
Quantum Iterative Deepening with an Application to the
Halting Problem
Luı́s Tarrataca*, Andreas Wichert

Department of Informatics, INESC-ID/Instituto Superior Técnico, Lisbon, Portugal.

Abstract

Classical models of computation traditionally resort to halting schemes in order to enquire about the state of a
computation. In such schemes, a computational process is responsible for signaling an end of a calculation by setting a halt
bit, which needs to be systematically checked by an observer. The capacity of quantum computational models to operate
on a superposition of states requires an alternative approach. From a quantum perspective, any measurement of an
equivalent halt qubit would have the potential to inherently interfere with the computation by provoking a random
collapse amongst the states. This issue is exacerbated by undecidable problems such as the Entscheidungsproblem which
require universal computational models, e.g. the classical Turing machine, to be able to proceed indefinitely. In this work we
present an alternative view of quantum computation based on production system theory in conjunction with Grover’s
amplitude amplification scheme that allows for (1) a detection of halt states without interfering with the final result of a
computation; (2) the possibility of non-terminating computation and (3) an inherent speedup to occur during computations
susceptible of parallelization. We discuss how such a strategy can be employed in order to simulate classical Turing
machines.

Citation: Tarrataca L, Wichert A (2013) Quantum Iterative Deepening with an Application to the Halting Problem. PLoS ONE 8(3): e57309. doi:10.1371/
journal.pone.0057309

Editor: Gerardo Adesso, University of Nottingham, United Kingdom

Received October 30, 2012; Accepted January 20, 2013; Published March 8, 2013

Copyright: � 2013 Tarrataca, Wichert. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by national funds through FCT – Fundação para a Ciência e a Tecnologia, under project PEst-OE/EEI/LA0021/2011 and FCT
grant DFRH - SFRH/BD/61846/2009. The grant in question is a PhD grant attributed by the FCT/Portuguese ministry of education and science. Funder’s website:
http://www.fct.pt/. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: luis.tarrataca@ist.utl.pt

Introduction

Classically, the status of any computation can be determined

through a halt state. The concept of the halting state has some

important subtleties in the context of quantum computation. The

first one of these relates to quantum state evolution which needs to

be expressed through unitary operators that represent reversible

mappings. As a consequence, two successive states cannot be

equal. Ekert draws attention to this fact stating that there are two

possibilities to circumvent such an issue, namely [1]: either run the

computation for some predetermined number of steps or

alternatively employ a halt flag. This flag is then employed by a

computational model to signal an end of the calculation.

Traditionally, such a flag is represented by a halt bit which is

initialized to 0 and set to 1 once the computation terminates.

Accordingly, determining if a computation has finished is simply a

matter of checking if the halt bit is set to 1, a task that can be

accomplished through some form of periodic observation.

Furthermore, undecidable problems, such as the famous

Entscheidungsproblem challenge proposed by Hilbert in [2], require

that computational models be capable of proceeding indefinitely, a

procedure that can only be verified through a recurrent

observation of a halt bit. Classical models of computation are

able to execute undecidable problems since their formulation

allows for the use of such a flag without affecting the overall result

of the calculation. Undecidable problems are important because

they demonstrate the existence of a class of problems that does not

admit an algorithmic solution no matter how much time or spatial

resources are provided [3]. This result was first demonstrated by

Church [4] and shortly after by Turing [5].

Problem
Deutsch [6] was the first to suggest and employ such a strategy

in order to describe a quantum equivalent of the Turing machine

which employs a compound system jrT expressed as a tensor of

two terms, i.e. jrT~jwTjhT, spanning a Hilbert space

Hr~Hw6Hh. The component jwT represents a work register of

unspecified length and jhT a halt qubit which is used in an

analogous fashion to its classical counterpart. However, Deutsch’s

strategy turned out to be flawed, namely suppose a unitary

computational procedure C acting on input jxT is applied d times

and let dC,x represent the number of steps required for a

procedure C to terminate on input x. Then it may be possible that

there exist i and j for which dC,ivdvdC,j ,Vi=j. Now, lets

consider what happens when we are in the presence of such a

behaviour and jwT is initialized as a superposition of the

computational basis. Then those states which only require a

number of computational steps less than or equal to d in order to

terminate will have the halt qubit set to j1T, whilst the remaining

states will have the same qubit set to j0T. This behaviour

effectively results in the overall superposition state jwTjhT
becoming entangled as exemplified by Expression 1, where we

have assumed that w employs n bits.

PLOS ONE | www.plosone.org 1 March 2013 | Volume 8 | Issue 3 | e57309

1ffiffiffiffiffi
2n
p

X2n{1

x~0

Cd jxT|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
jyT

j0T~

j 00 � � � 0|fflfflffl{zfflfflffl}
n bits

Tj0T [dC,00���0wd

j00 � � � 1Tj1T [dC,00���1ƒd

..

.

j11 � � � 0Tj1T [dC,11���0ƒd

j11 � � � 1Tj0T [dC,11���1wd

8>>>>>>>>><
>>>>>>>>>:

ð1Þ

More generally, suppose that the compound system after the

unitary evolution Cd is in the entangled state represented by the

right-hand side of Expression 2. Also, assume that the probability

of observing the halting qubit jhT with outcome k is

P(k)~
X2n{1

x~0
jax,kj2. The projection postulate implies that we

obtain a post observation state of the whole system as the one

illustrated in Expression 3, where the system is projected to the

subspace of the halting register and renormalized to the unit length

[7].

