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Abstract

Programmed death ligand-1 (PD-L1) is an important negative regulator of T cell immune responses via interactions with PD-
1 and CD80. However, PD-L1 can also act as a positive costimulator, but the relevant counterreceptor is not known. We
analyzed the role of PD-L1 in CD8-T cell responses to infection with Listeria monocytogenes (LM) or vesicular stomatitis virus
(VSV). PD-L1 blockade impaired antigen-specific CD8 effector T cell expansion in response to LM, but not to VSV infection,
particularly limiting short-lived effector cell differentiation. Simultaneous CD4-T cell depletion and anti-PD-L1 blockade
revealed that PD-L1 provided costimulation even in the absence of CD4-T cells. Most importantly, specific blockade of PD-L1
binding to CD80 or to PD-1 did not recapitulate PDL-1 blockade. The results suggested that PD-L1 plays an important
costimulatory role for antigen-specific CD8 T cells during LM infection perhaps through a distinct receptor or interaction
epitope.
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Introduction

Optimal T cell activation requires three signals: 1) interaction

between TCR and the cognate peptide-MHC complex, 2) positive

costimulation of antigen-specific T cells to promote expansion and

survival [1]; and 3) cytokines that facilitate T cell differentiation,

expansion, and survival [2]. Besides positive costimulation, there

are coinhibitory signals crucial for maintaining immune system

homeostasis and limiting deleterious inflammatory responses as

well as autoimmunity [3]. The B7:CD28 costimulatory family

consists of both positive and negative costimulatory molecules

including CD28, CTLA4 and their ligands CD80 (B7.1) and

CD86 (B7.2), and programmed death-1 (PD-1) and its ligands PD-

L1 and PD-L2. Programmed death-1 (PD-1) binds to both PD-L1

and PD-L2 and is upregulated after T cell activation which serves

to minimize inflammatory side-effects[4]. PD-1 also acts to limit

immunity during chronic virus infection such that blocking PD-1

or PD-L1 can result in reversal of T cell exhaustion and viral

clearance [5,6]. In a T cell tolerance model, blocking PD-L1

augmented T cell expansion and function as compared to PD-1

blockade[7]. This difference implied the possible existence of a

second receptor for PD-L1, which was subsequently identified as

CD80 [5,8]. In addition, it was recently demonstrated that the PD-

L1:CD80 interaction promotes peripheral tolerance [7].

In contrast to the inhibitory roles played by the PD-1 pathway,

PD-L1 can also serve as a positive costimulator. PD-L1

interactions promote bacterial clearance [9–11], Th1 differentia-

tion and expansion[12] and the development of colitis [13]. In the

current study, we investigated the role of PD-L1 in the regulation

of the endogenous antigen-specific CD8 and CD4 T cell responses

to bacteria and virus infections. We unveiled a costimulatory role

for PD-L1 in the CD8 T cell response to Listeria monocytogenes (LM),

but not to vesicular stomatitis virus (VSV) infection. PD-L1

signaling augmented the proliferation of responding CD8 T cells

and modulated differentiation of the short-lived effector cell subset

via a CD4 T cell independent mechanism. Moreover, PD-L1

signals appeared to be delivered through a PD-1 and CD80

independent pathway, thereby suggesting the possible existence of

an additional PD-L1 ligand.

Methods

Mice and infections
C57BL/6 mice were purchased from the National Cancer

Institute. All animal protocols were approved by the University of

Connecticut Health Center Animal Care Committee. Mice were

infected with 16103 cfu LM-OVA or 16105 pfu of VSV-ova i.v.

mAb treatment
Mice were treated with 200 mg mAb specific for PD-L1

(10F.9G2 [14]), PD-L2 (TY25 [15]), PD-1 (RMP1-14 [16]) or

43H12 (PD-L1-CD80 [7]), i.p. on day -1 and every other day after

infection. CD4 T cell depletion was done by treating mice with
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Figure 1. PD-L1 induction in response to infection. A, PD-L1 expression on CD4 T, CD8 T, and B cells on day 2 after LM or VSV infection. Filled
histogram: naive control. Open histogram: day 2 after LM or VSV i.v. infection. B, Comparison of PD-L1 expression on total CD8 T cells 2 days after LM
or VSV infection. C, Comparison of PD-L1 expression by naı̈ve (CD11alow) and activated/memory (CD11ahigh) CD8 T cells and representative 2-D plot of
CD11a versus PD-L1 expression. Data were analyzed by Student’s t test. (***p,0.001). Gating strategy for T cells is based on CD4, CD8 and CD3
expression. Data are representative of three independent experiments with five mice per group.
doi:10.1371/journal.pone.0056539.g001
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200 mg GK1.5 i.p. 3 days before infection and every other day

after infection.

