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Abstract

To predict the impact of environmental change on species distributions, it has been hypothesized that community-level
models could give some benefits compared to species-level models. In this study we have assessed the performance of
these two approaches. We surveyed 256 bird communities in an agricultural landscape in southwest France at the same
locations in 1982 and 2007. We compared the ability of CQO (canonical quadratic ordination; a method of community-level
GLM) and GLMs (generalized linear models) to i) explain species distributions in 1982 and ii) predict species distributions,
community composition and species richness in 2007, after land cover change. Our results show that models accounting for
shared patterns between species (CQO) slightly better explain the distribution of rare species than models that ignore them
(GLMs). Conversely, the predictive performances were better for GLMs than for CQO. At the assemblage level, both CQO and
GLMs overestimated species richness, compared with that actually observed in 2007, and projected community
composition was only moderately similar to that observed in 2007. Species richness projections tended to be more accurate
in sites where land cover change was more marked. In contrast, the composition projections tended to be less accurate in
those sites. Both modelling approaches showed a similar but limited ability to predict species distribution and assemblage
composition under conditions of land cover change. Our study supports the idea that our community-level model can
improve understanding of rare species patterns but that species-level models can provide slightly more accurate predictions
of species distributions. At the community level, the similar performance of both approaches for predicting patterns of
assemblage variation suggests that species tend to respond individualistically or, alternatively, that our community model
was unable to effectively account for the emergent community patterns.
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Introduction

The distributions of many species and communities are showing

rapid changes in the face of habitat and climate change [1–4].

Predicting where and under which scenarios changes in species

compositions are likely to occur is a major challenge in

fundamental and applied ecology [5]. Attempts to predict the

impact of global change on communities of species are usually

made by developing models based on statistical relationships

between species and their environment [5–7].

The most popular strategy for providing maps of actual or

potential species distributions has been to model distributions of

individual species one at a time [5]. This approach assumes that

species respond individualistically to environmental changes.

However, the distribution of species can potentially be influenced

by the distribution of other taxa, so models should better take into

account positive and negative associations between species [8],

especially on finer scales of analysis. It has been suggested that

community-level modelling [9] could confer significant benefits for

applications involving very large numbers of species, particularly

where a sizeable proportion of those species are rarely recorded in

the dataset. Unlike species-level modelling, for which species with

too little data are usually excluded from further analysis (for

statistical reasons), many community-level modelling strategies

make use of all available data across all species, regardless of the

number of records per species [9]. Moreover, this approach takes

into account the patterns of co-occurrence of species in the

statistical analysis, assuming that interspecific associations are

indirectly accounted for by patterns of co-occurrence (or co-

exclusion). Although some studies have compared community-

level models with individual distribution models, it is not clear

whether community-level models outperform individual models.

Elith & Leathwick [10] found that community-level models

generally performed better for plants, birds, mammals and reptiles

at a finer spatial resolution (#1 km). In contrast, Baselga & Araújo

[11] found that individual models had a greater ability to predict

the occurrence of 119 European tree species at a 50 km grid

square resolution. More recently, Chapman & Purse [12] found
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that community level models were slightly less accurate than

single-species models, but that they offered a highly simplified way

of modelling spatial patterns in British plant community. None of

these earlier studies compared the performance of single-species

and community models using independent validation data

collected at a different time. However, species distributions are

the result of dynamic processes in which the temporal dimension

cannot be overlooked [13]. Using data collected at another date is

an independent validation which is considered to be the best

option for measuring the ability of models to predict new situations

[5,6,14–16]. Indeed, several studies have shown that using non-

independent validation as cross validation can lead to an

overestimation of the predictive capabilities compared with

independent validation [17–19] and potentially to a poor

application of models in conservation planning. On fine scales,

land use plays a major role in species distributions [20,21]. Land

use changes are obviously related to human actions, especially in

agricultural landscapes where intensification of agricultural

practices has led to a sharp decline in natural land cover and a

homogenization of landscapes in Europe [22,23]. Unfortunately, it

is often difficult to obtain information on past land use and, in

practice, very few studies have explicitly assessed the predictive

performance of distribution models in a context of land use change

(but see [24,25]).