1ffiffiffiffiffi
2n
p

X2n{1

x~0

Cd jxTj0T~
X2n{1

x~0

X1

j~0

ax,j jxTjjT ð2Þ

1ffiffiffiffiffiffiffiffiffiffi
P(k)

p X2n{1

x~0

ax,kjxTjkT ð3Þ

Consequently, observing the halt qubit after d computational

steps have been applied, will result in the working register

containing either: (1) a superposition of the non-terminating states;

or (2) a superposition of the halting states. Such behaviour has the

to dramatically disturb a computation since: (1) a halting state may

not always be obtained upon measurement due to random

collapse, if indeed there exists one; and (2) any computation

performed subsequently using the contents of the working register

jwT may employ an adulterated superposition with direct

consequences on the interference pattern employed. Roughly

speaking, there is no way to know whether the computation is

terminated or not without measuring the state of the machine, but,

on the other hand, such a measurement may dramatically disturb

the current computation.

Current approaches to the quantum halting problem
Ideally, one could argue that any von Neumann measurement

should only be performed after all parallel computations have

terminated. Indeed, some problems may allow one to determine

max dC,jxT,VjxT[jyT, i.e. an upper-bound dC,x on the number of

steps required for every possible input x present in the

superposition. However, this procedure is not viable for those

problems which, like the Entscheidungsproblem, are undecidable.

Bernstein and Vazirani subsequently proposed a model for a

universal quantum Turing machine in [8] which did not

incorporate into its definition the concept on non-termination.

Although their model is still an important theoretical contribution

it is nonetheless only capable of dealing with computational

processes whose different branches halt simultaneously or fail to

halt at all. These same arguments were later employed by Myers in

[9] who argues that it is not possible to precisely determine for all

functions that are Turing-computable, respectively m-recursive

functions, the number of computational steps required for

completion. Additionally, the author also states that the models

presented in [6] and [8] cannot be qualified as being truly

universal since they do not allow for non-terminating computa-

tion. The work described in [8] is also restricted to the class of

quantum Turing machines whose computational paths are

synchronized, i.e. every computational path is synchronized in

the sense that they must each reach an halt state at the same time

step. This enabled the authors to sidestep the halting problem.

Following Myers observation of the conflict between quantum

computation and system observation a number of authors

provided meaningful contributions to the question of halting in

quantum Turing machines. Ozawa [10–11] proposed a possible

solution based on quantum nondemolition measurements, a

concept previously employed for gravitational wave detection.

Linden [12] argued that the standard halting scheme for Turing

machines employed by Ozawa is unitary only for non-halting

computations. Additionally, the author described how to build a

quantum computer, through the introduction of an auxiliary

ancilla bit that enabled system monitoring without spoiling the

computation. However, such a scheme introduced difficulties

regarding different halting times for different branches of

computation. These restrictions essentially rendered the system

classical since no useful interference occurred. In [13] expands the

halting scheme described in [10] in order to introduce the notion

of a well-behaved halting flag which is not modified upon

completion. The author showed that the output probability

distribution of monitored and non-monitored flags is the same.

Miyadera proved that no algorithm exists capable of determining

if an arbitrarily constructed quantum Turing machine halts at

different computational branches [14]. Iriyama discusses halting

through a generalized quantum Turing machine that is able to

evolve through states in a non-unitary fashion [15].

Measurement-based quantum Turing machines as a model for

computation were defined in [16] and [17]. Perdrix explores the

halting issue by introducing classically-controlled quantum Turing

machines [18], in which unitary transformations and quantum

measurements are allowed, but restricts his model to quantum

Turing machines that halt. Muller shows the existence of a

universal quantum Turing machine that can simulate every other

quantum Turing machine until the simulated model halts which

then results in the universal machine halting with probability one

[19,20]. The author describes operators that do not disturb the

computation as long as the original input employed halts the

calculation process. This requires presenting a precise definition of

the concept of halting state. This notion results in a restriction

where large parts of the domain are discarded since the definition

requirements are not met.

In [21] a method is presented for verifying the correctness of

measurement-based quantum computation in the context of the

one-way quantum computer described in [22]. This type of

quantum computation differs from the traditional circuit based

approach since one-qubit measurements are performed on an

entangled resource labeled as a cluster state in order to mold a

quantum logic circuit on the state. With each measurement the

entanglement resource is further depleted. These results are

further extended in [23] in order to prove the universality of the

computational model. Subsequently, in [24] these concepts were

used in order to prove that one-way quantum computations have

the same computational power as quantum circuits with

unbounded fan-out. Perdrix [25] discusses partial observation of

quantum Turing machines which preserve the computational state

through the introduction of a weaker form of the original

requirements of linear and unitary d functions suggested by

Quantum Iterative Deepening and Halting Problem

PLOS ONE | www.plosone.org 2 March 2013 | Volume 8 | Issue 3 | e57309

Deutsch in [6]. Recently, [26] proved that measurements

performed on the (X ,Z)-plane of the Bloch sphere over graph

states is a universal measurement-based model of quantum

computation.

Objectives
In its seminal paper [6], Deutsch emphasizes that a quantum

computer needs the ability to operate on an input that is a

superposition of computational basis in order to be ‘‘fully

quantum’’, When confronted with the halting issue Myers

naturally raised the question if a universal quantum computer

could ever be fully quantum? And how would such a computa-

tional model eventually function? We aim to provide an answer to

these questions by developing an alternative proposal to quantum

Turing machines based on production system theory. We

introduce such a computational model in order to gain additional

insight into the matter of halting and universal computation from a

different perspective than that of the standard quantum Turing

machine.

As Miyadera stated, the notion of probabilistic halting in the

context of quantum Turing machines cannot be avoided,

suggesting that the standard halting scheme of traditional quantum

computational models needs to be reexamined [14]. Our proposal

is essentially different from the ones previously discussed since it

imposes a strict notion of how the computation is performed and

progresses in the form of the sequence of instructions that should

be applied. Our method evaluates d-length sequences of

instructions representing different branches of computation,

enabling one to determine which branches, if they exist, terminate

the computation. Underlying the proposed model will be Grover’s

algorithm in order to amplify the amplitude of potential halting

states, if such states exist, and thus avoiding obtaining a random

projection upon measurement. As a result, we will focus on

characterizing the computational complexity associated with such

a model and showing that it does not differ from that of Grover’s

algorithm.