BrdU incorporation assay
Mice were treated with 1 mg BrdU i.p. 16 hr before sacrificing.

Staining of BrdU incorporation followed the BrdU Flow kit

protocol (Becton-Dickinson).

Flow cytometry
Single-cell suspensions were prepared by collagenase digestion

as previously described [17]. Lymphocytes (56106 cells/ml) were

Figure 2. PD-L1 costimulates the CD8 T cell response to LM
infection. A, OVA257–264/Kb+ splenic CD8 T cell population seven days
after VSV-OVA infection from mice treated with IgG isotype control,
anti-PD-1 (RMP1-14), or anti-PD-L1 (10F.9G2). B, (Top panel) Represen-
tative dot-plot of the CD8 T cell response from control or anti-PD-L1
treated mice eight days after infection. (Bottom panel) Compiled data
showing the total numbers of OVA257–264/Kb+ splenic CD8 T cells eight
days after LM-OVA infection from mice treated with IgG isotype control,
anti-PD-1(RMP1-14), anti-PD-L1(10F.9G2), or anti-PD-L2 (TY25). Data
were analyzed by two-way ANOVA. (*p,0.05. ns, non significant). C,
(Top panel) Representative dot-plot of the splenic CD4 T cell response
from control or anti-PD-L1 treated mice eight days after infection.
(Bottom panel) Compiled data showing the total numbers of LLO190–

201/I–Ab+ CD4 T cells of the spleen from day 8 LM infected mice treated
with anti-PD-L1 (10F.9G2) compared with IgG isotype control. Data
were analyzed by Student’s t test. Data are representative of three
independent experiments with five mice per group.
doi:10.1371/journal.pone.0056539.g002

Figure 3. PD-L1 enhances multifunctional effector CD8 T cell
generation. Mice were infected i.v. with 1000 cfu LM-OVA and treated
with anti-PD-L1 or control IgG. Eight days later splenocytes were
stimulated in vitro with SIINFEKL peptide for 5 hours in the presence of
brefeldin A. Production of IL-2, IFNc and TNF was measured by
intracellular staining and flow cytometry. A. The frequency of
IFNc+TNF+IL-2+ antigen-specific CD8+ T cells. B–D. Comparison of the
mean fluorescent intensity (MFI) of staining for each cytokine. Values
are means +/2 standard error. Data are representative of three
independent experiments with five mice per group. Data were analyzed
by student t test. (*p,0.05, ns, not significant).
doi:10.1371/journal.pone.0056539.g003
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stained with peptide:MHC tetramers, and other antibodies as

indicated. The LLO-I-Ab tetramer [18] was generously provided

by Dr. Marc Jenkins (UMINN).

Statistical analysis
Statistical significance was determined with unpaired t-test. For

bacterial counts statistical significance was determined with a

Mann-Whitney test, and for data containing more than 2 groups, a

one-way ANOVA test was applied by GraphPad Prism.

Results and Discussion

Upregulation of PD-L1 on CD8 T cells after primary LM or
VSV infection

We examined PD-L1 expression after i.v. infection with LM-ova

or VSV-ova. Two days after infection with either pathogen, PD-

L1 was markedly upregulated on bulk CD4 T cells, CD8 T cells,

and B cells (Fig.1A). PD-L1 expression on CD8 T cells peaked

,day 2 post-infection and subsequently declined (Fig. 1B). LM

infection induced higher levels of PD-L1 on bulk CD8 T cells as

compared to levels induced by VSV infection (Fig. 1B). Moreover,

CD11ahigh effector/memory phenotype CD8 T cells expressed

substantially more PD-L1 as compared to their CD11alow naı̈ve

counterparts (Fig. 1C). Indeed, high PD-L1 expression correlated

with high CD11a levels (Fig. 1C). Thus, PD-L1 expression was

transiently upregulated on T cells after LM infection, similar to

other costimulatory molecules [19,20].