In this study, we compare the ability of community-level and

single-species models to provide accurate predictions of species

distributions in a context of land cover change. We attempt to

answer this question using distributional bird data recorded in

southwest France in two different years, 1982 and 2007. On fine

spatial scales (e.g. territory scale) biotic interactions between birds

can be strong. During the breeding season, individuals have a

strong conspecific and interspecific competition to defend their

territory from other individuals [26–28]. Moreover several studies

have highlighted potential associations between species in bird

assemblages using analyses of co-occurrence patterns [29,30]. We

thus hypothesize that community-level model can be substantially

more accurate than single-level models to predict bird assemblage

patterns. Specifically, we examine 1) whether the explanatory

capacity and the accuracy of species distribution predictions based

on land cover variables differ between community-level and single-

species models, 2) whether differences in predictive accuracy

between community-level and single-species models may be

associated with species number of occurrences, and 3) whether

the predictive accuracy of species richness and composition differs

between community-level and single-species models and, if so,

whether the amplitude of landscape change can explain these

differences.

Methods

Ethics Statement
Approval for this work and for the field campaigns was done in

consultation with all farmers of the study site.

Study Site
The study site lies between the Garonne and Gers rivers, in

southwest France (43u169280 N, 0u519110 E, WGS 1984) and is

part (approximately 260 km2) of the ‘‘Coteaux de Gascogne’’

Long Term Ecological Research site (LTER_EU_FR_003). The

area is hilly (altitude 200–400 m) and dissected by north-south

valleys, within a sub-Atlantic climate subject to both Mediter-

ranean and mountain influences. Forest cover is fragmented,

and currently covers some 15% of the area. Woodlands are

dominated by Quercus robur and Quercus pubescens. Dominant non-

forest land-use modalities consist of a combination of crops

(including maize, oilseed rape, sorghum, sunflower and forage

crop), grasslands, hedges and small woodlands. Grasslands are

not reseeded for at least five years (in accordance with the

Common Agricultural Policy), and sometimes several decades.

They are grazed and/or mowed. Hedges are mostly composed

of shrubs and sometimes trees, which on average are two metres

high.

Biological Data and Environmental Predictors
We used a set of 256 point counts, each recorded twice, in 1982

and 2007. In 1982, the point counts were settled in a stratified

design representing the diversity of land-use types (Figure S1). The

point counts were separated at least by 250 m. This distance is

greater than the home range size of most of the studied species

during the breeding period (usually less than 2 ha, [31]). In 1982

and 2007, the presence-absence of each bird species was recorded

within a 125 m radius around each point, during 20-minute

periods. Bonthoux & Balent [32] have shown that the count

duration (from 5 to 20 minutes) does not impact the explanatory

and predictive performances of species distribution models. The

counts were conducted between 6:00 and 11:00 in the morning

during the birds’ vocal activity peak. Very windy and rainy

conditions were avoided in order to limit any detectability

problems. The dataset consisted of species presence-absence

records to limit biases associated with abundance data. We

excluded raptor species from the analysis as the point count

method is not suited to their large home range, and urban species

(e.g. house sparrow, swallows) because the point-count distribution

was not stratified in such a way as to obtain a gradient of

urbanisation. The final dataset comprised 35 farmland and

woodland species (Table S1). In 1982, the rarest species was

Upupa epops (present in 6 point counts) and the most common

species was Sylvia atricapilla (present in 192 point counts).

For this study, we were limited to the use of two

environmental predictor variables (see below). In order to select

two variables, we started with six landscape variables that were

shown to be relevant to explain bird distributions [33]:

percentage of woodland, fallow, permanent grassland, crops,

length of hedge and a Shannon heterogeneity index based on

the percentage of each land cover variable. To quantify these

variables we used aerial photographs dating from 1979, and the

BDOrtho� orthorectified digital photograph database dating

from 2006 (French National Geographical Institute, IGN), the

landscape data closest to the years in which the bird censuses

were taken (1982 and 2007). We digitized land-use variables in

a 125 m buffer centred on each point count using ArcGIS 9.2

(Environmental Systems Research Institute, Inc.) and checked

the interpretation of aerial photographs with field observations

made during the bird censuses. These six variables were

submitted to a Principal Components Analysis (PCA) based on

1982 and 2007 data (N = 512). The first two components

accounted for 59% of the variance. The first axis was an

opening landscape gradient from wooded areas to open areas

with hedge. The second axis was a gradient from simple

landscapes with crops to heterogeneous landscapes with

permanent grasslands (Table 1). There was no significant

change along Axis 1 between 1982 and 2007 (paired t test,

t = 1.45, p = 0.10). In contrast, due to the intensification of

agricultural practices in this region [34], there was a significant

increase along Axis 2 between 1982 and 2007 of the percentage

of simple landscapes with crops at the expense of heterogeneous

landscapes with grasslands (t = 7.70, p,0.001) (Figure 1).