With this work we are particularly interested in: (1) preserving

the original principles proposed by Deutsch of linearity and

unitary operators, in contrast with other proposals such as [25]

and [15] which perform modifications to the underlying frame-

work; (2) developing a model which considers all possible

computational paths and (3) works independently of whether the

computation terminates or not taking into account each possible

computational path. Additionally, we will also consider some of

the implications of being able to circumvent the halting problem.

Computation universality is a characteristic attribute of several

classical models of computation. For instance, the Turing machine

model was shown to be equivalent in power to lambda calculus

and production system theory. Accordingly, it would be interesting

to determine what aspects of such a relationship are maintained in

the context of quantum computation. Namely, we are interested in

determining if it is possible to simulate a classical Turing machine

given a quantum production system.

Organisation
The rest of this introduction presents an overview of the main

concepts required for a complete understanding of the results that

will be presented, namely: (1) Subsection ‘‘Production System
Review’’ presents the details of production system theory, a

computational model that will be employed to model tree search

applied to the halting problem; (2) Subsection ‘‘m-recursive
functions’’presents a class of functions that contemplate non-

terminating computation; and (3) Subsection ‘‘Grover’s Algo-
rithm’’ describes the quantum search algorithm. The remainder

of this work is organised as follows: Section ‘‘Results and
Discussion’’ extends the ideas presented in the introduction in

order to: (1) elaborate on how Grover’s algorithm can be extended

in order to examine computational paths in Subsection ‘‘Quan-
tum Production System Oracle’’; and (2) discuss the details

associated with our proposal for detection of quantum halting

states in Subsection ‘‘Quantum Iterative Deepening’’.
Section ‘‘Analysis’’ then describes how such a method: (1) does

not differ in complexity terms from the original Grover algorithm

in Subsection ‘‘Complexity Analysis’’; and (2) can be

employed in order to coherently simulate a classical Turing

machine in Subsection ‘‘Turing machine simulation’’.

Production System Review
Our approach to the detection of quantum halting states

requires fixing a computational model. This step is required since

our proposal depends on the set of state transitions occurring

during a computational process. We choose not to focus on Turing

machines, instead our proposal will be formulated in terms of

production system theory. This decision is based on the fact that

the quantum Turing machine model was already well explored by

Deutsch [6] as well as Bernstein and Vazirani [8]. Furthermore,

the combination of quantum concepts such as interference,

entanglement and the superposition principle alongside the halting

issue also contribute to make these models inherently complex. As

a result, it is difficult to express elementary computational

procedures. This behaviour contrasts with the simplicity of

production system theory which allows for an elegant and

compact representation of computations.

Production system theory is also well suited to support tree

search, a form of graph search from which we drew our initial

inspiration. In addition, the classical counterparts of both models

were shown to be equivalent in computational power [27]. The

production system is a formalism for describing the theory of

computation proposed by Post in [28], consisting of a set of

production rules R, a control system C and a working memory W .

This sections reviews some of the most significant definitions that

were proposed in [29], namely:

Definition 1. Let C be a finite nonempty set whose elements

are referred to as symbols. Additionally, let C� be the set of strings

over C .

Definition 2. The working memory W is capable of holding

a string belonging to C�. The working memory is initialized with a

given string, who is also commonly referred to as the initial state ci.

Definition 3. The set of production rules R has the form

presented in Expression 4.

f(precondition,action)jprecondition,action[C�g ð4Þ

Each rules precondition is matched against the contents of the

working memory. If the precondition is met then the action part of

the rule can be applied, changing the contents of the working

memory.

Definition 4. The tuple (C,Si,Sg,R,C) represents the formal

definition of a production system where C,R are finite nonempty

sets and Si,Sg5C� are, respectively, the finite sets of initial and

goal states. The control function C satisfies Expression 5.

C : C�?R|C�|fh,cg ð5Þ

Quantum Iterative Deepening and Halting Problem

PLOS ONE | www.plosone.org 3 March 2013 | Volume 8 | Issue 3 | e57309

The control system C chooses which of the rules to apply and

terminates the computation when a goal configuration, cg, of the

memory is reached. If C(c)~(r,c
0
,fh,cg) the interpretation is that,

if the working memory contains string c then it is substituted by

the action c
0

of rule r and the computation either continues, c, or

halts, h. Traditionally, the computation halts when a goal state

cg[Sg is achieved through a production, and continues otherwise.

Definition 5. Let fd represent a sequence of productions

leading up to a state s of length d. If s[Sg then such a sequence is

also referred to as a solution.

Figure 1 illustrates a production system with two production

rules namely fp0,p1g that can always be applied. Thus the

representation as a graph with a tree form, representing a search of

depth level 3 with initial state is A and leaf fH,I ,J,K ,L,M,N,Og.
Each depth layer d adds bd nodes to the tree, where b is the

branching factor resulting from jRj, with each requiring a unique

path leading to them. Therefore a total of bd possible paths exist,

e.g. state J is achieved by applying sequence fp0,p1,p0g.
With these definitions in mind it becomes possible to develop a

suitable model for a quantum production system. Namely, the

complex valued control strategy would need to behave as

illustrated in Expression 6 where C(c,r,c
0
,d) provides the

amplitude if the working memory contains string c then rule r

will be chosen, substituting string c with c
0

and a decision s made

on whether to continue or halt the computation.

C : C�|R|C�|fh,cg?C ð6Þ

The amplitude value provided would also have to be in

accordance with Expression 7, Vc[C�

X
V(r,c
0
,s)[R|C�|fh,cg

jC(c,r,c
0
,s)j2~1 ð7Þ

We will employ the notation described in [7] to describe the

evolution of our quantum production system. Suppose we have a

unitary operator C with the form presented in Expression 6.

