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Abstract

Sanger sequencing is a common method of reading DNA sequences. It is less expensive than high-throughput methods,
and it is appropriate for numerous applications including molecular diagnostics. However, sequencing mixtures of similar
DNA of pathogens with this method is challenging. This is important because most clinical samples contain such mixtures,
rather than pure single strains. The traditional solution is to sequence selected clones of PCR products, a complicated, time-
consuming, and expensive procedure. Here, we propose the base-calling with vocabulary (BCV) method that
computationally deciphers Sanger chromatograms obtained from mixed DNA samples. The inputs to the BCV algorithm
are a chromatogram and a dictionary of sequences that are similar to those we expect to obtain. We apply the base-calling
function on a test dataset of chromatograms without ambiguous positions, as well as one with 3–14% sequence
degeneracy. Furthermore, we use BCV to assemble a consensus sequence for an HIV genome fragment in a sample
containing a mixture of viral DNA variants and to determine the positions of the indels. Finally, we detect drug-resistant
Mycobacterium tuberculosis strains carrying frameshift mutations mixed with wild-type bacteria in the pncA gene, and
roughly characterize bacterial communities in clinical samples by direct 16S rRNA sequencing.
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Introduction

The method of direct, or population, sequencing of PCR

products is widely used in medical diagnostics and for scientific

purposes. Chromatograms obtained by this method contain

information about mixtures of DNA variants, which are

simultaneously amplified by PCR. The challenge we address

here is the extraction of information characterizing the genetic

diversity of the DNA variants without expensive and/or

laborious methodologies, including PCR product pre-cloning,

Single Genome Sequencing (SGS) [1] or Ultra Deep Sequenc-

ing (UDS) [2,3]. The applicability of the aforementioned

methodologies for mixture deconvolution is still limited in

clinics because of their cost and/or complexity. SGS and

sequencing after cloning is time- consuming and costly because

a large (.100) number of cycles of PCR/dilutions or clones

must be sequenced to detect a minor variant (about 1–2%

fraction) with high confidence (.95%) [4–6]. In some cases, the

sequencing of even 25 clones is insufficient to outperform the

detection limit of direct sequencing assays [6]. UDS is a new

powerful method that could be used for detection of mutations

occurring in less than 1% of a mixture. However, many

questions need to be answered before this method can be widely

used in clinics [7,8], and UDS is still at least four times more

expensive and three times more time consuming per sample

than direct sequencing [9].Currently, UDS is cost effective only

if the device is completely loaded at each run [10].

For many clinical studies, direct sequencing is recommended

[4,11,12] as an effective and inexpensive method for monitoring

drug resistance. Many direct sequencing assays are commercially

available for the mutation analysis for HIV-1 (Invitro Diagnostics

Assays: e.g. ViroSeq HIV-1 Genotyping System, Abbott, TRU-

GENEH HIV -1 Genotyping Assay, SIEMENS), HCV (Research

Use Only Assays: e.g. Virco, Janssen Diagnostics BVBA) and HBV

(Research Use Only Assays: e.g. TRUGENEH HBV Genotyping
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Assay, SIEMENS). Direct sequencing is considered the gold

standard for HCV subtyping [13].

Difficulties
Direct sequencing is rather insensitive for minor DNA fractions

that carry single-nucleotide substitutions (20–25% [3,12,14]); the

sensitivity depends on the total DNA concentration in the sample

[15]. Mixtures of significantly different DNA variants produce

very complex chromatograms that are difficult to interpret with

standard methods. Even when DNA variants are nearly identical,

differing, for example, only by short insertions or deletions (indels),

the chromatogram is still very complex.

All of these obstacles limit application of direct Sanger

sequencing. It is not applicable for tasks like 16S rRNA gene

sequencing for human specimens, determining HCV or HBV

genotype in a case of mixed infection, and detection of indels.

Existing Approaches
Original methods for reading cloned DNA from a chromato-

gram (e.g. Phred [16,17]) allow for identifying only one type of

DNA. Thus, these methods do not, in general, work for direct

sequencing of a DNA mixture. Due to the active growth of

resequencing projects, some tools for processing chromatograms of

heterozygous genomes have been developed: e. g., TraceTuner

[18] re-analyzes chromatograms (i. e., performs base-recalling)

after the primary sequence has been defined. To avoid misinter-

preting sequencing artifacts as single nucleotide polymorphisms

(SNPs), a number of algorithms, like Polyphred [19,20], Polybayes

[21], and AutoEditor [22], require pre-assembled DNA sequences

of various individual genomes. These algorithms are designed for

resequencing eukaryotic genomes with a low degree of variability,

and they require relatively high coverage of each genome site.

More complicated is the identification of indels using direct

sequencing data. Currently, some algorithms allow indel detection

in heterozygous genomes[23–27].

Many of the problems concerning direct sequencing of

heterogenous DNA sequences are summarized in [28]. A clinical

sample may contain any number of DNA variants, with any

mutation types (single nucleotide variations (SNVs), indels, and

substring substitutions). In order to decipher a structure of the

mixture, the wild-type sequence and the vocabulary of all allowed

mutations must be provided. This formulation is a special case of

the set-cover problem [29]. Even after this generalization, the

algorithm is not universal: it is not feasible to choose a single wild-

type sequence in rapidly evolving organisms such as RNA viruses.

Also, it is impossible to choose one for the sequencing of 16S

rRNA PCR products of a polyspecies sample. In many cases, it is

also impossible to compile an exact vocabulary of allowed

mutations, although the task of compiling a vocabulary of

sequences homologous to those in the sample seems realistic.

The RipSeq WEB server is an application designed for analysis of

complex direct sequencing chromatograms, which are obtained

for 16S rRNA PCR products from clinical samples and which

accurately identify the bacterial species [30]. However, it is not a

universal application for sequence analysis because it can process

only chromatograms that are read from specific sequencing

primers. The software maps all possible short words on the

{A,C,G,T} alphabet that can be extracted from a IUPAC [31]

sequence of a chromatogram onto known 16S rRNA sequences

from a vocabulary. The RipSeq software can detect the presence

in the mixture of up to three species from a vocabulary, and it does

not generate sequences at the output. Practical methods of indel

detection in direct sequencing chromatograms without a known

wild-type also exist [25,27,32]. The Indelligent tool [25] identifies

the two most similar sequences containing deletions assuming

heterozygota. The CHILD [27] aligns the primary and secondary

sequences that were extracted from a chromatogram by Phred; the

alignment process uses SSEARCH [33]. CHILD can detect indels

in low fractions (5–10%) of DNA mixture. Other tools quantify the

components of complex mixtures by analyzing direct-sequencing

chromatograms [34,35].

The BCV Algorithm
In this study, we propose a new method for analyzing

population sequencing chromatograms, called base-calling with

vocabulary (BCV). This method provides a comprehensive toolbox

for Sanger chromatogram analysis. As input, this software uses the

sequence of detected peaks in the chromatogram and the multiple

alignment of nucleotide sequences similar to the expected DNA

variants in the sample. We refer to this set of nucleotide sequences

as the vocabulary. We did not assume any restriction on the

number of possible mixed DNA variants. The BCV package

contains tools for 3 main functions:

N base-calling,

N indel detection relative to the main consensus sequence and

vocabulary sequences, and

N DNA mixture deconvolution.

Base-calling is sufficient for samples containing SNVs as the

major mutation type. BCV does not require a vocabulary in this

case.

The indel detection function is appropriate for analyzing

chromatograms with a high proportion of degenerate positions

when some of the sample variants carry indels (Fig. 1). A high

homology of DNA variants is necessary for using the indel

detection functionality. Otherwise, the most general functionality

should be preferred.

The most general functionality of the BCV package is the

mixture deconvolution. The software can predict sequences of

DNA variants that altogether explain the amplitude profile of the

chromatogram, provided that a vocabulary of sequences that are

similar to actual mixture components is available. This function-

ality is effective only if the vocabulary contains sequences that are

more similar to mixture components than the mixture components

are similar to each other. When BCV is used for the mixture

deconvolution, the predicted DNA variants can be further

explored by Blast [36] homology searches in biological sequence

databases, or by a kind of phylogenetic analysis. This functionality

can be applied to complex mixtures of DNA variants, like direct

sequences of 16S rRNA genes from clinical samples, and for

detection of viral genotypes (e.g. HCV, HBV, HIV) by sequencing

assays in the cases of mixed infections. Table 1 summarizes

empirical rules for selecting the appropriate BCV functionality for

a given sample.

We consider sequencing chromatogram processing to consist of

the following steps: peak detection, base-calling, mixture decon-

volution, and indel detection. The peak detection step is required

to extract information from the 4 raw fluorescent traces obtained

by a sequencer. We use the TraceTuner [18] program to

determine the primary nucleotide sequence, and the Polyscan

[24] program for re-base-calling. Since the source code for

PolyScan is available, we add an option to output all the detected

peaks, their physical properties, and the corresponding peaks’

probabilities into text files (refer to [24] for further details); thus,

we don’t use the PolyScan’s grouping of peaks into sequence

positions.

Basecaller for DNA Mixture Deconvolution
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For sequencing of mixed DNAs, a chromatogram and its peak

interpretation (partitioning) is represented as a hidden Markov

model (HMM; generalized from [37]). Each partitioning repre-

sents an assignment of sequence positions to peaks, filtering out

artifact peaks. A DNA base occurs only once in a sequence

position; thus, each position can be described by an IUPAC DNA

code. The base-calling step is a search for an optimal partition by

the Viterbi algorithm [38,39] for HMM on the chromatogram’s

peak sequence. The mixture deconvolution step is intended to

determine the DNA variants of the mixture that produced optimal

partitioning. The variants are constructed by a greedy method that

is based on preliminary DNA variants production by pairwise

alignments of the partition with vocabulary sequences. Alignment

scores are set up according to the standard HMM pairwise

alignment schema, weighted by the peaks’ amplitudes. At each

step, the sequence is determined from the best alignment; then the

peaks that correspond to the found sequences are lowered (by

subtracting the sequence from the mixture). Then the greedy

search is repeated. Finally, the greedy-predicted DNA variants are

combined by expectation maximization (EM) clustering procedure

[40]. The distance measure for a pair of sequences, which is used

for clustering, is a monotonically increasing function (see Methods)

of the probability that the pair has been obtained from different

chromatogram profiles. Initial clustering is made by a procedure

similar to DOTUR [41]. The term ‘DNA variant’ refers to the

consensus sequence found by the EM algorithm, unless explicitly

stated otherwise. Expectations for DNA variant frequencies are

evaluated from the clustering.