Comparing Community and Species Level Models
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Selection of Single-species and Community-level Models
Used

In accordance with Baselga & Araújo [11], we selected two

modelling procedures (single-species vs. community-level) that are

directly comparable because differences between their ouputs are

univocally attributable to their single-species or community-level

nature: GLM (Generalized Linear Model) and CQO (Canonical

Quadratic Ordination) [35]. CQO, like other ordination tech-

niques, explicitly accounts for co-occurrence and exclusion

patterns while enabling projections of the distribution of each

species. This community-level method can be viewed as a system

of simultaneous regression equations (simultaneous GLMs) to

integrate species occurrence/exclusion information (see [35] for

mathematical details of CQO). It is thus a more advanced

alternative compared with more familiar CCA (Canonical

Correspondence Analysis), because CQO does not make the

unrealistic assumptions made by CCA (for example equal

environmental tolerances and maxima for all species) and allows

the projection of the species responses as a function of

environmental predictors. CQO is fitted with GLM and assumes

quadratic responses of species to predictor environmental

variables. We are conscious that the shapes of species responses

to environmental gradients can be very varied but several studies

have shown that the quadratic shape is well suited to relationships

between birds and landscape components [36,37].

As proposed by Baselga & Araújo [11], we identified two

orthogonal variables (with PCA, see above) and fitted these

variables to 1) single-species distribution models (referred to as

GLM throughout the text) and 2) a community model simulta-

neously including all the species in a Rank-2 CQO model (referred

to as CQO throughout the text). CQO identifies a set of

orthogonal latent variables from a combination of environmental

variables. By using just two orthogonal variables we ensured that

the latent variables were equivalent to the individual variables

entering the model. With this procedure we ensured that

differences between the Rank-2 CQO and GLM models could

only be attributable to the co-occurrence/exclusion patterns.

Model Calibration
Data from 1982 were used to fit the CQO and GLM. Species

distributions were modelled individually using GLM with binomial

errors, logit link and quadratic functions (y = x+x2). Response

variables were presence-absence records and predictor variables

were the two axes of the PCA. No variable selection was

implemented and the quadratic linear terms of the two axes were

automatically included in models for all species in order to allow

full compatibility with CQO. For the community-level model, a

Rank-2 CQO was fitted to the occurrence of the 35 species, using

binomial errors, logit link and the two axes of the PCA as predictor

variables.

We found no evidence of spatial autocorrelation between the

models’ residuals based on non parametric spline correlograms

(‘ncf’ package), indicating that non-spatial statistical models were

appropriate [38].

Model Validation
First, to evaluate the models’ explanatory performances, we

calculated the percentage of explained deviance (% D2) for each

species. Then, we used an independent validation which is the

best approach to evaluate the predictive performance of species

distribution models [5,15]. We calibrated models on the entire

1982 dataset and compared the predictive performances of

CQO and GLM using data from 2007. We are aware that

some degree of dependence exists between the two dataset, as

they were recorded in the same area at two time periods.

However, in practical terms, we assume that these two datasets

are independent events, as the samplings were carried out 25

years apart. We tested agreement between observed and

predicted distributions by calculating four measures of accuracy:

Figure 1. Position of the stations along the Axis 1 and Axis 2 of the PCA in 1982 and 2007. The equation of the line is y = x.
doi:10.1371/journal.pone.0054179.g001

Table 1. Principal components of environmental variables.

Axis 1 Axis 2

Wood (%) 0.88 0.24

Fallow (%) 0.04 0.03

Grassland (%) 20.56 0.70

Hedge (m) 20.78 0.22

Crop (%) 20.38 20.90

Shannon index 20.55 0.70

Values in bold represent factor loadings contributing the most to each axis.
doi:10.1371/journal.pone.0054179.t001