Operator C is responsible for a discrete state evolution taking the

system from state c to c
0

through production r, expressed as

c ‘r c
0
. We refer to the transition c ‘r c

0
as a computational step. The

computation of a production system starting in an initial state i[Si

can be defined as a sequence of steps c1,c2, � � � ,cd such that

ck ‘ ckz1Vk and where d[N represents the depth at which a

solution state g[Sg can be found. In general, the unitary operator

C can be perceived as applying a single computational step of the

control strategy for a general production system. This notation is

convenient since we are able to express the computation of a

production system C up to depth-level d as Cd , i.e. a depth-limited

search mechanism that mimics the behaviour illustrated in Figure

1.

m-recursive functions
Universal models of computation are capable of calculating m-

recursive functions, a class of functions which allow for the

possibility of non-termination. These functions employ a form of

unbounded minimalization, respectively the m-operator, which is

defined in the following terms [3]: let k§0, c[N,m[N and

g : Nkz1?N, then the unbounded minimization of g is function

f : Nkz2?N as illustrated in Expression 8, for any

�nn~n1, � � � ,nk[Nk.

Figure 1. Tree structure representing the multiple computational paths of a probabilistic production system.
doi:10.1371/journal.pone.0057309.g001

Quantum Iterative Deepening and Halting Problem

PLOS ONE | www.plosone.org 4 March 2013 | Volume 8 | Issue 3 | e57309

f (g,�nn,c)~
the least m such that g(�nn,m)~c, if such an m exists

0 , otherwise

�
ð8Þ

The unbounded minimization operator can be perceived as a

computational procedure responsible for repeatedly evaluating a

function with different inputs m until a target condition g(�nn,m)~c
is obtained [30]. However, as illustrated by Expression 8, there is

no guarantee that the target condition will ever be met.

Accordingly, it is possible to express the inner-workings of f as

an iterative search that may never terminate, as illustrated in

Figure 2. Notice that although m-recursive functions employ a

collections of variables belonging to the set of natural numbers, for

practical purposes these values are restricted by architecture-

specific limits on the number of bits available for representing the

range of possible values.

From a quantum computation perspective, it is possible to

perform a generic search for solution states through amplitude

amplification schemes such as the one described by Grover in [31]

and [32]. In this section we will discuss how to combine

production system theory alongside the quantum search algorithm

in order to develop a new computational model better suited to

deal with the halting issue.

Grover’s algorithm
The quantum search algorithm employs an oracle O whose

behaviour can be formulated as presented in Expression 9, where

jwT is a n-qubit query register, jhT is a single qubit answer register.

Additionally, f (w) is responsible for checking if w is a solution to a

problem, outputting value 1 if so and 0 otherwise. In the context of

this research we only consider deterministic functions.

O : jwTjhT.jwTjh+f (w)T ð9Þ

It is important to mention that we employed some care when

defining the oracle in terms of registers jwT and jhT, in a similar

manner to the quantum Turing machine model proposed by

Deutsch. We deliberately chose to do so in order to establish some

of the connections between the halting problem and the quantum

search procedure. We may view the halting problem as one where

we wish to obtain the computational basis present in jwT which

lead to goal states g[Sg where Sg is defined as the set of halting

states.

Grover’s algorithm starts by setting up a superposition of 2n

elements in register jwT and subsequently employs a unitary

operator G known as Grover’s iterate [33] in order to amplify the

amplitudes of the goal states and diminish those of non-goal states.

The algorithm is capable of searching the superposition of 2n

elements by invoking the oracle O(
ffiffiffiffiffi
2n
p

) times. The computational

complexity of f should also be taken into consideration. Namely,

assume that f takes time tf . Since Grover’s algorithm performsffiffiffiffiffi
2n
p

oracle invocations then the total complexity will be O(
ffiffiffiffiffi
2n
p

tf).

This complexity still represents a speedup over an equivalent

classical procedure since 2n states would have to be evaluated

independently. However, for a polynomial tf the overall

complexity will be dominated by the dimension of the search

space, i.e. O(
ffiffiffiffiffi
2n
p

). For this reason, it is often assumed that f is

computable in polynomial time. This assumption also makes such

oracle models suitable to the complexity class NP which represents

the class of languages that can be verified by a polynomial-time

algorithm.

In addition it is also possible that the space includes several

solutions. Accordingly, let k represent the number of solutions that

exist in the search space, then the complexity of the quantum

search algorithm can be restated as O

ffiffiffiffiffi
2n

k

r !
. Typically, k can be

determined through the quantum counting algorithm described in

[34] which also requires a similar time complexity. This means

that before applying Grover’s algorithm one must first determine

the number of solutions. Overall, the time complexity of applying

both methods sequentially remains the same. Once the algorithm

terminates and a measurement is performed then a random

collapse occurs, with high probability, amongst the amplified

solutions. In the remainder of this work we gain generality by

thinking in terms of the worst-case scenario where a single solution

exists. However, the method described above could still be applied

to the proposition that is described in the following sections.

Grover’s algorithm was experimentally demonstrated in [35].

Results and Discussion

Quantum Production System Oracle
Is it possible to present an adequate mapping of our quantum

production system that is suitable to be applied alongside Grover’s

algorithm? A comparison of Expression 6 and Expression 9 allows

us to reach the conclusion that oracle O performs a verification

whilst C focuses on executing an adequate state evolution.

Therefore, we need to develop an alternate mechanism that

behaves as if performing a verification. We can do so by focusing

on one of the main objectives of production system theory, namely

that of determining the sequence of production rules leading up to

a goal state. Formally, we are interested in establishing if an initial

state i[Si alongside a sequence of d productions rules

fr1,r2, � � � ,rdg[R leads to a goal state g[Sg. If the sequence of

rules leads to a goal state, then the computation is marked as being

in a halt state h, otherwise it is flagged to continue c. We can

therefore proceed with a redefinition of the control function

presented in Expression 6, as illustrated in Expression 10, which

closely follows the oracle definition presented in Expression 9.