In the indel detection step, we use another clustering paradigm.

All chromatograms for a sample are analyzed together. We

suppose that all the greedy-generated (preliminary) DNA variants

are classified into dense subgroups: those containing indels (one

group per indel), and the group without indels (main subgroup). In

each group, the preliminary variants are aligned with each other

and with the vocabulary. After the main subgroup is identified for

each chromatogram, we search for shifting patterns. A shifting

pattern is a fragment on the chromatogram sequence that

corresponds to a segment on preliminary DNA variants and that

is aligned without indels against the main subgroup (Figure 1).

Indels we are looking for occur before the start of shifting patterns

(towards a read direction). Indel positions are calculated relative to

the vocabulary sequences. Then we combine all the chromato-

gram’s main groups into the main consensus sequence that

corresponds to the dominating pool of DNA variants in the

sample.

We demonstrate the applicability of BCV in several situations.

First, we use base-calling for analyzing direct sequencing traces of

the hepatitis A and D viruses. Second, we use BCV to detect indels

in the pncA gene of Mycobacterium tuberculosis. Finally, we apply BCV

to deciphering a sample containing 2 subtypes of the hepatitis B

virus (HBV) and complex mixtures of bacterial 16S RNA in

human gastric mucosa by using direct sequencing.

The M. tuberculosis pcnA gene encodes the enzyme pyrazinami-

dase, which converts the pro-drug pyrazinamide to its active form,

pyrazinoic acid [42]. In a considerable portion of cases,

pyrazinamide resistance in tuberculosis occurs due to mutations

disrupting the open reading frame of the the pncA gene [43–45].

Mutations found in resistant strains include amino acid substitu-

tions, nonsense mutations, frameshifts, mutations in the promoter

region, and even complete deletions of the pncA gene [43,44].

Currently, over 350 mutations associated with resistance to

Figure 1. The shifting patterns in direct sequencing chromato-
grams. A. Sequences of 2 mixed DNA types (1 and 2) and their
alignment. B and C. Chromatogram sequences (results of base-calling)
for both reading directions are named bc-fw and bc-rev. The final Indels
are assigned relatively to the main subgroup that is comprised of the
DNA type, which has the higher fraction in the mixture. Italic underlined
font shows shifting patterns. Bold shows the sequence portions that
precede indel positions in each reading direction. Italics show the
sequence portions of 2 DNA types that are aligned with the given
coordinate shift.
doi:10.1371/journal.pone.0054835.g001

Table 1. The guide for selection of the BCV usecase.

Expected diversity
(eDiv)

Prevailed
mutation type

Vocabulary not available
(evDist.eDiv)

Approximate Vocabulary
(evDist<eDiv)

Representative Vocabulary
(evDist,eDiv)

#10% SNV Basecalling Basecalling, Indel detection Basecalling, Indel detection, Deconvolution

.10% SNV and/or indels Basecalling Basecalling Basecalling, Deconvolution

The table explains empirical rules that could be used for choosing appropriate BCV usecese depending on the expected diversity of DNA variants in a sample study.
Expected diversity (eDiv) is the mean divergence of DNA variants expected in the sample. Prevailed mutation type is the most frequent type of mutations expected for
sequenced DNA locus. Expected vocabulary distance (evDist) is maximal identity for DNA variants in the mixture with the sequences in the vocabulary that we expect:
e.g. for human genome we can expect evDist = 0.001, for HBV surface antigen evDist,0.03. The vocabulary is considered as approximate if evDist<eDiv; we cannot
deconvolute mixture of DNA variants but still can detect indels if components of the mixture are similar. The vocabulary is considered as representative if evDist,eDiv,
enabling deconvolution of the mixture into sequences in which genotype could be determined by similarity searches or phylogenetic analysis. The threshold 10% on
expected diversity is approximate value.
doi:10.1371/journal.pone.0054835.t001

Basecaller for DNA Mixture Deconvolution
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pyrazinamide have been identified [46]. Traditional methods of

sequence analysis work for detecting pyrazinamide resistant strains

of M. tuberculosis in samples, but often fail to identify the presence of

resistant strains in samples also containing wild-type bacteria.

Results

Samples and Cultures
All patients signed an informed consent form in accordance

with the institutional review board of the Federal State Institution

of Science Central Research Institute of Epidemiology, Moscow.

The study was approved by the institutional ethics committee.

M. tuberculosis. Clinical specimens were obtained from

patients at the Moscow Tuberculosis Clinical Hospital #7. A total

of 123 clinical specimens, including sputum and other respiratory

specimens, and bodily fluids were examined. M. tuberculosis cultures

were grown on a Lowenstein-Jensen solid medium, and pyrazin-

amide susceptibility testing was performed with the BACTEC

MGIT 960 System (Becton, Dickinson & Co., Franklin Lakes, NJ,

USA) according to the manufacturer’s instructions.

Human immunodeficiency virus (HIV). A plasma sample

(ID GEN014DR.01A) was obtained from the control panel

GEN014DR conducting external quality assessment of laborato-

ries performing genetic tests to identify HIV HAART drug

resistance mutations (HANC VQA Proficiency Testing Program

website http://www.hanc.info/labs/labresources/vqaResources/

ptProgram/Pages/default.aspx Accessed 20 Dec. 2012). The

sample contained HIV subtype B with a viral load value of 8045

copies/mL.

Hepatitis viruses. Hepatitis B virus (HBV). Plasma

sample BV1 was obtained from a patient with chronic hepatitis

B. Additionally, two plasmids containing the full genomes of HBV

subtypes F2 and D1 according to [47,48] were used in this study.

Plasmids were used to prepare a mixture (df7) of subtypes in a 1:2

ratio. The total concentration of DNA in df7 was 104 copies/mL.

Hepatitis A virus (HAV) and hepatitis D virus (HDV). 79

serum samples from HAV-infected patients and 39 serum samples

from HDV-infected patients were employed in this study.

Gastric mucosa samples. We studied two gastric biopsies

(identified as sample 95 and sample 97) from children (5 and 17

years old, respectively). For both samples, Helicobacter pylori PCR

(Amplisens H. pylori-FL, CRIE, Russia) and Rapid Urease Test

(AMA RUT, Association of Medicine and Analytics, Russia) were

performed.

For the details see Methods S1.

Indel Detection in Clinical Samples
If DNA variants that contain indels were directly sequenced, the

chromatogram was highly degenerate downstream from the indel

sites (Figure 1). The results of the BCV indel detection analysis for

the HIV, HBV, and M. tuberculosis clinical samples are shown in

Table 2. Most samples in table 2 were obtained from our study

(see below) of prevalence of pncA mutations in M. tuberculosis. Indel

lengths varied from 1 to 12 nucleotides. For five samples,

predictions made by the BCV were also confirmed by clone

sequencing; for one sample the cloning experiment was not

available (see Methods S1 and Table 2). The data produced by

BCV indel detection analysis for the HIV sample GEN014-

DR.01A (Table 2) are shown in Figure 2. Sequencing the 39 end of

the HIV gag gene and the complete protease was done in both

forward and reverse directions, using primers hiv-pf2 and hiv-pr2

correspondingly (see table S1). For the HIV sample GEN014-

DR.01A, the indel location was detected with minor error

(26 b.p) from the reverse sequencing primer, and the same indel

location was detected with a larger error (+36) from the forward

primer. The sample contained a mixture of HIV DNA variants;

some of them carried tandem repeats relative to other strains that

were in excess in the mixture. This error occurred due to some

unrecognized minor peaks at the beginnings of the high

polymorphism density regions of the chromatograms.

We assessed how well the BCV indel detection script could

determine the consensus sequence corresponding to a mixture of

DNA variants containing indels. The BCV built a main consensus

sequence that represented a pool of DNA variants that did not

carry indels relative to each other. Preferably, the pool constituted

the major portion of the mixture (main subgroup); in the case of an

inability to select a subgroup of variants that clearly dominated in

the mixture, the main subgroup was defined as the subgroup of

variants with higher similarity to vocabulary sequences (see

Methods). The phylogenetic tree that was shown at the Figure 3

had the following leaves:

a) clone sequences (black circles)

b) the consensus sequence obtained in the traditional way by

assembling two sequences (reads); high density polymorphism

areas corresponding to shifting patterns were trimmed

(named D.vqa01)

c) the main consensus sequences predicted for the hiv-pf2 and

hiv-pr2 chromatograms by separate (F.main, R.main) and

simultaneous analysis (FR. main)

d) the closest homologue found by Blastn [36] search in

GenBank [49] of clone sequences (H61-white circle)

e) the sequence from the BCV vocabulary, which was used for

predicting mixture content (HXB2)

f) other reference sequences, used to define the distance

variation within HIV subtype B

A high degree of heterogeneity was found in HIV quasi-species

in the given sample (black circles). Consensus sequences (black

squares) were located in the tree within quasi-species heterogeneity

range around the best blastn hit H61. We wanted to emphasize

that approximately 90% of the chromatogram derived with the

forward primer (hiv-pf2 ) was degenerate. Thus, the algorithm was

able to restore with reasonable accuracy the dominant DNA

variant on a chromatogram with a highly degenerate sequence.
Prevalence of pncA mutations in M. tuberculosis strains

isolated from clinical samples. The BCV was used to study

pncA mutation prevalence in M. tuberculosis samples. We studied 123

samples that were tuberculosis-positive by microscopy. Five of the

samples were negative for the pncA gene by PCR analysis, but were

positive for another M. tuberculosis genome locus. The pncA gene

was completely deleted in four of these PCR-negative isolates (3%

of total samples), and one sample (0.8%) had an insertion of the

mobile element IS6110, widespread in M. tuberculosis complex

group [50,51]. Among the 118 samples that were positive for the

pncA gene by PCR, 54 samples (44%) contained only the wild-type

M. tuberculosis strain. Of the remaining samples, 51 (41%)

contained pncA mutants carrying amino acid substitutions. In

eight of these samples, a wild-type strain was detected along with

the mutant (with one or more SNV). M. tuberculosis strains isolated

from 10 (8%) samples carried frameshift insertions in the pncA

gene; two of these samples (1.6% of total dataset) were a mixture of

mutant and wild type strains. Three isolates had pncA deletions,

and two of them (1.6% of the common set) were detected in a

mixture with the wild type. One sample (ID 11042; Table 2) was

counted twice since it contained a mixture of strains with a 6 bp

deletion in the pncA gene, strains with a 1 bp insertion, and wild-

type strains. As a control, we also analyzed this sample by cloning

Basecaller for DNA Mixture Deconvolution
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and sequencing 10 selected clones, confirming the presence of

indel-containing and wild-type strains in the sample. One sample

(ID 2243) contained isolate with 2 bp deletion in position 23

upstream from the start codon in the mixture with the wild type.