Comparing Community and Species Level Models
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the AUC (area under the curve) of ROC (receiver operating

characteristic) curve, the sensitivity, the specificity and the Brier

index. The reliability of predictions is considered null for AUC

values ,0.5, poor when the AUC values are between 0.5 and

0.7, correct for values between 0.7 and 0.8 and good when they

are .0.8 [39]. Compared with AUC, which is threshold-

independent, the sensitivity and the specificity are calculated

from the confusion matrix. We used the prevalence (i.e. the

number of presences divided by the total number of point

counts) of each species in the calibration set as a threshold for

converting the predicted probabilities into presence-absence

scores [40]. Sensitivity is the probability that the model will

correctly classify a presence, and specificity is the probability

that the model will correctly classify an absence. The Brier

index, which is equivalent to RMSE for abundance data, is the

root mean square error between the observed and the predicted

values. The reliability of predictions decreases when Brier values

increase. The comparison between the explanatory and

predictive performances of GLM and CQO for the five criteria

was made using a Wilcoxon paired test. Finally, we used

Spearman correlation tests to assess a possible link between the

differences of performance of each modelling approach for the

five criteria (for example %D2
CQO 2 %D2

GLM) and the

number of occurrences of each species in 1982.

Projected Assemblages and Land Cover Change
The GLM and CQO models fitted to the entire 1982 dataset

were used to project each species’ occurrence probability under

2007 environmental conditions. There is currently a debate on

how to model species richness using stacking predictions based on

individual species distributions [41]. The approach based on

summing binary maps tends to yield a strong and constant

overprediction of species richness but can predict individual

species and thus community composition. Alternatively the other

two approaches - summed binomial trails based on predicted

probabilities and summed predicted probabilities - do not

overpredict species richness overall, but overestimate species-poor

sites while species-rich sites are underestimated, and reproduce

species richness patterns badly along an environmental gradient

[41]. Moreover they do not provide a single unequivocal final

species composition [41]. Because our goal was simultaneously to

project species richness and composition, we used an approach

based on summing binary maps.

Species richness was computed for each modelling approach

(SGLM, SCQO) as the sum of all presences projected by GLM and

CQO and for 2007 real observations (SOBS) as the sum of all

presences observed in each station. The difference between both

model values (DSMODELS = SCQO - SGLM) and the differences

between projected and observed richness (DSCQO = SCQO - SOBS,

DSGLM = SGLM - SOBS) were regressed against changes in

environmental predictors (DAxis1 = Axis12007– Axis11982 and

DAxis2 = Axis22007– Axis21982) to assess environmental trends in

models.

To examine differences in species composition between models

(bMODELS) and between models and observations (bCQO, bGLM)

we used the Simpson index of dissimilarity [42,43]. The Simpson

index is a measure of differences in composition independent of

the differences in richness between samples [43,44]. We then

assessed the link between these compositional dissimilarity indices

and the two environmental predictors DAxis1 and DAxis2.

All the above mentioned statistical analyses were carried out in

R (R Development Core Team 2009) using libraries VGAM and

PresenceAbsence.

Results

The explanatory and predictive performances of each modelling

approach (CQO and GLM) are summarized in Table 2. The

percentage of explained deviance was significantly and moderately

higher for CQO than for GLMs. Conversely, AUC and specificity

values were significantly higher for GLMs than for CQO. Brier

values were significantly lower for GLMs than for CQO,

indicating that the reliability of species distribution predictions

was better for GLMs based on this criterion. Sensivity values

tended to be higher for CQO than for GLMs but these differences

were not significant. There was a significant negative correlation

between the difference in explanatory performance (% D2) of

CQO and GLM with the number of occurrences of each species in

1982 (Spearman rank correlation, p = - 0.38, p = 0.018) (Figure 2),

but no significant correlation between the difference in predictive

performance of CQO and GLM and the number of occurrences.

Species richness projected for 2007 with CQO (SCQO) and

GLM (SGLM) were significantly higher than species richness

observed in 2007 (SOBS) (mean (SCQO–SOBS) = 8.50; SD = 3.45;

t = 27.49; p,0.001; mean (SGLM - SOBS) = 6.57; SD = 4.52;

t = 16.45; p,0.001). When the two modelling approaches’ richness

projections were compared, SCQO was significantly higher than

SGLM (mean (SCQO - SGLM) = 1.94; SD = 2.80; t = 4.54; p,0.001).

DSMODELS was not significantly related to DAxis1 but showed a

significant negative relationship with DAxis2 (r2 = 0.30, p,0.001).

DSCQO was not significantly related to DAxis1 but positively

related to DAxis2 (r2 = 0.08, p,0.001). DSGLM was not signifi-

cantly related to DAxis1 but positively related to DAxis2 (r2 = 0.28,

p,0.001) (Figure 3).