C : C�|Rd|fh,cg{C ð10Þ

Recall that the oracle operator is applied to register

jrT~jwTjhT. We choose to represent register jwT as a tensor of

two products, namely jwT~jsTjpT, where jsT is responsible for

holding the binary representation of the initial state and jpT
contains the sequence of productions. Register jhT is utilized in

order to store the status s of the computation. Additionally, the

revised version of the quantum production system C with oracle

properties should also maintain a unit-norm, as depicted by

Expression 11, Vc[C�. For specific details surrounding the

construction of such a unitary operator please refer to [36].Figure 2. The classical m-operator (adapted from [30]).
doi:10.1371/journal.pone.0057309.g002

Quantum Iterative Deepening and Halting Problem

PLOS ONE | www.plosone.org 5 March 2013 | Volume 8 | Issue 3 | e57309

X
V(r1,r2,���,rd ,s)[Rd |fh,cg

jC(c,r1,r2, � � � ,rd ,s)j2~1 ð11Þ

Any computational procedure can be described in production

system theory by specifying an appropriate set of production rules

that are responsible for performing an adequate state evolution.

This set of production rules can be applied in conjunctions with a

unitary operator C incorporating the behaviour mentioned in

Expression 10 and Expression 11. In doing so we are able to

obtain a derivation of a production system that can be combined

with Grover’s algorithm. From a practical perspective, we are able

to initialize jpT as a superposition over a set PR,d representing the

sequence of all possible production rules [R up to a depth-level d,

as illustrated by Expression 12 and Expression 13. Implicit to these

definitions is the assumption that set P has a total of bd possible

paths.

PR,d : ~ sequence of all possible production rulesf

[R up to a depth{level dg
ð12Þ

jpT~
1ffiffiffiffiffi
bd
p

X
Vx[PR,d

jxT ð13Þ

Traditionally, throughout a computation set Si remains static in

the sense that it does not grow in size. However, variable d is

constantly increased in order to generate search spaces covering a

larger number of states. As a result, given a sufficiently large depth

value the number of bits required for PR,d will eventually surpass

the amount of bits required to encode set Si. Accordingly, in the

reasonable scenario where the number of bits required to encode

the sequence of productions over PR,d is much larger than the

number of bits required to encode the set of initial states Si, i.e.

log2 jPR,d j& log2 jSij, then the most important factor to the

dimension of the search space will be the number of productions.

For this reason, Grover’s algorithm needs to evaluate a search

space spanning roughly a total of bd paths. As a consequence, the

algorithm’s running time is O(
ffiffiffiffiffi
bd
p

) which effectively cuts the

search depth in half [37].

Quantum Iterative Deepening
Any approach to a universal model of quantum computation

needs to focus on two main issues, namely: (1) how to circumvent

the halting problem and (2) how to handle computations that do

not terminate without disturbing the result of the procedure. In the

next sections we describe our general procedure. We choose to

focus first on the second requirement given that it provides a basis

for model development by establishing the parallels between m-

theory and production system theory. We then describe how these

arguments can be utilized in order to develop a computational

model capable of calculating m-recursive functions.

Parallels between m-theory and production system
theory. Universal computation must allow for the possibility

of non-termination, a characteristic that is is achievable through

the ability to calculate m-recursive functions. Therefore, the

question naturally arises if it is possible to develop a quantum

analogue of the iterative m-operator? By itself m-recursive functions

are not seen as a model of computation, but represent a class of

functions that can be calculated by computational models.

Accordingly, we are interested in determining if we are able to

develop a quantum computational model, namely by employing

the principles of production system theory, capable of calculating

m-recursive functions without affecting the end result.

In order to answer this question we will first start by establishing

some parallels between these concepts. Namely, consider the m-

operator presented in Figure 2 that receives as an argument a tuple

(g,�nn,c) and a production system defined by the tuple

(C,Si,Sg,R,C). Accordingly, parameter g can be perceived as a

control strategy C responsible for mapping a set of symbols C in

accordance with a set of rules R. Variable �nn can be interpreted as

an element of the set of initial states, i.e. i[Si. The target condition

c can be understood as the set of goal states Sg. In addition, the

unbounded minimization operator employs a parameter m that

represents the first argument where the target condition is met.

Analogously, from a production system perspective, variable m
can be viewed as the first depth d where a solution to the problem

can be found. Finally, the condition g(�nn,m)=c of the while loop is

equivalent to applying the control strategy C at total of d times, i.e.

Cd , and evaluating if a goal state was reached.

Iterative Search. The fact that we are able to perform such

mappings hints at the possibility of being able to develop our own

quantum equivalent of the m-operator based on production system

fundamentals. All that is required is a while loop structure,

mimicking the iterative behaviour of the m-operator, that

exhaustively examines every possibility for d alongside C, until a

goal state is found. Since we need to evaluate if applying Cd leads

to a solution we can combine the quantum production system

oracle presented in Expression 10 alongside Grover’s iterate for a

total of
ffiffiffiffiffi
bd
p

times in order to evaluate a superposition of all the

available sequences of productions up to depth-level d, i.e. PR,d .

After applying Grover’s algorithm, we can perform a measure-

ment M on the superposition, if the state j obtained is a goal state,

then the computation can terminate since a solution was found at

depth d.

This process is illustrated in Figure 3 which receives as an

argument a tuple (C ,i,Sg,R,C), where i is an initial state, i.e. i[Si.

We choose to represent our procedure as a form of pseudocode

that is in accordance with the conventions utilized in [38], namely:

(1) indentation indicates block structure, e.g. the set of instructions

of the while loop that begins on line 5 consists of lines 6 - 14; (2) we

use the symbol / to represent an assignment of a variable; and (3)

the symbol 4 indicates that the remainder of the line is a

comment.