Overall, four (Table 2) of the 123 clinical samples contained a

mixture of wild-type strains and a mutated strain: three of them

were with the pncA gene frameshift mutation and one with a pncA

gene upstream indel. M. tuberculosis was isolated from these samples

and was grown in cultures; pyrazinamid resistance was confirmed

by direct phenotype tests on BACTEC MGIT 960 System. Indel

positions were confirmed by sequencing of selected clones for three

of these four samples.

Testing of the BCV detection limit and accuracy of indel

predictions. The ability of the BCV package to detect indels of

different sizes in minor DNA variants, which were presented in

mixtures in different portions, was estimated using two test

datasets, which were provided with CHILD [27] software. Both

datasets contained chromatograms for mixtures of two clones of

human mtDNA fragments with one of them having a deletion.

The deletions’ sizes were 9 and 51 bp for the first and for the

second datasets, respectively. For each fraction of minor variant,

three chromatograms (replicates) were obtained.

BCV identified the presence of minor components carrying true

deletions and components carrying indels of size 1 or 2 bp that

also were detected in some mixtures by CHILD software. These

indels were explained by the authors as artifacts of the cloning and

sequencing procedure. For a moderate size deletion of 9 bp, the

BCV was able to detect the presence of DNA variants with

deletion in mixtures with minor variant portions of 10% or more

(Table S3). Thus, BCV showed the same sensitivity as CHILD

software on this dataset, but it was significantly more accurate in

determination of the indel position. The error in estimation of the

indel position was 1 bp for all samples in which the portion of the

variant with deletion was 15% or more, whereas CHILD was less

accurate, with indel start position varying by as much as 200 bp

[27].

Table 2. Detected insertions and deletions (indels).

Organism SampleID Reads Predicted Indel (type*,position) Error in indel location

HIV GEN014DR.01A R (0,+12), 2134 26

F (0,+12), 2179 +39

M. tuberculosis 11042 F+R (26,0), pncA 298 0

F+R (0,+1), pncA 426 0

M. tuberculosis ms41 F+R (21,0), pncA 89 0

2243 F (22,0), pncA 23 n/a

2687 F+R (+1,0), pncA 325 0

HBV BV1 2F (21,0), 924 0

Indel positions were annotated by sequencing selected clones of PCR products. Indel positions are accounted relative to the beginning of the RefSeq genome sequence
or to the beginning of the Mycobacterium tuberculosis pncA gene. The number of reads supporting indel and their orientation (F/R) is shown. Error in indel location is the
difference between a predicted indel position and the position of indel shown by clone sequences; ‘‘n/a’’ shows that the cloning experiment was not done for a sample.
*type: (major strain vs. wild-type, minor strain vs. wild-type). E.g.,(0,+1) means major ; wild-type, minor has a 1 bp insertion.
doi:10.1371/journal.pone.0054835.t002

Figure 2. BCV-predicted shifting patterns and tandem repeat positions for the human immunodeficiency virus (HIV) sample
GEN014DR.01A show the multiple alignment of sequenced clones and consensus sequences for shifting patterns including the
main consensus sequence (A) and chromatogram trace images (B). Tandem repeats were highlighted by a frame on the sequence of clone 3.
The beginning of shifting patterns, as for example for the hiv-pf2|shift +12 pattern, is marked by arrows. Sequencing primers are hiv-pf2 (forward) and
hiv-pr2 (reverse). HXB2– is a reference sequence.
doi:10.1371/journal.pone.0054835.g002

Basecaller for DNA Mixture Deconvolution
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The BCV detection limit was estimated as 20% (Table S4) of

the minor DNA variant carrying large 51 bp indel. The result was

worse than that reported for CHILD, which was 5%. BCV

predicted deletion of 52 bp for one of the three replicates with a

fraction of 15%, and CHILD also erroneously estimated the size of

deletion as 52 bp for three samples with a fraction of 20% or more

of the variant with deletion. Also BCV failed to detect the variant

with deletion in one replicate with a portion of 20%. The BCV

exactly determined the positions of the deletion for all samples

with fractions of 30% or more. The variation of the deletion

coordinates was higher for CHILD than for BCV.

The study [27] also revealed the relative sensitivity and accuracy

of indel size detection of CHILD with ShiftDetector [32] and

Indelligent [25] software. BCV outperformed ShiftDetector and

Indelligent in sensitivity as well as in specificity of the indel size

detection; it demonstrated the same sensitivity and specificity as

CHILD at a moderate size deletion dataset, and it was less

sensitive and at least as specific as CHILD for a large deletion

dataset. In any case, BCV demonstrated very good accuracy in

detection of the indel position compared to CHILD.

We compared CHILD and BCV specificity for indel size

prediction on clinical samples (Table 2), which were annotated by

cloning and sequencing, so we knew the real sample sequences.

CHILD correctly predicted the indel size for all samples except the

sample ‘‘11042’’. CHILD predicted 7 bp insertions in both

forward and reverse chromatograms instead of the two 6 and

1 bp consecutive insertions relative to the dominating group of

strains. BCV predicted both insertions correctly.

Base-calling
The results of comparing base-calling accuracies of four

applications (BCV, ABI base-caller [52], TraceTuner v. 3.01

Figure 3. The comparison of BCV main sequence assembling results with sequences of cloned PCR products. Phylogenetic tree shows
relationships between consensus sequences (black squares) assembled from direct reads of the HIV protease gene fragment with sequences of
clones (black circles) for sample GEN014DR.01A. The consensus assembled from two opposite direct reads with trimmed degenerate parts is denoted
as D.vqa01; the one that is assembled by the BCV indel detection script is FR.main. F.main is the dominating DNA type extracted from a direct read in
the forward direction by the BCV indel detection script; R.main is the same read in the opposite direction. H61 is the blastn best hit to sequence
D.vqa01 used for scaling quasispecies variation (black circles).Reads in forward and reverse directions have different fractions of non-degenerate
positions: F: 56/503 = 11%; R –430/492 = 87%. B: a node in the tree corresponding to HIV subtype B branch. The phylogenetic tree is constructed by
the Minimum Evolution method [66] for the Maximum Composite Likelihood [67] distance matrix by the MEGA 5 software [68].
doi:10.1371/journal.pone.0054835.g003

Basecaller for DNA Mixture Deconvolution

PLOS ONE | www.plosone.org 6 January 2013 | Volume 8 | Issue 1 | e54835



[18], and PolyScan [24]) are shown in Table 3. BCV displayed an

advantage over the other applications in specificity on the test

datasets. The advantage reached 1% on the HAV dataset and 4%

on the HDV dataset as compared with ABI base-caller, and 1%

compared with PolyScan. The data models on which BCV and

PolyScan are based allowed degeneracy of up to 4 peaks in each

chromatogram position, unlike the other two applications. BCV

and PolyScan were more specific on the HDV testing set of

moderately degenerate sequences than ABI base-caller and

TraceTuner (Table 3). All the programs showed a similar

sensitivity exceeding 97% on both datasets. Table 3 shows the

identities of predicted and annotated sequences. Identity statistics

for BCV, ABI base-caller, and PolyScan were 89% on the HAV

testing set. This value was significantly better than the identity

obtained by TraceTuner. BCV and PolyScan had an advantage

over the other two programs on the HDV testing set.

Mixture Deconvolution
Calculating the quality of correspondence between

predicted and actual sample components. A very relevant

advantage of BCV over other methods of direct sequencing

chromatogram analysis, which are based on subtraction of the

reference sequence [23,24,28,53,54], is that BCV does not require

an exact match between vocabulary sequences and actual sample

components, and that, moreover, the number of variant DNAs

does not need to be known. We assessed the effects of maximal

distance (the number of differences) between vocabulary sequences

and the actual DNA variants on the Quality of Correspondence

(QC), which was defined as a measure of the relation of predicted

DNA variants to the real components of the mixture. The QC

measure was calculated on a phylogenetic tree that also contained

both predicted, actual DNA types and vocabulary sequences. If

the QC = 0, none of the predicted variants is situated within a

subtree that grew from the most recent common ancestor (MRCA)

of actual mixture components if QC = 1, all predicted sequences

are placed in the subtrees of sister branches of actual DNA variants

(see Methods S1 and Figure S1). For this, a model experiment was

prepared. We directly sequenced a revertase gene fragment from a

1:2 mixture of two complete HBV genome plasmids (F2 and D1

subtypes) using two primers ‘‘hbv-rt-F’’ and ‘‘hbv-rt-S’’, and then

used phylogenetic analysis to compare the predicted and actual

DNA sequences as described in (Methods S1). Figure 4 shows two

phylogenetic trees in which the predicted BCV DNA variants are

located at different distances from the corresponding sample

components. For clarity, only a small subset of the vocabulary is

shown. The black squares in Figure 4A mark the sequences

predicted by BCV using the complete vocabulary HBVRT (see

Methods). Each of two predicted sequences belonged to the same

subtype of HBV as the corresponding actual DNA (black circles).

The sequences (black squares) in Figure 4B were predicted using a

dictionary containing only two sequences; both of the sequences

were an approximate distance of 0.028 substitutions per site from

real sample components. One predicted sequence belongs to the

same genotype as the corresponding mixture component, and the

other belongs to the same subtype. The genotypes also included

the actual corresponding sequences (black circles). Figure 5 is a

plot of QC versus the maximal distance between vocabulary

sequences and the actual DNA variants for two reads. The QC

exceeded 0.85 in the [0, 0.028] distance range that roughly

corresponds to intra-subtype variations of the HBV revertase gene.

The distance between sample components F2 and D1 was 0.1. For

both reads, the QC value decreased slowly from 1.0 to the 0.5 and

its variation increased with distance.