PD-L1 blockade inhibits the CD8 T cell response to LM
infection

To test the potential role of the PD-1 axis in the antigen-specific

CD8 T cell response, we treated mice with anti-PD-L1 (10F.9G2),

anti-PD-L2 (TY25), or anti-PD-1 (RMP1-14) blocking mAb

throughout the infection. The pMHCI tetramer-OVA257–264/Kb

was used to identify antigen-specific CD8 T cells on day 8 post

LM-ova or day 7 post-VSV-ova infections, near the peak of the

responses. The VSV-specific CD8 T cell response was not affected

by either anti-PD-L1, –PD-L2, or -PD-1 mAbs (Fig. 2A and data

not shown). In contrast, blocking PD-L1 resulted in an ,80%

inhibition of the anti-LM CD8 T cell response, while PD-L2 or

PD-1 blockade had no effect (Fig. 2B). Interestingly, the LLO190–

201/I-Ab-specific CD4-T cell response was not diminished by PD-

L1 blockade (Fig. 2C), indicating that a loss of CD4 T cell help

could not explain the inhibition of the CD8 T cell response. We

also examined the production of cytokines after PD-L1 blockade.

While the overall number of cytokine producing cells decreased

after PD-L1 blockade, as expected based on the loss of tetramer+
cells, the cells that produced IFNc, TNF, or IL-2 did so at levels

comparable to their normal counterparts (Fig. 3B–D). However,

the percentage of polyfunctional antigen-specific CD8 T cells, i.e.

those that produced all three cytokines, was reduced by PD-L1

blockade (Fig. 3A). Thus, PD-L1 controlled both the magnitude

and the functionality of the CD8 T cell response to LM infection.

Effector T cell heterogeneity is a hallmark of CD8 T cell

responses to infections [21]. Based on KLRG1 and IL-7R

expression levels, four populations of effector cells can be

identified: early effector cells (KLRG1- IL-7R-; EEC) that give

rise to the other subsets, short-lived effector cells (KLRG1+ IL-7R-

; SLEC) that do not survive long-term, memory precursor effector

cells (KLRG12 IL-7R+; MPEC) that survive to form the memory

pool, and double positive effector cells (KLRG1+ IL27R+;

DPEC) whose origin is unclear [22]. A number of factors have

been identified that affect the lineage decision toward MPEC vs.

SLEC development [21,23]. We therefore examined whether PD-

L1 played a role in effector subset development in response to LM

infection. Blockade of PD-L1 resulted in a decrease in all effector

subsets with the greatest effect on SLEC generation (Fig. 4A,B).

Moreover, blockade of PD-L1 during LM infection impaired

bacterial clearance, while PD-1 blockade enhanced bacterial

clearance in the spleen and liver (Fig. 5). This finding further

indicated distinct functions for PD-1 and PD-L1 during the anti-

LM response.

To further understand the mechanism of PD-L1 costimulation

we examined early proliferation of antigen-specific CD8 T cells.

To this end, we administered BrdU to infected mice 16hrs before

sacrifice with or without PD-L1 blockade. Incorporation of BrdU

into CD8 T cells was analyzed on day 5 post-infection(Fig. 6A,B).

While most tetramer+ cells from the control mice incorporated

BrdU, fewer cells incorporated BrdU after PD-L1 blockade (Fig.

