Further remarks. The above proof about convergence holds

for initial conditions where xw0. It is easy to see that our

arguments are also valid for initial conditions where x§0 given

that either there is an external signal or x=0 (we exclude the

origin which is an unstable stationary solution if there is no

external signal). In this case we have that at least one derivative fi

is positive. This means that there is a time t1 such that the

corresponding coordinate xi will be positive. That implies that for

all j, where ajiw0, the fj components will also be positive, meaning

that at some time t2wt1 the xj coordinates affected by xi will be

positive. Using that the network is strongly connected, and the

derivatives are continuous and infinitely differentiable, we get that

after some time t, all components will be positive. Since we are in

the xw0 region now, the previous proof can be applied in this case

too.

We also note that we have excluded the possibility when the

largest eigenvalue of the Jacobian matrix at the origin is exactly

zero. In this case our previous arguments do not hold. We think

that in a real biological system this is not a concern; Eqs. (2) or (3)

are valid only if the time scale of their solutions matches the time

scale arising in other biological processes in the cell (i.e. a model

based on ordinary differential equations is clearly unable to model

the system if l(0)t%1, where l(0) is the eigenvalue of the Jacobian

matrix at a stationary solution and t is the relevant timescale in the

system).

More SCCs. We can inductively extend the proof presented

in the previous section to a network which is not strongly

connected, but is made up of an arbitrary combination of SCCs.

Let us consider a network which is made up of two subnetworks,

C1 and C2, with links only in the C1?C2 direction between them.

We need to prove that if our results hold for both C1 and C2 then

they will also hold for the whole network. We can order the

variables in a way that C1 and C2 form blocks in x. We will denote

the variables belonging to each component with subscripts (x1 and

x2 for the independent variables and f1 and f2 for the derivatives).

Let us assume that our previous results hold for both components:

for i~1,2, the system Ci has a stable stationary solution in the

presence of any stationary inputs. Also if this stationary solution is

not the origin, then it can be connected to the origin with a path,

where all derivatives are positive.

Let x�1 be the stable stationary solution of system C1. Using x�1 as

constant inputs on system C2, we can determine the x�2 stable

stationary solution of C2. Now, the vector x�~(x�1,x�2) will be the

stable stationary solution for the whole system.

Let us consider the Jacobian matrix in the origin, J0, and also

the submatrices corresponding to the two subsystem, J
(1)
0 and J

(2)
0 .

Let l(i) denote the largest eigenvalue of J
(i)
0 . We have three

separate cases:

N Case (1): l(1)
v0 and l(2)

v0. In this case x�~0, and the

Lyapunov function proves its global attractive property.

N Case (2): l(1)
v0 and l(2)

w0. Now x�1~0 and x�2w0.

N Case (3): l(1)
w0. Here x�w0.

Case (1) is covered by the Lyapunov function, so we have to give

the proof only for cases (2)–(3).

Case (2) The component C1 relaxes to its stationary solution. If

we set x1~x�1:0, then the proof presented in the previous section

is valid for component C2. If we now set x1w0, then all

components of f2 increase. Thus, the arguments presented for

convergence in the previous section remain valid; the C2

component will reach the x2§x�2 region. After that, for the whole

system, we will have x§x�, which again allows us to employ our

Lyapunov-function, getting that the whole system converges to x�.
Case (3) The proof of the global attractive properties is similar

to the case of a strongly connected network, we only need to

change some properties of the r(t) curve connecting the origin and

the stable stationary solution. First we define the set P1 for the

system C1 in a similar way as the set P in the previous section (see

Eq. (17)). We also define the set P2 for system C2 in this way with

the restriction that we consider the system C2 with constant inputs

x�1. We consider the curve r(t)~(r1(t),r2(t)), and require that:

r1(0)~0, r1(t)~x�1 Vt[½0:5,1�, r1(t)[P1 Vt[(0,0:5), ð23Þ

r2(t)~0 Vt[½0,0:5�, r2(1)~x�2, r2(t)[P2 Vt[(0:5,1) : ð24Þ

Again, we can use the continuously shrinking rectangles R(t) to

prove that the system will reach the x§x� region and then

converge to x�.
This way we get that if our previous results hold for systems C1

and C2, then they also hold for the combined system C1?C2. A

network with more than two SCCs can always be built with the

addition of one SCC at a time. Thus, for any network, we can start

from an individual SCCs, and iteratively add each SCC, applying

the arguments presented in this section at each step, getting that

our results apply for the whole network. Considering the simple

example network presented in Fig. 3., this means that we can

prove our results for the whole network starting with SCC1 and

consecutively adding SCC2, SCC3, SCC4 and SCC5.
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Discussion

We have shown, that the model suggested for the general

treatment of signaling networks in [10] (Eq. (2)) always has one

stationary solution, which is globally attractive (any initial

condition relaxes to it), which means that the only relevant

qualitative property of that model is that whether the off-state or

an autoactivated state is the stable stationary solution in the

absence of an external signal. This gives an example for a class of

nonlinear systems which show only very simple behavior, and also

an example for nonlinear systems where a Lyapunov function can

be employed proving the attractive properties of a fixed point.

This behavior is a consequence of the parameter space being

bounded and the monotonic nature of Eq. (2), which gives a very

simple flow as a solution. We have also shown that the

straightforward generalization of the system to include inhibitory

interactions (Eq. (3)) does not change the behavior in the case

when the off-state is stable, thus the stability of the off-state can be

determined by analyzing the network with only the positive

interactions present.

While a more general model can have complex solutions, the

observation that the stability of the off-state is determined by the

behavior of the dynamically positive cycles in the network applies

to a wider range of possible models. Counting such cycles in the

Signalink database [4] of the human signaling network and also in

randomly generated networks, we found that the real signaling

network has significantly few dynamically positive cycles, which

agrees with our expectations. This result supplements the findings

of Kartal and Ebenhöh [12], who gained similar results for

network data including only positive interactions.

Based on our findings, we expect a system transmitting an

external signal to have a stable off-state which it returns to if the

external system has been shut off. This should be the correct

behavior in many cases. If, for some reason, this behavior changes

the cell will ‘‘think’’ that there is an external signal when only the

signal transmitting network is stuck in a faulty autoactivated state

[12]. This could have drastic effects on the cell and cause it to cease

carrying out its original purposes. The stability properties of the off-

state could change following a change in the parameters of the

system, caused by either the mutation of the proteins involved or the

change in the protein concentrations. In the simple model

considered here (Eq. (2) and (3)), this means a change in the matrix

elements aijf or cij . Computing the Jacobian matrix at the off-state

and using the Perron-Frobenius theorem and the Collatz-Wielandt

formula [17] we can see that the increase in the activation rate

constants or the total protein concentrations causes an increase in

the largest eigenvalue, and an increase in the deactivation rate

constants causes the largest eigenvalue to decrease, while the

inhibitory interactions cij do not affect the linear stability. Mutations

in certain proteins can thus lead to either the off-state of the network

losing its stability giving a cell a constant stimulation as if it was

constantly under an external signal, or to the dampening of the

signal, lessening its effects on the cell (or even to the silencing of a

pathway if a link is completely taken out). In our simple model a

change in one of the parameter values can be compensated by

changing some of the other parameters (e.g. the concentration of the

phosphatases present). In a real network, more sophisticated

methods will be needed, but we believe that our results concerning

the importance of dynamically positive cycles can lead to a better

understanding of intracellular signaling networks.
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