16S rRNA analysis of clinical sample microbial

communities. Figure 6 and Table S2 presented the results of

taxonomical assignment of microbial populations from human

gastric mucosa clinical samples, based on 16S rRNA analysis by

two different methods: cloning and subsequent sequencing and

classification using RDP classifier [55,56], and direct sequencing

followed by analysis by BCV, filtering out of rare (,5%) or short

(,50% of chromatogram sequence length) predictions and

classification using STAP (see Methods S1). For both types of

analysis, sequences were searched by blastn [36] against the rRNA

Greengenes database [57]. Figure 6 shows that the diversity of

bacteria obtained by sequencing a small number of clones (10–15)

coincided well with the results of direct sequencing followed by

BCV analysis of three chromatograms per each sample. Table S2

shows the results of the search of the predicted sequences in the

16S rRNA Greengenes database. blastn hits with different

taxonomy assignments were shown for a sequence if the

assignment scores differed by not more than 2 bits. The similarity

between predicted sequences and database sequences was within

the 84–99% interval (the median is 95%); 9 of 12 BCV predicted

sequences had identities with the best blast hit that were higher

than 90%. All sequences except one were assigned by the STAP

method into families or into more special categories - genera or

species (table S2). Blastn was a suitable method to refine the STAP

classification of predicted sequences, as hits had sufficiently high

identities and had no contradictions with STAP (see Methods S1

and Figure S2 about the tolerance to errors of these classification

methods).

There was a good correspondence between bacterial commu-

nity characterizations by two methods: sequencing after cloning

and direct sequencing followed by the BCV analysis. There was a

(7/10) correspondence at the family level and a (7/10) at the genus

level (figure 6). Two of three discordant taxonomy categories

comprised only clone sequences: g. Streptococcus and Unclassifie-

d_Lachnospiraceae group, and one category (family Enterococcaceae)

comprised a predicted sequence only. Contradictions between two

methods could be explained at least in part by a small number of

Table 3. Comparison of the base-calling accuracy statistics of
Base-Caller with Vocabulary program (BCV) and other
programs.

HAV

BCV ABI Basecaller Trace Tuner PolyScan

Sn 0.97 0.98 0.98 0.98

Sp 0.90 0.89 0.86 0.89

ID 0.89 0.89 0.86 0.89

HDV

BCV ABI Basecaller Trace Tuner PolyScan

Sn 0.98 0.98 0.97 0.98

Sp 0.91 0.87 0.84 0.90

ID 0.90 0.87 0.84 0.89

Sequences predicted by one of the following basecallers – BCV, ABI Basecaller
3100, TraceTuner v. 3.01 and PolyScan – are compared with manually
assembled sequence datasets of genome fragments of Hepatitis A (HAV) and
Hepatitis D (HDV) Viruses. The reference sequences in the HAV dataset do not
have ambiguous IUPAC symbols and have moderate portion (3–14% ) of SNV in
the HDV dataset. The standard measures of sensitivity, specificity and identity
are shown.
doi:10.1371/journal.pone.0054835.t003
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selected clones: e.g. five genera were observed only by one clone

sequence per genus, and it was just by chance that these genera

had not been missed.

Four 16S rRNA sequences obtained by cloning and two

predicted by BCV in sample ‘‘97’’, and no sequences in sample

‘‘95’’, were classified into the Helicobacter genus (Figure 6). H. pylori

was also detected in sample ‘‘97’’ by PCR and the rapid urease

test; neither test detected H. pylori in sample ‘‘95’’.

Comparison BCV vs RipSeq. The only software that we

were aware of that could analyze the 16S rRNA gene sequencing

chromatograms from clinical samples was RipSeq [30]. This

software is a commercial Web server, and it processed only those

chomatograms obtained using their own primers due to algorith-

mic features. We processed eight chromatograms available as

usage examples (at RipSeq website https://www.ripseq.com/

login/login.aspx Accessed 2012 Dec. 20) by BCV. The results are

presented at Table S5 and are very similar to those provided by

RipSeq.

Discussion

Here we present new software, BCV, designed to analyze and

decipher chromatograms of direct sequencing of mixtures of DNA

variants. The procedure is based on a vocabulary compiled from

sequences that are relatives to the mixture components, or, in

more precise words, that represent all the available phylogenetic

groups (genotypes or subtypes) of the organism under consider-

ation, in order to achieve reliable detection of DNA variants that

belong to these groups. Unlike other applications [24–28,32,35],

BCV does not assume two components in the sample and does not

need to know the exact wild-type sequence. The latter advantage is

critical for numerous microorganisms and viruses.

Even for genomes with few mutations, direct sequencing

chromatograms could have rather complex base-calling profiles

due to indels, so the indel detection function of BCV is necessary

for some clinical applications. The BCV is accurate both in

detection of indel size and position (tables 2, S3 and S4), and it

outperforms competing applications [25,27,32]. BCV allows for

Figure 4. DNA types predicted by BCV for the sample composed from 2 components of D and F hepatitis B virus (HBV) genotypes.
Black squares show predicted DNA types; black circles show actual sample components (identical to the GenBank sequences X02496, and X69798).
Suffixes of sequence names correspond to HBV subtypes. Branches containing a mixture component are shown in bold. Right square brackets mark
branches that contain predicted DNA types. The tics below the panels show the time scale. A and B correspond to two different vocabularies. A. Tree
with DNA types predicted by BCV using the HBVRT vocabulary composed from 639 sequences of HBV genotypes A–H. B. Tree with DNA types
predicted by BCV with vocabulary composed from 2 sequences approximately 0.028 substitution per site distant from components of the df7 sample.
Phylogenetic trees are constructed by the Minimum Evolution method [66] for the Maximum Composite Likelihood [67] distance matrix by the MEGA
5 software [68].
doi:10.1371/journal.pone.0054835.g004
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the execution of a joint analysis of multiple chromatograms, which

are available for one sample, and thus it achieves a high accuracy

of indel detection.

The BCV indel detection functionality also builds the main

consensus sequence, relative to which the indels were detected.

This sequence corresponds to a pool of DNA variants that includes

most of the sample (or its sufficient part) and that can be aligned

without deletions. When the reads are assembled in the traditional

way, the highly degenerate parts of sequences have to be trimmed,

decreasing coverage. We demonstrate good accuracy of BCV in

assembling the main consensus sequence on an HIV sample

containing a mixture of strains, some of which have deletions in

the 39-end of the gag gene (Figure 3). Accuracy of the three main

consensus sequences (for forward and reverse directions and for

both altogether) was estimated by a phylogenetic analysis. Each of

the consensus sequences diverges from the clones to the same

degree as the clones are diverged from each other. The main

consensus sequence (see Methods for exact definition) could be

used for genotyping of the target DNA.

We have shown the applicability of the BCV algorithm for

assessing of rather complex DNA mixtures, such as bacterial

populations by the direct 16S rRNA gene sequencing. The

sequencing of 10–20 clones has a detection limit (10–20%) for

minor DNA variants [4] that is similar with direct sequencing

followed by BCV analysis. Thus, BCV could be a good alternative

for cloning in some practical applications if a relatively high limit

of detection of minor DNA variants is acceptable. BCV is not able

to give very informative results for complex mixtures but could be

very useful for characterizing the bacterial populations in clinical

samples from body sites or liquids that are normally sterile [30].

The availability of a representative vocabulary for the mixture

deconvolution is a key requirement for the success of the method.

Figure 5 illustrates that the sequences from a vocabulary are the

main source of information about linkage (correlations) of

Figure 5. Dependence of mixture reconstruction accuracy on
the level of similarity between vocabulary sequences and real
components of the sample. The sample df7 that comprised a
mixture of two HBV genome fragments of different genotypes (the
same as on the figure 4) was sequenced from two primers ‘‘hbv-rt-F’’
and ‘‘hbv-rt-S’’ (see Table S1); each read was processed by the BCV
using vocabularies of sequences that were on the different distances to
the real mixture components. The Quality of Correspondence (QC)
value of predicted and real components of the mixture is shown (see
Methods S1).
doi:10.1371/journal.pone.0054835.g005

Figure 6. Comparing classification of DNA sequences of
sequenced clones and BCV predictions of the 16S rRNA PCR
product from a gastric mucosa biopsy. Each line corresponds to a
single taxonomic category. Parentheses contain the number of
sequences of clones classified using the RDP Classifier (first value) and
the number of best alignments using blastn on the 16S rRNA database
Greengenes (second value); brackets contain the number of BCV
predictions classified by the method based on STAP (first value) and the
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nucleotides in the predicted DNA variants. It is difficult to restore

mixture components if the vocabulary sequences differ signifi-

cantly from the component sequences because the variation of the

amplitudes of some Sanger chromatogram peaks is too high to

restore the correct nucleotide without any additional information.

Thus, the mixture deconvolution functionality is recommended for

those studies for which the goal is to test whether the known (or

very close to the known) DNA variants occur in the mixture.

Despite this requirement, BCV is sufficiently different from

previously known applications that assumed identity between

variants of DNA and vocabulary sequences [34,35], while BCV

assumes only similarity. Figure 5 shows that BCV produces

valuable predictions when distances between the actual and the

vocabulary sequences are below the divergence inside HBV

subtypes (3%). The guide for selecting appropriate BCV

functionality is presented in table 1.

RipSeq software [30] is also currently able to decipher 16S

rRNA mixtures based on direct sequencing reaction. The

algorithm, however, has several limitations: it can process only

those chromatograms obtained from the proprietary RipSeq’s

primers; and it doesn’t produce any sequences at the output,

showing only match statistics for the RipSeq’s own pre-build

vocabulary. Thus, it cannot detect presence of species that are

distantly related to the vocabulary DNA variants. BCV is free of

these restrictions. Furthermore, in contrast to RipSeq, a commer-

cial web server, BCV is freely distributed in source codes and it

produces sequences at the output. Thus, a researcher can

iteratively extend the vocabulary used for BCV run based on the

blastn search for predicted variants against a comprehensive

database (e.g. Greengenes). If a prediction has a high BCV

expectation to be a component of the mixture and it has a low

identity in the blastn search it indicates a probable lack of the

corresponding species in the BCV vocabulary. The mixture

deconvolution procedure is then repeated after the missing

sequence is included in the vocabulary. To address the question

about the limit of minor variant detection by BCV, we used the

chromatograms provided in the study [27] (tables S3 and S4). The

limit of detection for BCV can be 10% of indel fraction for

moderate size indels (,10 bp). For large indel size (51 bp), the

higher detection limit (20%) is expected.