Dissimilarity between projected and observed composition in

2007 was moderate (mean bCQO = 0.38; mean bGLM = 0.39) and

not significantly different between approaches (t = 0.29, p = 0.77).

The lack of differences between approaches derived from the fact

that the dissimilarity between composition projected by CQO and

GLM was small (mean bMODELS = 0.07). bMODELS was not

significantly related to DAxis1 but showed a significant positive

relationship with DAxis2 (r2 = 0.04, p = 0.005). bCQO was not

significantly related to DAxis1 but negatively related to DAxis2

(r2 = 0.08, p,0.001). bGLM was not significantly related to DAxis1

but negatively related to DAxis2 (r2 = 0.11, p,0.001) (Figure 3).

Discussion

In this study, we assessed the ability of community-level (CQO)

and single-species models (GLMs) to predict species distributions,

richness and composition under land cover change, using, for the

first time truly independent validation data: models were fitted

with data obtained in 1982 and validated with data obtained in

2007 (i.e. after land cover change had actually taken place). Our

results showed that models accounting for shared patterns of

occurrence between species (CQO) explain better the distribution

of rare species in the calibration data set than models that ignore

shared patterns (GLMs). Despite this, the predictive performance

of GLMs was better based on AUC, specificity and Brier values. At

the assemblage level, when the predicted distributions of species

were combined, both CQO and GLM overestimated the observed

species richness, with the overestimation being larger for CQO

than for GLM. The difference between observed and projected

species richness varied along gradients of land use change, as the

tendency of CQO and, even more so, GLM to overestimate

richness was lower on sites where crop cover increased between

the two dates. CQO and GLM projected very similar community

compositions, but in both cases the difference between projected

and observed composition was moderate. Contrary to the results

Comparing Community and Species Level Models
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for species richness, differences between projected and observed

composition were lower in sites where the area dedicated to

permanent grasslands increased.

So far, studies of the relative performance of community-level

versus species-level models have essentially focused on the

predictive abilities of models and very few studies have compared

their explanatory abilities. Using multivariate adaptive regression

splines (MARS), Leathwick et al. [45] found that individual models

explain a greater amount of deviance compared with a multispe-

cies model. Guisan et al. [46] found that single-species models

explain the distribution patterns of trees and shrubs in Nevada

much better than the community-level model. However they used

very different mathematical models, including GLMs with

polynomial terms for single species and CCA (Canonical

Correspondence Analysis) that links species and environmental

variables with linear relationships, so it is unclear whether

differences they found are due to the type of model or to the

inclusion of shared distribution patterns. Chapman & Purse [12]

used species and community-level approaches based on the same

statistical family but they did not compare explanatory perfor-

mances. The two approaches used in our study to implement

individualistic and community analyses were comparable in that

they were based on the same regression algorithms and used the

predictor variables in the same ways. Under these circumstances,

we show that CQO explains species distributions slightly better

than GLM, with the difference being greatest for rare species.

In contrast with the previous result on explanatory perfor-

mance, we found the predictive ability of models for our system

(bird species at fine spatial resolution) was lower for CQO than for

GLM (based on AUC and Brier values). These results are in

agreement with those by Baselga & Araújo [11], who found that

GLM provide more accurate projections than CQO for European

tree species on large spatial scales. Using different modelling

algorithms, the same result was replicated for British plants by

Chapman & Purse [12], who found that univariate regression trees

and artificial neural networks had higher predictive ability than

their multivariate extensions. If the former results could be

generalised, the fact that taking into account shared patterns of

species induces poor predictive performances might mean that

transferability of shared patterns over time is low. In other words,

the fact that a higher explanatory performance in CQO does not

translate into a higher predictive performance could thus point to

a probable overfitting of data by the CQO model caused by the

fact that this model accounts for patterns of co-occurrence. Ferrier

& Guisan [9] hypothesized that the appropriateness of modelling

biodiversity at the community level, as opposed to the species level,

is likely to vary depending on the purpose of a given study.

Specifically, they hypothesized that community-level models can

bring benefits compared with species-level models when rare

species are present in the dataset. In our study, the community-

level model is better for explaining the patterns of rare species in

the calibration dataset, but single-species models are slightly more

useful to predict patterns of species distributions in the validation

dataset.