Line 8 is responsible for applying the oracle alongside an initial

state and all possible sequences of productions. Recall that register

Figure 3. The quantum iterative deepening procedure.
doi:10.1371/journal.pone.0057309.g003

Quantum Iterative Deepening and Halting Problem

PLOS ONE | www.plosone.org 6 March 2013 | Volume 8 | Issue 3 | e57309

jhT will be set if goal states can be reached. Line 9 is responsible

for applying Grover’s algorithm. If goal states are present in the

superposition, then Grover’s amplitude amplification scheme

allows for one of them to be obtained with probability

j sin½h
2

(
p

2

ffiffiffiffiffi
bd

k

r
z1)�j2 [39], where k represents the number of

solutions and h~2 arccos (

ffiffiffiffiffiffiffiffiffiffiffiffiffi
bd{k

bd

r
). It is possible that state jy2T

contains a superposition of solutions. Therefore, measuring the

system in Line 10 will result in a random collapse amongst these. If

the measurement returns an halt state, then register jpT will

contain a sequence of productions leading to a goal state. Once the

associated sequence has been obtained one has only to apply each

production of the sequence in order to determine precisely what

was the goal state obtained [36] (Line 11). Otherwise, the search

needs to be expanded to depth level dz1 and the production

evaluation process repeated from the start. As a result, this

procedure requires building a new superposition of productions

PR,dz1 each time a solution was not found in PR,d .

Due to the probabilistic nature of Grover’s algorithm there is

also the possibility that the measurement will return a non halting

state, even though jy2T might have contained sequences of

productions that led to goal states. This issue can be circumvented

to a certain degree. Notice that the sequences expressed by PR,dz1

also contain the paths PR,d as subsequences. This means that when

PR,dz1 is evaluated the iteration procedure has the opportunity to

re-examine PR,d . As a result, operator C would have the chance to

come across the exact subsequences that had previously led to goal

states but that were not obtained after the measurement.

Therefore, the control strategy would need to be modified in

order to signal an halt state as soon as a solution is found, i.e. the

shallowest production, independently of the sequence length being

analyzed. With such a strategy the probability of obtaining a non-

halting state in each unsought iteration level d would be

1{j sin½h
2

(
p

2

ffiffiffiffiffi
bd

k

r
z1)�j2.

Each iteration of Figure 3 starts by building a superposition jpT
spanning the respective depth level. This means that the original

interference pattern that was possibly lost upon measuring the

system in the previous iteration is rebuilt and properly extended by

the tensor product that is performed with the new productions.

Because of this process the computation is able to proceed as if

undisturbed by the measurement. Such a reexamination comes at

a computational cost which will be shown to be neglectable. This

behaviour contrasts with the original approach discussed by

Deutsch where: (1) a computation would be applied to a

superposition jyT; (2) a measurement would eventually be made

on the halt qubit collapsing the system to jyT
0
and (3) if a goal state

had not been obtained the computation would proceed with jyT
0
.

Analysis

Complexity Analysis
Figure 3 represents a form of iterative deepening search, a

general strategy employed alongside tree search, that makes it

possible to determine an appropriate depth limit d, if one exists

[40]. The first documented use of iterative deepening in the

literature is in Slate and Atkin’s Chess 4.5 program [41], a classic

application of an artificial intelligence problem. Notice that up

until this moment we had not specified how to obtain a value for

depth d , this was done deliberately since the essence of m-recursive

functions relies in the fact that such a value may not exist. In

general, iterative deepening is the preferred strategy when the

depth of the solution is not known [40]. Accordingly, the while

loop will execute forever unless the state j in line 11, obtained after

the measurement, is a goal state.

Since we employ Grover’s algorithm we do not need to measure

specifically the halting register. Instead it is possible to perform a

measurement on the entire Hilbert space of the system in order to

verify if a final state is obtained. This type of a control structure is

responsible for guaranteeing the same type of partial behaviour

that can be found on the classical m-operator. Consequently,

Figure 3 also does not guarantee that variable d will ever be found,

i.e. the search may not terminate. Line 8 of the algorithm uses the

register jrT~jwTjhT~jsTjpTjhT previously described.

Quantum iterative deepening search may seem inefficient,

because each time we apply Cd to a superposition spanning PR,d

we are necessarily evaluating the states belonging to previous

depth levels multiple times, Vdw0. However, the bulk of the

computational effort comes from the dimension of the search

space to consider, respectively bd , which grows exponentially fast.

As pointed out in [42] if the branching factor of a search tree

remains relatively constant then the majority of the nodes will be

in the bottom level. This is a consequence of each additional level

of depth adding an exponentially greater number of nodes. As a

result, the impact on performance of having to search multiple

times the upper levels is minimal. This argument can be stated

algebraically by analysing the individual time complexities

associated with each application of Grover’s algorithm for the

various depth levels. Such a procedure is illustrated in Expression

14 which gives an overall time complexity of O(
ffiffiffiffiffi
bd
p

) remaining

essentially unchanged from that of the original quantum search

algorithm.

ffiffiffiffiffi
b0
p

z
ffiffiffiffiffi
b1
p

z
ffiffiffiffiffi
b2
p

z � � �z
ffiffiffiffiffi
bd
p

~O(
ffiffiffiffiffi
bd
p

) ð14Þ

By employing our proposal we are able to develop a quantum

computational model with an inherent speedup relatively to its

classical counterparts. Notice that this speedup is only obtained

when searching through a search space with a branching factor of

at least 2 (please refer to [37] [36]). In addition, if the set of goal

states is defined to be the set of halt states, then we are able to use

our algorithm to circumvent the halting problem. Our method is

able to do so since it can compute a result without the associated

disruptions of Deutsch’s model. We employ such a term carefully,

since it may be argued that the measurements performed during

computation will inherently disturb the superposition. This is not a

problem if a halt state is found. However, if such a goal state is not

discovered, we move on to an extended superposition through

PR,d , representing an exponentially greater search space, where

the states from the previous tree levels are included. Consequently,

it becomes possible to recalculate the computation as if it had not

been disturbed and without changing the overall complexity of the

procedure.