The SNV detection limit for the traditional method of direct

sequencing chromatogram analysis was estimated at 20–25%

[3,12,14] and highly depends on total template concentration [5].

Given that the main source of error in BCV DNA variants

prediction is the loss of secondary peaks in the chromatogram

sequences, we assume that, in general, the mixture deconvolution

functionality could not be more sensitive to minor variants than

the limit of detection for point mutations. This is because the

accuracy of basecalling is a bottleneck for the following

deconvolution step. Indeed, if only a few positions in the

chromatogram distinguish different DNA variants and many

artifact peaks have similar likelihood values, deconvoluting that

mixture correctly is difficult. Some sequencing artifacts, like the

shadow effect [27,58], cannot be distinguished from true

polymorphism; thus, variant calling is possible only if the

amplitudes of the minor variant in true polymorphic sites are

significantly higher than these artifacts.

In the cases of indel calling and deconvolution of highly

heterogeneous mixtures, e.g. SSU rRNA genes that carry a lot of

indels as common evolutionary changes [59,60], BCV can

improve sensitivity due to the excess of true polymorphic sites

caused by shifts (Figure 1). On the one hand, indels greatly

complicate the conventional analysis of direct sequencing chro-

matograms. On the other, they make mixture of homologous sites

in one chromatogram position improbable, and thus the main

source of error in predicted BCV DNA variants for 16S rRNA

direct sequences is due to random substitutions at random sites

rather than misinterpretation of homologous sites of different

species as a variant inside a single species. For this reason, the

more diverse a bacterial population is, the more DNA of the 16S

rRNA types can be classified in it, since an alignment of 16S

rRNA for more diverse species has a higher percentage of

deletions. To achieve a better diagnostic sensitivity, we recom-

mend making several reads of 16S rRNA gene for each sample

and combining BCV predictions as done for gastric biopsy samples

(see table S2).

BCV cannot be considered a universal alternative to the

experimental gold standard methods (SGS, pre-cloning and

sequencing, UDS) for estimation of diversity because BCV’s

ability to detect minor DNA variants is limited by the sequencing

method (Sanger). BCV can expand capabilities of population

sequencing in various scientific and clinical studies, and it is an

alternative to standard chromatogram analysis. For example, BCV

cannot be used for deciphering of HIV quasispecies because it is

impossible to provide a priori a representative vocabulary for such

a mixture, but if such a vocabulary were obtained using one of the

gold standard methods, it could then be used for monitoring

quasispecies dynamics by BCV, thus saving time and money.

Methods

BCV Software Data Flow
Figure 7 represents the data flow of the BCV software. The

main BCV application BCV::proc receives tree input files: FPOLY

file containing the peaks’ physical properties, BQS file containing

the probability scores of the corresponding peaks in the positions

and a vocabulary in FASTA format. The FPOLY and BQS files

are generated by PolyScan [24] that received the primary

sequence from TraceTuner [18] as input. The scores of the peak

probability from the BQS file are used for trimming the 39 artifacts

at the end of the chromatogram; peaks in the 39 tail with

probability scores lower than 5% are excluded. Indel detection is

done using the Perl script bcv_indels.pl. The script’s output

(*.indel.txt) consists of shift patterns, the main consensus sequence,

and the indel coordinates, which can be determined with respect

to the main consensus sequence and to a specified vocabulary

sequence. The script receives a multiple alignment of DNA

variants in the GFAS format, obtained by the greedy deconvolu-

tion procedure. The GFAS format is similar to the FASTA format;

it carries additional information ascribing sequences to chromato-

grams. Preparation of such an alignment is done by the Perl script

bcv_run.pl. The script receives BCV::proc output files (*.strains.-

fasta and *.decomplog.gfas) for the same sample as the input. The

dataflow is enveloped in the bcv_run.pl script that takes a path to a

folder with ABI chromatogram files and a project XML file with

specification of the correspondence of the chromatograms to

samples and required functionality (usecase).

number of best alignments using blastn on the 16S rRNA database
Greengenes unambiguously assigned to that category (second value,
see Table S2). Taxonomic tree represents the RDP classification. The
species names of the best blastn hits are marked with circles.
Inconsistencies in categorization between BCV and cloning are shown
in bold. A. Sample 95. B. Sample97.
doi:10.1371/journal.pone.0054835.g006
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BCV HMM Training
Parameters for the HMM of chromatogram base-calling were

trained by a Baum-Welch algorithm [61] on a training set of 80

sequencing traces. For each trace in the set, an annotating

sequence was available. The annotation was obtained by the

manually curated assembling of two traces of HAV genome

fragment 2C in both directions (NC_001489: positions 3796–

4443). The training annotation sequences did not contain

degenerate positions.

BCV Vocabularies
The BCV application uses a multiple alignment of target

genome fragments in FASTA format as the vocabulary for DNA

mixture deconvolution. To analyze direct sequencing chromato-

grams of the HIV genome fragment containing the 39 fragment of

the gag and complete protease genes (K03455:2052–2623), we

created the vocabulary HIVPRT (HIV protease). The genome

fragments were cut from whole genome sequences used in the

NCBI Viral Genotyping Tool [62] for HIV-1 subtyping. Another

vocabulary, HBVRT (HBV revertase), was used to analyze the

revertase domain of the polymerase gene (X04615:336–1161). It

consisted of 669 sequences extracted from the complete HBV

genome sequence alignment obtained from the HVDB [63]

database, and assigned to 1of the 8 HBV genotypes (A–H). The

vocabulary for analyzing the M. tuberculosis pncA gene contained

one sequence of the corresponding genome fragment

(NC_002755:2291656–2290984). BCV vocabulary of human

bacterial community 16S rRNA sequences was obtained from

the Greengenes [57] server by merging two multiple alignments:

HMP_strains_16S_aligned.fasta (Human Microbiom Project [64])

and human_assoc_gold_strains_gg16S_aligned.fasta.

Algorithms
This chapter thoroughly describes the algorithms implemented

in the BCV software.

Main Definitions
Input data. D1 We will use the term chromatogram to denote a

sequence of peaks: Z = z1…zN,, where.

the peak zi is a vector with the following components:

xi - the vector of the peak’s physical characteristics (height,

width, etc.).

ti - the peak’s coordinate (on the gel),

si[S,S: A,C,G,Tf g- the corresponding nucleotide.

N - chromatogram length (the total number of peaks).

Peaks in the chromatogram sequence are ordered by their

coordinates: Vivj, tivtj .

D2 The vocabulary:W~fwi Dwi~wi,1:::wi,DDwi DD,wi,j[Sg.
Derivative model abstractions. D3 The chromatogram se-

quence is an extended (UIPAC) nucleotide sequence that is ascribed

to the chromatogram by the mapping operation. The mapping index of

peak i maps the chromatogram to the sequence: 0vy ið ÞƒN; it is

0 for a false peak, or it is a position ain the corresponding

chromatogram sequence of generally ambiguous nucleotide codes

(IUPAC). The monotony holds for the indices: Vjwi,
y ið Þ=0,y jð Þ=0[y jð Þ§y ið Þ

D4 The chromatogram partition B~y 1ð Þ:::y Nð Þ is a sequence of

peak mapping indices. The length of the sequence is . There is a

specific order on the values ofy ið Þ, so the partition could be

represented in the equivalent way as the sequenceB~b1,b2,:::,bK of

positional frames ba for each chromatogram sequence position a.

ba~fkjiƒkƒj : y(i)~a,y(j)~a,y(k)[f0,ag,

Vl : 0vlvi,Vm : jvmƒN[y(l)=a ^ y(m)=ag

The subset of true peak indices in a positional frame TP(ba)

TP bað Þ5ba : TP bað Þk kƒ4,Vk[TP bað Þ[y kð Þ~a,

Vk0[ba : k0=[TP bað Þ ^ k0[ba[y k0ð Þ~0

Vk0,k00[TP bað Þ,sk0=sk00

8><
>:

Figure 7. BCV dataflow. Rectangles depict software applications;
rolls depict files; black arrows are the pipeline input and output streams
with the corresponding input and output file extensions shown in italic
bold. The file extensions are as follows: The input ABIF (*.ab1) file
contains the chromatogram itself and the ABI base-calling. TraceTuner
files (PHRED compatible): *.scf contains the chromatogram; *.phd.1 is
the chromatogram sequence, and *.poly is the secondary peak calling
results. PolyScan files: *.fpoly contains minor peak calls around the
primary sequence, and *.bqs contains the peak likelihoods. BCV pipeline
output files: *.viterbi.fasta contains the chromatogram sequence;
*.cluster.fasta is the DNA type reconstruction and *.indels.txt is the
indel report. The configuring and calling of TraceTuner, BCV::PolyScan
and BCV::proc applications is enveloped in the bcv_run.pl script. For
indel detection functionality the call of the bcv_indels.pl script is
followed of the bcv_run.pl. The bcv_run.pl prepares an alignment of
raw predicted DNA variants (from the *.strains.fasta file) with similar
sequences from the vocabulary that are listed in the *.decomplog.gfas
file. Both files are generated by the BCV::proc application. The input file
for the indel detection script bcv_indels.pl has the grouped FASTA
format and corresponding.gfas file name extension.
doi:10.1371/journal.pone.0054835.g007
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corresponds to an IUPAC symbol in position a in the base-

called sequence.

D5 The term DNA variant is used to denote a DNA molecule

present in the mixture. We assume that DNA variants are

homologous and may correspond, depending on experiment, to

viral quasispecies, bacterial strains, or homologous loci in a large

genome. We define a sequence of indices that map the

chromatogram peaks to the nucleotide sequence of a DNA variant

as u~u1:::uN : uj[ 0,1f g, 1ƒjƒN . If indexuj~0, then the peak

zj does not correspond to any nucleotide in the DNA variant u.

Only true peaks correspond to nucleotides in a DNA variant:

Vj,1ƒjƒN : uj~1[y jð Þ=0

For each positional frame, there is one and only one true peak

has to be selected.

Va,A!j=[TP(ba) : uj=0

D6 The DNA mixture is a set of DNA variants.

D7 The vector of a mixture’s fraction components: c,
PD
i~1

ci~1.

Hidden Markov Model (HMM)
The expression for the probability of a chromatogram partition

B is.