We also found that GLM predicted absences (higher specificity)

slightly more efficiently than CQO. In contrast, CQO models

Figure 2. Relationships between the differences in explained deviance (%D2) and AUC between CQO and GLM and the number of
occurrences of each species (Spearman rank correlation).
doi:10.1371/journal.pone.0054179.g002

Table 2. Explanatory and predictive performances expressed by five criteria for CQO and GLM.

D2 Sensitivity Specificity

mean (SD) range p mean (SD) range p mean (SD) range p

CQO 0.17 (0.09) 0.03–0.38 ,0.001 0.75 (0.20) 0.22–1 0.07 0.66 (0.18) 0.30–0.95 0.03

GLM 0.16 (0.09) 0.03–0.35 0.71 (0.24) 0–1 0.72 (0.18) 0.36–1

AUC Brier

mean (SD) range p mean (SD) range p

CQO 0.71 (0.09) 0.51–0.88 0.008 0.39 (0.13) 0.17–0.67 ,0.001

GLM 0.73 (0.10) 0.52–0.88 0.33 (0.11) 0.12–0.50

We did a Wilcoxon paired test to compare these performances between the two modelling approaches.
doi:10.1371/journal.pone.0054179.t002
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tended to predict better presences (higher sensitivity) than GLM.

This is relevant because reliably predicting species’ presences may

be preferred to a good prediction of absences in the context of

conservation studies, e.g. when the objective is to choose reserve

areas. These results are the opposite of those obtained by Baselga

& Araújo [11] for trees. They found that GLM had higher

sensitivity than CQO, but that CQO had higher specificity than

GLM. These results might indicate that relative performance of

GLM and CQO could be case-dependent, although in general

terms differences in predictive performance between GLM and

CQO seem small in both situations, suggesting that even when co-

occurrence patterns can a priori be hypothesized to be a highly

relevant factor, community-level models do not significantly

improve predictive performance, as suggested by present and

previous results [11,12,47]. Therefore, further research should

examine whether shared patterns do not have the previously

attributed relevance or whether community-level models fail to

account for biotic interactions (even if indirectly).

Both community-level and single-species models overestimated

species richness, compared to the richness values actually observed

in 2007. Previous contributions have shown that the aggregation

of predicted species distributions based on summing binary maps

tends to overestimate the true species richness [39,48].This

overestimation could be attributed to the fact that species do not

occupy all the sites where the habitat is suitable, i.e. species

distributions are not in equilibrium with the environmental

conditions [49–51]. Despite the fact that both approaches

overestimated species richness in 2007, the community-level

model (CQO) predicted even higher species richness than the

single-species modelling (GLM), as also found for European trees

by Baselga & Araújo [11]. This larger overprediction is due to the

fact that CQO predict more false presences than GLM.

Specifically, CQO predicted higher species richness than GLM

in sites where the amount of crops increased. Where landscapes

became more cultivated and homogeneous, GLM predicted the

presence of species associated with open landscapes (Alauda arvensis,

Emberiza calendra, Sylvia communis, Saxicola torquata). In these sites,

CQO overestimated richness by adding some other species that

are not characteristic of cultivated habitats but of heterogeneous

landscapes (e.g. Anthus trivialis, Carduelis cannabina, Emberiza citrinella,

Picus viridis). This result is linked to the fact that the predictive

performances of CQO compared with GLM were low for those

species. In other words, the effect of co-occurrence patterns makes

CQO to overestimate (compared with GLM) the distributions of

some species characteristic of heterogeneous landscapes, predict-

ing their presence in cultivated habitats where in fact they were not

found. Regarding species composition, the assemblages predicted

by both CQO and GLM for the 2007 conditions were moderately

different from the observed composition in 2007. Besides, due to

the overestimation by CQO described above, assemblages

predicted by GLM were often subsets of assemblages predicted

by CQO.

Interestingly, the accuracy of species richness and composition

predicted by the models differs according to the amplitude and

direction of landscape change. In localities where crops cover

increased, the species richness predictions tended to be more

accurate, whereas the composition predictions tended to be less

accurate. Taking into account the fact that observed richness

Figure 3. Differences in species richness and species composition projected by both approaches CQO and GLM under 2007
environmental conditions and differences in species richness and species composition projected by CQO, GLM and 2007 real
observations (respectively DSMODELS, bMODELS and DSCQO, DSGLM, bCQO, bGLM). These differences were correlated with changes in
environmental predictors between 1982 and 2007.
doi:10.1371/journal.pone.0054179.g003
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decreases with the increment in crops [33,52], both results taken

together suggest that composition is only more accurately

predicted when a high number of species is predicted to be

present, and the observed composition is then a subset of the

predicted composition. In sites where crops increased, the models’

species richness errors are smaller, probably because both

predicted and observed richness are lower. But in these conditions,

the predicted composition is very different from what is observed.