6A). Furthermore, in those Ova/Kb-specific CD8 T cells that did

incorporate BrdU during PD-L1 blockade the level of incorpora-

tion was reduced (Fig. 6B). Using annexin V staining, no difference

Figure 4. PD-L1 costimulation facilitates SLEC differentiation.
Eight days after LM-OVA infection, SLEC, MPEC, DPEC and EEC
population was analyzed within OVA257–264/Kb+ splenic CD8 T cell
population according to their KLRG1 and IL-7R expression. A,
representative plots of the OVA-specific CD8 T cell response and the
expression of CD127 and KLRG1 by gated tetramer+ cells with or
without PD-L1 blockade. B, Graphs show the compiled proportion of
each subset with or without anti-PD-L1 blockade (SLEC: KLRG1+ IL-7R-;
MPEC: KLRG12, IL27R+; EEC: KLRG12, IL27R2; DPEC: KLRG1+,
IL27R+). Data are representative of three independent experiments
with five mice per group. (*p,0.05, **p,0.01, ***p,0.001, ns, not
significant).
doi:10.1371/journal.pone.0056539.g004
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in apoptosis was observed between the groups (Fig. 6C). Thus, PD-

L1 costimulation operated via enhancement of proliferative

pathways.

PD-L1 costimulates CD8 T cells independent of CD4 T cell
help

PD-L1 preferentially costimulated the CD8 T cell response with

little effect on the CD4 T cell response (Fig. 2). Since the CD8 T

cell response to LM is CD4 T cell dependent [24], we next tested

whether PD-L1 operated independently or cooperatively with

CD4 T cells to augment the CD8 T cell response. To test this, we

blocked PD-L1 separately or in conjunction with CD4 T cell

depletion. While both treatments inhibited the response, anti-PD-

L1 blockade was somewhat more effective than CD4 depletion

(Fig. 7A,B). However, CD4 T cell depletion together with anti-PD-

L1 blockade substantially enhanced the inhibitory effect of either

treatment alone. We further calculated the ratio of antigen-specific

CD8 T cell numbers with or without PD-L1 blockade and CD4 T

cell depletion. The level of inhibition was similar in the presence or

absence of CD4 T cells (Fig. 7B). We noticed that the CD11a

expression on tetramer-negative CD8 T cells appeared to increase

after PD-L1 blockade or CD4 depletion (Fig. 7A). However, the

total number of splenic CD11ahigh CD8 T cells was not different

between the groups (Fig. 7C), suggesting that CD11a upregulation

might be non-specific and the result of alterations in the

inflammatory environment. Overall, these data indicated that

both PD-L1 costimulation and CD4 T cell help were required for

optimal CD8 T cell responses to LM infection.

PD-L1 costimulation occurs independent of binding to
known epitopes of PD-1 and CD80

The two known counter-receptors of PD-L1 are PD-1 and

CD80, both of which are well documented to transduce negative

regulatory signals during T cell activation [4,7]. To scrutinize

through which ligand PD-L1 mediated costimulation, we took

advantage of mAbs that specifically block PD-L1 binding to PD-1

(RMP1-14; [16]) or to CD80 (43H12); [7]) and compared their

ability to block the CD8 T cell response during LM infection with

the general inhibition of PD-L1 by 10F.9G2. Surprisingly,

treatment with either RMP1-14 or 43H12 failed to inhibit the

response unlike 10F.9G2 treatment (Fig. 8A,B,C). As an important

positive control, we confirmed the blocking efficiency of 43H12 in

a previously described T cell tolerance model [7]. Treatment with

43H12 greatly enhanced the CD8 T cell response in this model

(data not shown). In addition, the consistent increase in the CD4 T

cell response (data not shown) and enhanced LM clearance (Fig. 5)

with RMP1-14 treatment, indicated that this mAb was also

operating. To insure that the lack of inhibition of the CD8 T cell

response by PD-L1-CD80 blockade (43H12) or PD-1 blockade

(RMP1-14) was not due to compensation through CD80 or PD-1,

we blocked both interactions simultaneously, and found no

inhibition (Fig. 8B). This result was also confirmed by blocking

CD80 with 1G10 (Fig. 8B), which has been shown to block

CD80:PD-1 interaction in vitro[8]. In this experiment, anti-PD-1

treatment resulted in an increase in antigen-specific CD8 T cells

(Fig. 8B), but this was not a consistent finding. Further, to exclude

the possibility that the reduced antigen-specific CD8 T cell

response was caused by a potentiated inhibitory effect via

enhancing PD-L1:PD-1 interaction due to 10F.9G2 mAb treat-

Figure 5. PD-L1 costimulation augments protection against LM infection. Mice were infected with 16105 cfu LM-OVA i.v. and treated with
anti-PD-L1, anti-PD1 or control IgG. The bacterial burden in spleen and liver was analyzed five days later. Data are representative of two independent
experiments with ten mice per group. Data were analyzed by Mann-Whitney test. (*p,0.05, **p,0.01, ns, not significant).
doi:10.1371/journal.pone.0056539.g005
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ment, we blocked PD-1 in conjunction with 10F.9G2 treatment