PSB D ZT~
PSZ D BTP Bð Þ

P Zð Þ (I),

whereP Zð Þ~
P
VB

PSZ D BTP Bð Þ. The task of chromatogram

decomposition can be represented as the optimization of the

functional (I):

PSB D ZT?maxB(II).

If we assume that the prior distribution P(B) is uniform, then the

problem reduces to finding maximum likelihoodL B,Zð Þ~PSZ D BT.

Likelihood is computed by an algorithm that generalizes the work of

Andrade-Cetto (2005) [37] to the case allowing ambiguity in

chromatogram sequence positions (the position’s degeneration). We

assume that the correct peaks in positional frames are in first-order

Markov dependence. We introduce an additional notation for true

peak sets:Z(TP(ba))~fzi Di[TP(ba)g. Letting r bað Þ~max baf gbe

the right-most true peak in the positional frame that is mapped to

sequence position a, the operator […] assigns a sub-sequence, like a

chromatogram sub-sequenceZ i,j½ �, iƒjor a false peak sub-sequence

Z(FP½i,j�)~fzk Diƒkƒj,y(k)~0g(sequencing artifacts in the [i,j]

range of peaks). Then the likelihood of the chromatogram can be

written as:

P(ZDB)~P(Z½1,r(b1)�)P(Z(FP½1,r(b1)�)DZ(TP(b1)))|

P
K

a~2
P(Z(TP(ba))DZ(TP(ba{1)))|P(Z(FP½r(ba{1)z1,r(ba)�)D

Z(TP(ba{1)),Z(TP(ba)))ðIIIÞ
The first term on the right side of the expression is the initial

probability of the Markov model as a product of two terms: one is

concerning the TP peaks subset for the chromatogram start and

the second is concerning the FP subset. The product on the second

line accounts similar terms in a first order Markov chain manner.

The functional (III) can be considered as an HMM, so it can be

optimized (II) by the Viterbi algorithm [38,39].

True peak likelihood.

P(Z(TP(ba))DZ(TP(ba{1)))

The sequence of true peaks in frame a can be written

asZ TP bað Þð Þ~ Xa,Ta,Sað Þ. Applying the Bayes formula, and

making a set of independence assumptions, e.g. assuming that

independence of the coordinate in gel on the physical character-

istics of the previous peak, we can rewrite the desired probability

as follows:

P(Z(TP(ba))jZ(TP(ba{1)))~P(XajTa,Sa,Z(TP(ba{1)))

P(TajSa,Ta{1,Sa{1)P(SajSa{1)

The last term of the expression is the a priori probability, which

reflects our knowledge of the nucleotide composition of the

genome locus. This probability can be expressed in terms of

dinucleotide frequencies estimated from vocabulary W. If the

peaks in the same positional frame are assumed to be indepen-

dent of each other, then we obtain the expression:

PSSa D Sa{1T~ P
Vi[TP bað Þ

P
Vj[TP ba{1ð Þ

pSsi D sjT. The evaluation of

expressionPSTa D Sa,Ta{1,Sa{1T can be based on the assumption

that peaks from different channels (A, C, G, T) appear in frame

a independently of each other. Thus, we write:

PSTa D Sa,Ta{1,Sa{1,WT~ P
Vi[TP bað Þ

PSti D Ta{1T; we calculate

the probability of a peak to be true in a given positional frame as

the peak’s most probable localization relative to true peaks in the

preceding positional frame PSti D Ta{1T~maxj[TP ba{1ð Þp ti{tj

� �
.

The likelihood for physical properties of true peaks in a

positional frame P(XaDTa,Sa,Z(TP(ba{1)))can be estimated on

the basis of additional assumptions:

1. The dependence of a peak’s physical characteristics X in the

positional frame on the coordinate vector Ta can be defined as

an interval function of a (quasi-homogeneous Markov model).

We used the following intervals: the body Lseq~ 1,::,450½ � and

the tail Lseq~ 450,::,seq:length½ �. Dependency of X on Ta is set

by parameter g: PSxi D si,gT,g[ body,tailf g.Within the inter-

vals, for each peak, we assume independence between the

peak’s characteristics x and coordinate t, as in [37]. If we

assume such independence, then P(XaDTa,Sa,Z(TP(ba{1)))~

P(XaDSa,Sa{1)~ P
Vi[TP(ba)

P(xi Dsi,g).

2. In fact, a relationship exists between the gel coordinate of a

peak and its amplitude: x = I. Peaks at the end of the

chromatogram decrease in amplitude while their width

increases. This dependence of peak amplitude of position is

described in [65]. We write the intensity of the signal in

channel s , corresponding to peak j in frame a ,

asIa sð Þ~e sð Þa sð Þ
P

Vui[U : ui,j~1

ci exp {btð Þ, where the e(s) is the

noise in channel s with the corresponding probability density

function:log e sð Þð Þ!N 0,s sð Þ2
� �

and summation is done over

all DNA variants having a peak j in the frame a. Maximum

amplitude in a channel s is expressed as a(s). For a particular

chromatogram, parameters a(s) and signal decay b can be

estimated by the least square method at non-degenerated

positional frames containing a single true peak. Another way to

Basecaller for DNA Mixture Deconvolution

PLOS ONE | www.plosone.org 12 January 2013 | Volume 8 | Issue 1 | e54835



estimate these parameters is to use a partition generated by

external software like PolyScan [24]. After normalization of

peak amplitudes to expected amplitudes, the positional

dependence can be removed:Ia sð Þ~e sð Þc sð Þ. From here, I

indicates normalized peak amplitude and c(s) denotes the share

of nucleotide s in the DNA mixture.

Finally, we obtain P(Z(TP(ba))jZ(TP(ba{1)))~ P
Vi[TP(ba)

P(xijsi,g)
PSti j Ta{1T

P
Vj[TP(ba{1)

p(sijsj).

False peak likelihood.

P(Z(FP½r(ba{1)z1,r(ba)�)DZ(TP(ba{1)),Z(TP(ba)))

.

False peak probability decomposition is done similarly

to true peak probability. Briefly, we denote

Z FP r ba{1ð Þz1,r bað Þ½ �ð Þ~ Xa{1,a,Ta{1,a,Sa{1,að Þ, where vec-

tors X, T, and S are a peak’s physical properties, coordinates,

and symbols, respectively. Performing the Bayes decomposition

and omitting the intermediate steps, we get

PSXa{1, a j Sa{1,a,gTPSTa{1,a j Ta{1, Ta, Sa{1, a, Sa{1, Sa, gT
P Sa{1,að Þ. Here, vectors with double (e.g., a-1, a) and single (e.g.,

a) indices correspond to false and true peaks, respectively. Again

we assume that physical properties X are independent of the

coordinates T within intervals of a quasihomogeneous Markov

model. To further simplify the expression, we associate the average

true peak coordinates ta -1 and ta in these positional frames with

vectors Ta-1 and Ta. We then express coordinates of false peaks

from vector Ta-1, a relative to the coordinates of the frames

d
a{1,að Þ

j ~
tj{ta{1

ta{ta{1
, where tj is a coordinate of the false peak in the

chromatogramzj[Z FP r ba{1ð Þz1,r bað Þ½ �ð Þ.We assume that the

probability P Sa{1,a,gð Þobeys a Poisson distribution to observe

false peaks between positional frames a-1 and a. Given the

additional assumption of independence of false peaks, we finally

write

P(Z(FP½r(ba{1)z1,r(ba)�)jZ(TP(ba{1)),Z(TP(ba)))~

P
Vj[FP½r(ba{1)z1,r(ba)�

P(xj jsj ,g)P(d
(a{1,a)
j jg) P

s[S

ln
(a{1:a)
s

s

n
(a{1:a)
s !

e{ls ,

where

n
a{1,að Þ

s ~
P

Vj[FP r ba{1ð Þz1,r bað Þ½ �
d sj ,s
� �

is the number of false peaks

between adjacent positional frames for each channel (A,C,G,T),

and ls is the expected number of false peaks.

DNA Mixture Deconvolution Algorithm
Setting partition B as the optimal solution to task (II), we find a

set of DNA variants (D6) that is the most likely to correspond to

this partition. We align sequences w from vocabulary W against

the partition. The algorithm of such an alignment is similar to an

ordinary pairwise global alignment algorithm in the

space Bk k wk k4. The third dimension corresponds to the nucleo-

tide composition of the positions in the partition. We then

choose a scheme of alignment weights proportional to

relative nucleotide frequencies in positional frames, so for

each sequence in the vocabulary, the best alignment will

mostly pass through the highest peaks in frames that contain

no peaks matched to these bases in the sequence. For each

positional frame a, we determine the relative amplitude of each

symbol fa sð Þƒ1, a~1:: Bk k, Az~ x,t,sð Þ[Z TP bað Þð Þ. If a peak in

this partition is treated as false, fa sð Þ~0. We represent relative

amplitudes as array F with dimension equal to the number of

peaks in the chromatogram Fk k~ Zk k. The mixture deconvolu-

tion algorithm determines a set of DNA variants U~U Bð Þ. DNA

variants will be represented by a sequence of elementsui~ 0,1f g,
where 0 means that a peak does not emit a base for a DNA variant

sequence. Below, we write the pseudo-code for the mixture

deconvolution algorithm:

Input. (Z, B, W).

Parameters:

Kmax - the maximum number of components in the mixture, so

1/Kmax is the minimum frequency with which the DNA variant

may be detected. This frequency is determined by the minor

variant’s detection limit of the sequencing method (Kmaxƒ10).

0vrƒ1- rate of the amplitude descent. A reasonable value is

r~0:5.

Output. the DNA mixture U = U(B) and the vector of the

mixture’s component fractions c.

Calculations:

1. Calculate the peak’s relative amplitudes in positions. Set up the

initial DNA variant fractions c uð Þ~0.

2. Iterate for each sequence wk in vocabulary W

2.1. Align sequence wk with (B, S, F). Alignment weight for a

true peak corresponding to the symbol s in positional frame a is

set to - fa(s)e ptð ÞpSpt D pt{1T, where t is an alignment position,

and e ptð ÞpSpt D pt{1Tcorresponds to emission and transition

probabilities for a pairwise alignment HMM in state

pt = (match, opening an X insertion, opening an Y ins., X

ins. elongation, Y ins. elongation, etc).

3. Take the alignment with the highest score. Set up elements for

a new DNA variant ui: ui,j = 1 for each peak j used in the

alignment, and ui,j = 0 otherwise.