Turing machine simulation
The approach proposed in this work allows for the possibility of

non-termination, without inherently interfering with the results of

the quantum computation. This hints at the possibility that our

approach can be applied to coherently simulate classical universal

models of computation such as the Turing machine. Specifically,

we are interested in determining what would be needed for our

model of an iterative quantum production system to simulate any

classical Turing machine?

Quantum Iterative Deepening and Halting Problem

PLOS ONE | www.plosone.org 7 March 2013 | Volume 8 | Issue 3 | e57309

We will begin by presenting a set of mappings between Turing

machine concepts and production system concepts in a manner

analogous to the trivial mapping described in [43]. Both models

employ some form of memory where the current status of the

computation is stored. The Turing machine model utilises a tape

capable of holding symbols. Each element of the tape can be

referred to through a location. Tape elements are initially

configured in a blank status, but their contents can be accessed

and modified through primitive read and write operations. These

operations are performed by a head that is able to address each

element of the tape. As a result, the memory equivalent of the

production system, respectively, the working memory should

convey information regarding the current head position and the

symbols, alongside the respective locations, on the tape. In

addition, the tape employed in Turing’s model has an infinite

dimension. Consequently, the working memory must also possess

an infinite character.

The Turing machine model utilises a d function to represent

finite-state transitions. The d functions maps an argument tuple

containing the current state and the input being read to tuples

representing a state transition, an associated output and some type

of head movement. This set of transitions can be represented as a

table whose rows correspond to some state and where each

column represents some input symbol. Each table entry contains

the associated transition tuple representing the next internal state,

a symbol to be written, and a head movement. Notice, that this

behaviour fits nicely into the fixed set of rules R employed by

production systems. Namely, d’s argument and transition tuples

can be seen, respectively, as a precondition and associated action

of a certain rule. Accordingly, for each table entry of the original

Turing transition function it is possible to derive an adequate

production rule, thus enabling the obtention of R.

The only remaining issue resides in defining a control strategy C
that mimics the behaviour presented in Expression 10. Conse-

quently C needs to choose which of the rules to apply by accessing

the working memory, determining the element that is currently

being scanned by the head, and establishing if a goal state is

reached after applying some specific sequence of Rd rules. Once

this is done, we are able to apply our iterative quantum production

system to simulate the behaviour of a classical Turing machine.

The d-function conversion to an adequate database of productions

is a simple polynomial-time procedure (please refer to [27] and

[44] for additional details). In addition, it is important to mention

that this approach will only provide a speedup if the Turing

machine simulated allows for multiple computational branches.

Otherwise, if the computation is not capable of being parallelized

then we gain nothing, performance-wise, from employing quan-

tum computation.

Conclusions

In this work we presented an approach for an iterative quantum

production system with a built-in speedup mechanism and capable

of the partial behaviour characteristic of m-recursive functions.

Our proposal makes use of a unitary operator C that can be

perceived as mapping a total function since it maps for every

possible input into a distinct output. However, operator C is

employed in a quantum iterative deepening procedure that

examines all path possibilities up to a depth level d until a

solution is found, if indeed there exists one. Due to the

probabilistic nature of Grover’s algorithm there is always the

possibility that, upon measurement, a non-terminating state is

obtained. As a consequence, the procedure would iterate to an

additional level of productions and could therefore fail to

recognize a halting state. This issue can be overcome through

the development of specific control strategies capable of signaling

that an halting state has been found at the shallowest production

yielding such a conclusion, independently of the sequence length

being analyzed.

Our model is able to operate independently of whether the

computation terminates or not, a requirement associated with

universal models of computation. As a result, it becomes possible

for our model to exhibit partial behaviour that does not disturb the

overall result of the underlying quantum computational process.

This result is possible since: (1) Grover’s algorithm effectively

allows one to obtain halting states, if they exist, with high

probability upon system observation; and (2) the overall complex-

ity of this proposition remains the same of the quantum search

algorithm. This procedure enables the development of verifica-

tion-based universal quantum computational models, which are

capable of coherently simulating classical models of universal

computation such as the Turing machine.

Author Contributions

Wrote the paper: LT AW.

References

1. Ekert A, Jozsa R (1996) Quantum computation and shor’s factoring algorithm.

Rev Mod Phys 68: 733–753.

2. Hilbert D (1900) Mathematische probleme. In:Göttingen, editor, Proceedings of

the International Congress of Mathematicians in Paris 1900. pp.253–297.

3. Lewis HR, Papadimitriou CH (1981) Elements of the Theory of Computation.

Upper Saddle River, NJ, USA: Prentice Hall PTR.

4. Church A (1936) A note on the entscheidungsproblem. Journal of Symbolic

Logic 1: 40–41.

5. Turing A (1936) On computable numbers, with an application to the

entscheidungsproblem. In: Proceedings of the London Mathematical Society.

volume 2, pp.260–265.

6. Deutsch D (1985) Quantum theory, the church-turing principle and the

universal quantum computer. In: Proceedings of the Royal Society of London-

Series A, Mathematical and Physical Sciences. volume 400, pp.97–117.

7. Hirvensalo M (2004) Quantum Computing. Berlin Heidelberg: Springer-Verlag.

8. Bernstein E, Vazirani U (1993) Quantum complexity theory. In: STOC ’93:

Proceedings of the twenty-fifth annual ACM symposium on Theory of

computing. New York, NY, :USA ACM, pp.11–20. doi:http://doi.acm.org/

10.1145/167088.167097 .

9. Myers JM (1997) Can a universal quantum computer be fully quantum? Phys

Rev Lett 78: 1823–1824.

10. Ozawa M (1998) Quantum nondemolition monitoring of universal quantum

computers. Phys Rev Lett 80: 631–634.