which again demonstrated that 10F.9G2 blockade of PD-L1

reduced the antigen-specific CD8 T cell response (Fig. 8B). Taken

together, these data suggested that PD-L1 costimulation was

mediated either by binding to an epitope on CD80 or PD-1 that

was not blocked by the available mAbs or by interaction with a

third unknown binding partner.

While much research has focused on the inhibitory effects of the

PD-L1/PD-1 axis, positive costimulatory effects of these and other

predominantly negative regulators have also been described. The

underlying reasons that determine negative versus positive

regulatory events are not clear. Our studies show obvious

contextual cues that control the requirement for PD-L1 mediated

costimulation since the CD8 T cell response to VSV infection was

PD-L1 independent while the response to LM infection integrated

positive signals from PD-L1 costimulation (Fig. 1). Previous work

also showed a role for PD-L1 costimulation in the CD8 T cell

response to LM infection[9,10] that is mediated through

IFNc[11]. Expression of counterligands that direct the choice

between positive and negative regulation may be differentially

controlled during distinct immune responses. While the identity of

the putative third PD-L1 ligand is not yet known, the expression of

this counterreceptor could be disparate between, for example,

VSV and LM infection resulting in the different outcomes of the

CD8 T cell response during PD-L1 blockade that we observed.

This ligand may be distinct from PD-L1 and CD80 or could

represent an interaction between PD-L1 and epitopes on these

molecules that remain accessible in the presence of the available

blocking antibodies. This possibility is supported by the finding

that PD-1-deficient CD8 T cells also exhibit a defect in expansion

in the response to LM infection[11]. Nonetheless, the ultimate

effect was enhancement of the response, indicating a distinction in

the downstream signaling events mediated through PD-L1

interactions which drive negative regulatory events versus the

positive effects described here.

Our data also indicated that both positive and negative

regulation were occurring simultaneously through PD-1 and PD-

Figure 6. PD-L1 augments Ag-specific CD8 T cell proliferation.
A, and B, Brdu incorporation of OVA tetramer+CD8+ T cells. Mice were
administered BrdU 16 hrs before sacrificing on day 5 after i.v. LM
infection with or without PD-L1 blockade. C. Annexin V staining of
tetramer+ cells. Data were analyzed by Student’s t test, (**p,0.01). Data
are representative of three independent experiments with five mice per
group.
doi:10.1371/journal.pone.0056539.g006

Figure 7. PD-L1 costimulation is independent of CD4 T cell
help. A, Representative dot-plots of the antigen-specific CD8 T cell
response eight days after LM-OVA infection following PD-L1 blocking
with or without CD4 T cell depletion. B, The total numbers of OVA257–

264/Kb-specific CD8 T cells or panel C, the total numbers of CD11ahigh

CD8 T cells cells in the spleen from day 8 LM infected mice treated with
IgG isotype control, anti-PD-L1 (10F.9G2), anti-CD4 (GK1.5), or both anti-
PD-L1 and anti-CD4. Comparison of the magnitude of blocking
between PD-L1 blockade with or without CD4 T cell depletion is
shown under the bar graph in panel B. Data are representative of three
independent experiments with five mice per group. ***p,0.001.
doi:10.1371/journal.pone.0056539.g007
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L1. Thus, while PD-L1 inhibition reduced the overall CD8 T cell

response and decreased protection, PD-1 blockade enhanced

bacterial clearance without consistently affecting the overall

magnitude of the CD8 T cell response. The latter result suggested

that PD-1 may be inhibiting the functional abilities of CD8 T cells

or was affecting innate immune system components. Of additional

significance was the demonstration that PD-L1 costimulation

operated cooperatively, but independently of CD4 T cell help.

Thus, the summation of the positive and negative signaling events

mediated through PD-1/PD-L1 family members served to fine-

tune the overall immune response to provide protection while

maintaining the integrity of the host.
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