4. Find peak j’ with the minimal amplitude fa(sj0 ), a~y(j0)from

all peaks used in the alignment.

5. For each peak where ui,j~1, change the relative amplitudes

tofy(j)(j)~fy(j)(j){rfy(j0)(j
0).

6. Add new variant u into the hash table U. Update the variant’s

fraction vectorc uð Þ~c uð Þzrfi0

7. Terminate if there is a positional frame, where all peak frequencies

are below the threshold - Aa : Vj : y(j)~a,fa(j)ƒ1=Kmax, else go

to 2.

8. Output (U, c).

DNA Variant Clustering
The sequences of DNA variants and their number depend on

the parameters that are used for mixture deconvolution – r, Kmax.

Since the sequence of each of the virtual DNA variants may

contain various errors, it is important to combine similar DNA

variants into clusters and to build consensus sequences for each

cluster that decreases the error level in predicted sequences of

DNA variants. Thus, the algorithm would make it possible to

identify significantly different DNA variants by their genetic

distance. To solve the clustering problem, we adapted the

algorithm proposed in [40] for 454 reads.

We assume that the mixture deconvolution algorithm at each

iteration i generates a unique variant. Consider a DNA variant

u ið Þ[U (here we used superscript indices to emphasize the

parameters depended on an iteration number) and a nucleotide

sequence w not necessarily belonging to vocabulary W. To use the

algorithm proposed by Quince [40], we need to build a model of

Basecaller for DNA Mixture Deconvolution
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the distance between the DNA variant and the sequence d(wDu(i)).
To consider a possible alternative choice of peaks in positional

frames by the mixture deconvolution algorithm, we introduce a

variant profile.

P ið Þ~ p ið Þ jð ÞDj[ 1, Zk k½ �,0ƒp ið Þ jð Þƒ1,
X

Vj’:y j’ð Þ~a

p ið Þ j’ð Þ~1,Vj : y jð Þ~0[p ið Þ jð Þ~0

8<
:

9=
;

.

The variant profile assigns probability that each true peak emits

a base for the variant u(i). The profile represents an uncertainty

model determining the chance that the peak is included into a

variant sequence generated at iteration i. The distance between

the variant and the sequence will be calculated under the

condition that the profile is also known: d(wDu(i),P(i)). We will

further assume that we also have a pairwise global alignment of a

DNA variant and a sequenceA u ið Þ,w
� �

, and, strictly speaking, the

distance will be a function of the

alignmentd(wDu(i),P(i))~d(A u ið Þ,w
� �

DP(i)). Here and below, unless

otherwise noted, variant u(i) is regarded as a nucleotide sequence.

Let us also set the base substitution modelpSs D wkT that

determines the probability that base wk depends on base s. We

then define distance.

d(wDu(i),P(i))~
{1

DDA u ið Þ,wð ÞDD ln
P(wDP(i))

P(u(i)DP(i))
ð1Þ

through the probability of sequence w to be obtained from the

profile of DNA variant P(i) and the substitution model.

Expression A u ið Þ,w
� ��� ��denotes the length of the pairwise align-

ment ignoring indels. Distance is normalized to alignment length in

order to accommodate the different lengths of DNA variants. We

now write an expression for calculating the probability that a

sequence was derived from the specified variant profile:

P(wDP(i))~ P
Vp(uj ,pk )~match

P(wkDa) ð2Þ

Where

PSwk D aT~
X

Vj0 :y j0ð Þ~a

pSwk D sj0Tp ið Þ j0ð Þ ð3Þ

The sum in expression (3) is taken over all true peaks in a

positional frame to which peak j belongs. The product in

expression (2) is taken over all matches in the alignment of

sequences w and u(i) p uj ,wk

� �
~Match, y jð Þ=0. Equation (1) can

be rewritten as the sum of positional distances in the alignment of

a DNA variant u(i) and sequence w using expression (2): Z

d(wDu(i),P(i))~
1

DDA u ið Þ,wð ÞDD
X

Vp(uj ,pk)~match

d 0(wkDuj)

where

d 0Swk D ujT~{ ln
PSwk D aT
PSuj D aT

,y(j)~a (1.2).

ProbabilitiesPSwk D aTwere calculated using expression (3). The

final output of the expectation maximization algorithm described

in [40] depends on the initial conditions. The initial variant

grouping was done by the hierarchical clustering algorithm similar

to the DOTUR [41]. We determine the distance between 2 DNA

variants using the formula.

d(u(i’),u(i’’)DP(i’),P(i’’))~
{1

DDA u(i’),u(i’’)ð ÞDD|

ln
2P(H Du(i’),u(i’’),P(i’),P(i’’))

P(H Du(i’),u(i’),P(i’),P(i’’))zP(H Du(i’’),u(i’’),P(i’),P(i’’))

ð4Þ

where the expressionP(H Du(i’),u(i’’),P(i’),P(i’’))defines the probability

of true homology between DNA variants u9 and u99 (i.e., the

probability that both variants were derived from a single profile):

P(Hju(i’),u(i’’),P(i’),P(i’’))~

1

1z
P(u(i’) jP(i’))P(u(i’’) jP(i’’))zP(u(i’’)jP(i’))P(u(i’)jP(i’’))

P(u(i’’) jP(i’))P(u(i’) jP(i’))zP(u(i’) jP(i’’))P(u(i’’)jP(i’’))

ð5Þ

Used in formula (4), the expression P(u(i)DP(i))is evaluated in

accordance with (2), assuming that w = u(i).

Below we write a pseudo-code for the expectation maximization

algorithm for clustering DNA variants:

Input. (U, {P(i)}).

Output. The set C of consensus sequences corresponding to set

U of DNA variants.

Calculations:

1. Construct a multiple alignment of DNA variant nucleotide

sequences. Denote ûu ið Þ representing the nucleotide sequence

of the DNA variant at i-th iteration of the mixture decon-

volution algorithm in the multiple alignment. The length of

this sequence is equal to the alignment length. In each

sequence position, the following characters are valid:

ûu
ið Þ

l [ A,C,G,T ,0{0f g.
2. Make initial associations of DNA variants into clusters.

Pairwise distances between variants are calculated in accor-

dance with expression (5). Pairwise alignments of variants are

retrieved from the multiple alignment (column containing

characters ‘-’ were removed). As a result, we obtain matrix Z,
which is a correspondence table for variants and clusters. See

[40] for details.

3. Iterate where matrix Z changes more than the specified

accuracy threshold from one iteration to the next:

3.1. The M-step: calculate the consensus nucleotide

sequences for DNA variant clusters Uj and their corresponding

weights tj. Expressions (6–8) use the following notations: Cj
l is a

character at position l in the consensus sequence of cluster j; K

is the number of DNA variants; i is a specified DNA variant;

zi, j are elements of correspondence matrix Z; and distances d9

are calculated according to expression (3). Consensus sequences

are calculated taking into account the contributions of mixture

fractions c of DNA variants (see 8).

C
j
l ~argmins[fA,C,T,G,0{0g

XK

i~1

zi,jc(i)d̂d(sjûu(i)
l ) ð6Þ
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     (1.1),

                                    



d̂d(sDûu(i)
l )~

1; (s[S ^ ûu
(i)
l ~0{0) _ (s~0{0 ^ ûu

(i)
l [S)

0; s~0{0 ^ ûu
(i)
l ~0{0

d 0(sDûu(i)
l ); s,ûu

(i)
l [S

8>><
>>:

ð7Þ

tj~
XK

i~1

zi,jc ið Þ ð8Þ

3.2. The E-step: Calculating the expected values of elements

zi, j of correspondence matrix Z. The expression for distances d

was calculated in accordance with expression (1.1).

zi,j~
tj exp ( {d(Cj Du(i),P(i))

s )

PL
k~1

tk exp ( {d(Ck Du(i),P(i))
s )

ð9Þ

Indel Detection Algorithm
Our next task is to use BCV to analyze a sample containing

homologous DNA variants, including some with indels. The

challenge here is to determine indel positions with respect to a

reference sequence from the vocabulary. We introduce the

following definitions:

D8. Main group of DNA variantsUmain5U is a set of variants that

align with each other variant from the main group without internal

deletions and that represent a sufficient proportion of the mixture

(cmain). The main group is formed as follows:

N All the groups of the DNA variants that align with each other

without internal deletions are sorted in order of their weights

decreasing.

N The first group in the list, whose weight is less than 60% of the

weight of previous group, is found. All the preceding groups

are referred as the ‘‘head of the list’’.

N If there is a single group at the head of the list, it is defined as

the main group; otherwise the main group is defined as a

group from the head of the list that contains the DNA variant

that was generated at the first iteration of the greedy

deconvolution algorithm (‘‘strain_1’’). This variant is the most

similar to the vocabulary sequences. If the ‘‘strain_1’’ is not a

member of any group in the head of the list, then the first

group (with highest weight) is defined as the main group.

D9. The d-shifting pattern is a set of non-overlapping intervals on

the chromatogram sequence corresponding to the optimal

partition B:Sd~ B a,azl½ �~babaz1:::bazl ,0vlƒK{af g,d[F,
d=0, where d is a pattern shift size. Intervals of the shifting

pattern obey the rule:

V0ƒkƒl, Aui[Umain,Auj[U ^ uj=[Umain,A ui,uj

� �
: p ui,azk,uj,

�
azkzdÞ~match, where A(ui, uj) is the optimal global pairwise

alignment of DNA variant sequences.

Ideally, a shifting pattern consists of a single segment. If d .0,

then the pattern corresponds to an insertion, and if d ,0, it

corresponds to a deletion relative to the main group. We define a

shifting pattern d = 0 as the main group of DNA variants; a value d
is called the shift size.

The beginning of a shifting pattern is the position on the

chromatogram sequence that corresponds to the minimal left

coordinate of the pattern’s segments (if reading in the forward

direction), or to the maximal right coordinate of the pattern’s

segments (if reading in the reverse direction).

The end of a shifting pattern is analogously defined. The end of a

shifting pattern exists if there is another shifting pattern for the

same chromatogram that begins at the 39 end to the right of the

pattern in the appropriate reading direction. Thus, a single shifting

pattern for a chromatogram has no end, and the last pattern in the

reading direction has no end. This restriction takes into account

the fact that peak amplitudes decrease towards the end, so more

positions lose minor peaks, making establishing the true positions

where a shifting pattern ends unreliable.