This means that under these circumstances of marked land cover

change, predictive models are not very useful, because even if they

predict the species richness accurately, they predict the presence of

species that are not actually observed. At the other extreme, in

localities where permanent grasslands increased, the models

correctly predicted the presence of observed species, but at the

cost of predicting many other species that are not actually

observed. So, the models identified sites where natural habitats

increased or remained as suitable for a high number of species, but

not all the species that could potentially live in a given locality are

actually observed there. This moderate predictive performance of

models may be due to the model structure. Although relevant in

terms of management actions, the land cover variables included in

the models indirectly reflect species’ resources (e.g. food availabil-

ity, breeding site). Land cover variables may be correlated

differently to resources on both dates leading to difficulties

predicting species distributions and community patterns. We just

included two landscape variables in models (the two first

components of a PCA built with height landscape variables).

Including other environmental information (e.g. local vegetation

structure, topography) could potentially increase the amount of

explained deviance and the accuracy of model predictions. Thus

the results of this study and specifically the relative accuracy of

alternative modelling approaches could be potentially different

given the availability of more environmental data. Another

potential reason that could explain these results might be the

above-mentioned non-equilibrium of species distributions with

environmental conditions [50]. Given that on the geographic scale

of this study no major dispersal limitation effects are expected, the

lack of equilibrium could be due to stochastic local absences of

bird species in environmentally suitable sites. Stochastic events

may play a major role for explaining habitat use patterns,

especially on small spatial scale [53].

The community-level approach considered in this study takes

into account the statistical associations of species along environ-

mental gradients but cannot explicitly model positive and negative

interactions between species. Therefore, it would be interesting to

compare this kind of community-level models with new promising

approaches that consider more explicitly species interactions [54].

For instance, the use of multivariate logistic regressions based on

spatial multispecies co-occurrence patterns [55] needs to be

explored in a context of environmental change.

A promising line of research is the use of predictive habitat

models to forecast conflicts between human activities and

biodiversity conservation. This is the case when assessing the

impact of land-use changes linked to evolving agricultural

practices [56]. This issue means a scale must be found for which

the process driving agricultural management matches the ecolog-

ical processes [57]. On a fine scale (4.9 ha) which is relevant for the

application of agri-environment schemes [58,59], we found that

the models only had a moderate ability for projecting species

distributions and assemblage patterns. Further studies are there-

fore needed to find a scale that links the human and ecological

processes. In a context of land cover change, SDM are widely used

tools for predicting general patterns of species distributions and

providing management recommendations. However, our results

show that model projections have to be used with caution,

especially in situations of marked temporal change in environ-

mental conditions.

It has been suggested that community-level models taking into

account co occurrence/exclusion patterns deserve to be used more

often, as an alternative or in addition to single-species models [9].

Here, we compared the ability of community-level and single-

species models to explain patterns and make accurate predictions

under land cover change using independent validation. Our study

support the idea that our community-level model (CQO) can be

better to understand assemblage patterns composed of rare

species. This point is important because many species of

conservation interest are rare. In contrast, our results suggest, in

line with previous studies, that our species-level models (GLMs)

would be better for predicting species distributions. At the

community level, the similar performance of both approaches

for predicting patterns of assemblage variation suggests that

species tend to respond individualistically or, alternatively, that our

community model was unable to effectively account for the

emergent community patterns.

Supporting Information

Figure S1 The study site showing the 256 point counts
performed in 1982 and 2007. In 1982, the point counts were

settled in a stratified design of 21clusters representing the diversity

of land-use types. The point counts were separated from each

other by 250 m in each cluster. Represented land uses are

woodlands (black), grasslands (dark grey), crops (light grey),

buildings (hatched) and ponds (white) (EuropeanUnion–SOeS,

CORINE Land Cover, 2006; this map was not used to calculate

land-use percentages in analyses, see ‘‘Method’’).

(TIF)

Table S1 The number of sites occupied by bird species in 1982

and 2007 (N = 256).

(DOC)
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