11. Ozawa M (1998) On the halting problem for quantum turing machines.

Technical report, Kyoto University, Japan.

12. Linden N, Popescu S (1998) The Halting Problem for Quantum Computers.

eprint arXiv:quant-ph/9806054.

13. Ozawa M (2002) Halting of quantum turing machines. In: Unconventional

Models of Computation, Springer Berlin Heidelberg, volume 2509 of Lecture

Notes in Computer Science. pp.58–65. doi:10.1007/3-540-45833-6_6.

14. Miyadera T, Ohya M (2003) On Halting Process of Quantum Turing Machine.

eprint arXiv:quant-ph/0302051.

15. Iriyama S, Ohya M, Volovich I (2004) Generalized Quantum Turing Machine

and its Application to the SAT Chaos Algorithm. eprint arXiv:quant-ph/

0405191.

16. Perdrix S, Jorrand P (2004) Measurement-Based Quantum Turing Machines

and their Universality. eprint arXiv:quant-ph/0404146.

17. Perdrix S, Jorrand P (2004) Measurement-Based Quantum Turing Machines

and Questions of Universalities. eprint arXiv:quant-ph/0402156.

18. Perdrix S, Jorrand P (2006) Classically-controlled quantum computation.

Electronic Notes in Theoretical Computer Science 135 : 119–128.

19. Muller M (2007) Quantum Kolmogorov Complexity and the Quantum Turing

Machine. Ph.D. thesis, Technical University of Berlin.

20. Muller M (2008) Strongly universal quantum turing machines and invariance of

kolmogorov complexity. Information Theory, IEEE Transactions on 54: 763–

780.

Quantum Iterative Deepening and Halting Problem

PLOS ONE | www.plosone.org 8 March 2013 | Volume 8 | Issue 3 | e57309

21. Duncan R, Perdrix S (2010) Rewriting measurement-based quantum compu-

tations with generalised flow. In: AbramskyS, Gavoille C , KirchnerC ,Meyer

auf der Heide F, Spirakis P, editors, Automata, Languages and Programming,

Springer Berlin Heidelberg, volume 6199 of Lecture Notes in Computer Science.

pp.285–296. doi:10.1007/978-3-642-14162-1_24.

22. Raussendorf R, Briegel HJ (2001) A one-way quantum computer. Phys Rev Lett

86: 5188–5191.

23. Raussendorf R, Browne DE, Briegel HJ (2003) Measurement-based quantum

computation on cluster states. Phys Rev A 68: 022312.

24. Browne D, Kashefi E, Perdrix S (2011) Computational depth complexity of

measurement-based quantum computation. In: DamW, Kendon V, Severiniv,

editors, Theory of Quantum Computation, Communication, and Cryptography,

Springer Berlin Heidelberg, volume 6519 of Lecture Notes in Computer Science. pp.

35–46. doi:10.1007/978-3-642-18073-6_4.

25. Perdrix S (2011) Partial observation of quantum turing machines and a weaker

well-formedness condition. Electronic Notes in Theoretical Computer Science

270: 99–111.

26. Mhalla M, Perdrix S (2012) Graph States, Pivot Minor, and Universality of

(X,Z)-measurements. ArXiv e-prints.

27. Abramsky S, S A, Shore R, Troelstra A (1999) Handbook of computability

theory. Amsterdam, Netherlands: Elsevier.

28. Post E (1943) Formal reductions of the general combinatorial problem.

American Journal of Mathematics 65: 197–268.

29. Tarrataca L, Wichert A (2012) A quantum production model. Quantum

Information Processing 11: 189–209.

30. Stuart T (2004) Partial recursive functions. Technical report,University of

Cambridge: Computer Laboratory: Faculty of Computer Science and

Technology.

31. Grover LK (1996) A fast quantum mechanical algorithm for database search. In:

STOC ’96: Proceedings of the twenty-eighth annual ACM symposium on
Theory of computing. New York, NY, USA: ACM, pp.212–219. doi:10.1145/

237814.237866.

32. Grover LK, Radhakrishnan J (2004) Is partial quantum search of a database any
easier? eprint arXiv:quant-ph/0407122.

33. Kaye PR, Laflamme R, Mosca M (2007) An Introduction to Quantum
Computing. USA:.Oxford University Press.

34. Brassard G, Hoyer P, Mosca M, Tapp A (2000) Quantum Amplitude

Amplification and Estimation. eprint arXiv:quant-ph/0005055.
35. Chuang IL, Gershenfeld N, Kubinec M (1998) Experimental implementation of

fast quantum searching. Phys Rev Lett 80: 3408–3411.
36. Tarrataca L, Wichert A (2011) Problem solving and quantum computation.

Cognitive Computation 3: 510–524.
37. Tarrataca L, Wichert A (2011) Tree search and quantum computation.

Quantum Information Processing 10: 475–500.

38. Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to
Algorithms, 2/e. MIT Press.

39. Nielsen MA, Chuang IL (2000) Quantum Computation and Quantum
Information. Cambridge, MA, USA: Cambridge University Press.

40. Russell SJ, Norvig P, Canny JF, Edwards DD, Malik JM, et al. (2003) Artificial

Intelligence: A Modern Approach (Second Edition). Prentice Hall.
41. Slate D, Atkin LR (1977) Chess 4.5 - northwestern university chess program. In:

Chess Skill in Man and Machine. Berlin: Springer-Verlag, pp.82–118.
42. Korf RE (1985) Depth-first iterative-deepening : An optimal admissible tree

search. Artificial Intelligence 27: 97–109.
43. Franklin S (1997) Artificial Minds. MIT Press.

44. Sharma A (2006) Theory of Automata and Formal Languages. Laxmi

Publications (P) Limited.

Quantum Iterative Deepening and Halting Problem

PLOS ONE | www.plosone.org 9 March 2013 | Volume 8 | Issue 3 | e57309