D10. The consensus sequence of a d-shifting pattern is the sequence of

IUPAC symbols Cazkzd~Fcons(fuj,azkzd DAui[Umain,A(ui,uj),
p(ui,azk,uj,azkzd )~matchg,c),AB½a,azl�[

P
d : 0ƒkƒl, where

Fcons is the consensus-building function that projects bases from

aligned DNA variants and their fractions on the IUPAC alphabet.

D11. An indel event is the deletion or insertion relative to the

main group of DNA variants. If the indel event corresponds to the

beginning or end of a shifting pattern, we set that event type d equals

to the pattern’s shift size. If d .0, then the indel event corresponds

to an insertion, and if d ,0, it corresponds to a deletion relative to

the main group.

For events corresponding to consecutive patterns, the type is

defined as follows. If 2 successive patterns in the chromatogram

reading direction have type values of d1 and d2, then the

corresponding event has type valued~d1{d2.

Additional conditions may be superimposed on the generation

of events, e.g, a limit on the maximum distance between

consecutive patterns.

For each event, we associate a pair of coordinates (lpos, rpos) on

the alignment, defining an interval in which an indel has occurred;

a pair of shift size values for shifting patterns (d1, d2) that caused

the event; and a likelihood (L) expressed in terms of alignment

weight of profiles corresponding to the main group and the shifting

pattern at each event boundary in the window of a given size:

e~(d,lpos,rpos,d1,d2,L).

To introduce the indel detection algorithm, we assume that

pairwise global alignments of DNA variants are taken from the

global multiple alignment of DNA variants predicted for a sample

for all covering chromatograms. We assume that this multiple

alignment also contains reference sequences relative to which indel

coordinates can be determined.

The pseudo-code for the indel detection algorithm is described

below.

Input. A multiple alignment of DNA variants MSA({U}) and

DNA variant frequency vectors {c} predicted by the deconvolu-

tion algorithm. Here, {…} means a set of elements corresponding

to chromatograms of a sample.

Output. Indel events with the maximum local likelihood.

Calculations:

1. DNA variants with pairwise alignments that have no internal

deletions join separately into groups for each chromatogram.

2. For each chromatogram, determine the main group of DNA

variants.

3. Build shifting patterns using definition 9.

4. Generate indel events using definition 11.

5. Estimate event likelihoods.

6. For each chromatogram, separately make groups of events

overlapping on alignment coordinates. Only one situation is
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possible when for an event e~ d,lpos,rpos,d1,d2,Lð Þ : d1~
0 ^ d2=0 _ d1=0 ^ d2~0, corresponding to the beginning

or end of a pattern, there is overlap with another event

corresponding to consecutive patterns e0~ d 0,lpos0,rpos0,d10,ð
d20,L0Þ; if d10=0 ^ d20=0 ^ d1~d10 _ d2~d20 holds, then

event e is rejected. This rule is based on the Parsimony

assumption to obtain the minimum number of events while

explaining all shifting patterns for a sample. If it is possible to

construct an event corresponding to consistent patterns for a

sample’s chromatogram, then this event is always within a set

with minimal cardinality.

7. Group all overlapping events of equal type values (d) that

correspond to different chromatograms.

8. For each group, determine the maximum likelihood event e*,

which is included in the final dataset.

Availability and Future Directions
The source code for the BCV software package is available at

the BCV website (http://basecv.sourceforge.net/) for gcc compiler

that is available for all UNIX-like (Linux, MAC, Cygwin)

platforms. See the website for the examples of the three

functionalities and for the documentation. The system require-

ments are quite moderate: the gcc compiler with installed Boost

and GSL libraries are necessary to compile/link; Perl5 is necessary

for the scripts to run. The program can work on any standard

desktop computer. The executable binary files for Win32 and

Linux are also available upon request.

The main limitation of the Sanger sequencing method is the

high variation of peak amplitudes in chromatograms, which

restricts the accuracy of predicted DNA variants for which the

vocabulary has no proper homologue and limits the determination

of a sample’s component fractions. Modifying BCV for pyrose-

quencing data (i.e., not Next Generation Sequencers) that possess

a much better signal-to-noise ratio can significantly improve the

predictive ability of the method. Another promising direction of

the method development is incorporation of a priori statistical

model of the target DNA if the model is known, e.g. from RNA

structure or from a known transcript function, primary or

secondary structure.

Supporting Information

Figure S1 Quality of correspondence of the predicted DNA

types to the sequences of known components of the samples. Left

tree contains the predicted sequence P (black square) and

references (sequences either of the known components or from

the dictionary). The right tree contains the reference sequences

only (a, b, c, e, f, O). The sequence O is an outgroup for the

rooting of the trees. The known components of the mixture are in

bold (a, e - black circles). Nodes G_e and G are corresponded

nodes (have identical leaf sets with exception of predicted

sequences). Node A is a most recent common ancestor (MRCA)

for all the known component sequences. Node K is a MRCA of

the annotated sequences in G subtree.

(PPT)

Figure S2 Error tolerance of blastn and STAP SSU classifica-

tions methods. We built the one dataset of randomly selected 100

sequences that correspond to a PCR fragment of 16S rRNA gene

and five datasets obtained by randomly substituting a certain

portion of sequence positions in the original dataset with the step

of 5%. Sequences in each dataset were classified by the STAP

phylogenetic method (see Supplementary Methods S1 for details)

and by blastn similarity search against the STAP database. A.

Fraction of sequences that kept their original taxonomic

assignment in each dataset for both methods – the STAP

phylogenetic analysis (Tree2) and blastn. B. Fraction of sequences

in each dataset that had blastn refinement of the phylogenetically

robust STAP categories: ‘‘0’’ – no differences between the blastn

and the STAP taxonomy assignments, ‘‘1’’ – no more than one

taxonomy level difference between blastn and the STAP taxonomy

assignments (this usually corresponded to blastn refinement up to

genera level of the STAP sequence assignment into family

taxonomic level).

(XLSX)

Table S1 Primers and PCR programs used in the study

(DOC)

Table S2 A table of the blastn hits in Greengenes database for

the BCV predicted sequences. Blastn hits with different taxonomy

assignments are shown for one sequence if the assignment scores

differ not more than two bits. A. Gastric mucosa sample #95. B.

Gastric mucosa sample #97. Read ID is a chromatogram

identifier, Cluster ID is an identifier of predicted sequence in

BCV output file. Identity shows the percent identity for a blastn

hit. Accession is an accession number of a hit sequence in the

Greengenes. ProkMSAname column contains the names of the

sequence source organisms. Greengenes taxonomy is the taxon-

omy category that contains the blastn hit sequence in the database.

STAP classification shows the taxonomy category, where the

predicted sequence has been assigned by STAP.

(DOC)

Table S3 BCV indel calling accuracy (9 b.p. deletion). BCV was

tested on the dataset provided in [27] study. The chromatograms

for two component mixtures have been processed by BCV. The

portion of a variant with deletion in a mixture is specified in the

sample name. Each mixture was sequenced in 3 replicates marked

by v1–v3, e.g. 15_v3 - the variant with deletion comprises 15% of

the mixture and the third replicate has been sequenced. Table

rows correspond to the deletions that are predicted by BCV. The

predicted indel sizes, location on the reference sequence (ref:loc),

location relative to the annotated indel (loc:error) are also shown.

The column ‘‘primer’’ contains the names of the sequencing

primers. The (!) sign marks the 9 b. p. indel predictions that BCV

reports as having the maximal likelihood for the corresponding

sample. Notes: 1. Cloned mtDNA fragments occupy positions 101.

367 of the reference sequence. 2. 249–259 - annotated position of

the 9 bp deletion [27]. Tandem repeat (CCCCCTCTA)2 is

located in positions 250–267, thus the deletion (249,259) is

indistingushable of the 9 bp delition (258–268). 3. Indels of length

1–2 bp are likely to be artificial and are ignored in subsequent

analysis.

(XLS)

Table S4 BCV indel calling accuracy (51 b.p. deletion). BCV

was tested on the dataset provided in [27] study. The

chromatograms for two component mixtures has been processed

by BCV. The portion of the variant with indel is specified in the

sample name. Each mixture was sequenced in 3 replicates marked

by v1–v3, e.g. v3_15 - the deletion variant comprizes 15% of the

mixture and the third replicate has been sequenced. In the table,

rows are deletions predicted by BCV. The predicted indel sizes,

locations on the reference sequence (ref:loc), locations relative the

annotated indel (loc:error) are shown. The ‘‘n.d.’’ means indel is

not detected. Notes: 1. Cloned mtDNA fragments occupy

positions 1–722 of the reference sequence. 2. 297–348 - annotated

position of the 51 bp deletion [27]. The major variant in the

mixture has unannotated insertion of 1 bp within (C)5 repeat in
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positions 311.315, thus the 51 bp deletion in the minor variant

corresponds to 50 bp deletion relative the reference sequence

(NC_012920). The motif (CCAAACCCCC) is located in positions

298.306 and in 348.356, thus the deletion (297,348) is indis-

tingushable of the 51 bp delition (306–357). 3. Indels of length 1–

2 bp are likely to be artificial and are ignored in subsequent

analysis.

(XLS)

Table S5 Results of the BLAST search of BCV-predicted DNA

variants in Greengenes database for RipSeq example chromato-

grams. The BCV mixture deconvolution analysis was applied to

usage examples available for RipSeq web server (https://www.

ripseq.com/login/login.aspx Accessed 20 Dec. 2012). For each

chromatogram the corresponding RipSeq prediction (RipSeq

pred.) is shown. Sequences predicted by BCV for each

chromatogram (their names are shown in the ‘‘BCV pred.’’

column) that have the expected portion in a mixture higher than

5% are searched by BLAST versus Greengenes database (http://

greengenes.lbl.gov/cgi-bin/nph-index.cgi Accessed 20 Dec. 2012)

with default parameters. The score of the best hit, identity,

alignment length, accession number and the organism name are

shown for each BCV prediction. Blast hits those scores are fewer

by no more than two bits than the best hit score also are shown.

For each genus only one prediction with the maximum score

allowed. Hits with identity less than 80% were ignored. The

predicted species for each chromatogram are in bold. *The

Peptostreptococcus micros is a basonym for the Parvimonas micra.

(XLS)

Methods S1

(DOC)
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