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Abstract

Background: The timing of associations between common genetic variants and changes in growth patterns over childhood
may provide insight into the development of obesity in later life. To address this question, it is important to define
appropriate statistical models to allow for the detection of genetic effects influencing longitudinal childhood growth.

Methods and Results: Children from The Western Australian Pregnancy Cohort (Raine; n = 1,506) Study were genotyped at
17 genetic loci shown to be associated with childhood obesity (FTO, MC4R, TMEM18, GNPDA2, KCTD15, NEGR1, BDNF, ETV5,
SEC16B, LYPLAL1, TFAP2B, MTCH2, BCDIN3D, NRXN3, SH2B1, MRSA) and an obesity-risk-allele-score was calculated as the
total number of ‘risk alleles’ possessed by each individual. To determine the statistical method that fits these data and has
the ability to detect genetic differences in BMI growth profile, four methods were investigated: linear mixed effects model,
linear mixed effects model with skew-t random errors, semi-parametric linear mixed models and a non-linear mixed effects
model. Of the four methods, the semi-parametric linear mixed model method was the most efficient for modelling
childhood growth to detect modest genetic effects in this cohort. Using this method, three of the 17 loci were significantly
associated with BMI intercept or trajectory in females and four in males. Additionally, the obesity-risk-allele score was
associated with increased average BMI (female: b= 0.0049, P = 0.0181; male: b= 0.0071, P = 0.0001) and rate of growth
(female: b= 0.0012, P = 0.0006; male: b= 0.0008, P = 0.0068) throughout childhood.

Conclusions: Using statistical models appropriate to detect genetic variants, variations in adult obesity genes were
associated with childhood growth. There were also differences between males and females. This study provides evidence of
genetic effects that may identify individuals early in life that are more likely to rapidly increase their BMI through childhood,
which provides some insight into the biology of childhood growth.
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Introduction

Obesity is a major global public health problem. The World

Health Organisation estimated in 2010 there were at least 42

million overweight children under the age of 5-years and one

billion overweight adults globally [1]. Childhood obesity is

associated with poor mental [2,3,4,5] and physical health [6,7]

and is one of the strongest predictors of adult obesity [8,9]. Adult

obesity, in turn, increases the risk of many diseases including

coronary heart disease, metabolic syndrome, some cancers, stroke,

liver and gallbladder disease, sleep apnoea and respiratory

problems, osteoarthritis and gynaecological problems [1]. It has

been proposed that there are critical periods early in an

individual’s life for the development of obesity including gestation

and early infancy, adiposity rebound and adolescence [10].

An individual’s susceptibility to obesity is thought to result from

a combination of their genetics, behaviours and environment. The

heritability of obesity is estimated from family and twin studies to

be between 40 and 80% [11,12,13], which appears to be age

dependent with younger individuals having higher heritability

estimates [14]. Genetic factors have an important role in

childhood obesity, but their role may be different to those that

operate in adulthood. Since the advent of genome-wide association

studies (GWAS), common variants within 35 genes have been

discovered to be associated with adult obesity [15,16,17,18,19]

and a further 48 genes associated with population variation in

body mass index (BMI) and weight [20,21,22,23,24,25,26] in

individuals of European descent. In particular, common variants

within the fat-mass and obesity associated (FTO) and melanocor-
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itin 4 receptor (MC4R) genes are associated with modest effects on

BMI (0.2–0.4 kg/m2 per allele) which translate into increased odds

of obesity of 1.1–1.3 in adults [24,26,27,28,29]. However, the

genomic regions discovered to date to be associated with BMI

account for less than 1% of the total variance in the BMI [30],

leaving much of the estimated heritability unexplained. In

addition, relatively few studies have investigated the association

between the adult BMI associated variants and childhood BMI

[23,31,32,33,34]. Zhao et al [31] investigated the association

between childhood BMI and 13 genomic loci reported to be

associated with adult obesity to find that nine of the loci contribute

to paediatric BMI between birth and 18 years of age.

Subsequently, several authors have investigated the association

between adult BMI loci and changes in growth over childhood.

Hardy and colleagues [33] took variants from the two most

commonly reported obesity genes, FTO and MC4R, to see if they

were associated with life course body size. They found the

association with BMI in both genes strengthened during childhood

up until 20 years of age before weakening throughout adulthood.

In 2010, Elks et al [34] used eight variants that showed individual

associations with childhood BMI to create an obesity-risk-allele-

score. This allele-score was strongly associated with early infant

weight gain but also with weight gain over childhood. Finally, den

Hoed et al [32] looked at BMI in childhood and adolescence

against a larger subset of replicated SNPs representing the 16 BMI

loci from the six genome-wide association studies in adults of white

European descent [22,23,24,26,35,36]. Together, these studies

begin to provide evidence that genetic loci associated with BMI in

adulthood start having an effect in childhood and even infancy.

Obesity develops over a period of time so investigating the

genetic determinants underlying this developmental process may

provide insights into mechanisms of the genetic associations.

Sophisticated longitudinal analyses allow questions to be addressed

that cannot be determined from cross-sectional analyses. These

longitudinal models assess patterns and duration of genetic effect

at baseline and over a time period and the differences in means

and rates of change of a trait. It is therefore important to

investigate the genetic component of BMI trajectory in order to

better understand some of the underlying biology of growth. The

analysis of longitudinal growth curves allows one to identify

specific stages in which genes play a central role.

A child’s growth rate profile often contains important informa-

tion regarding their genetic make-up and environmental expo-

sures; however, BMI trajectories are difficult to model statistically

due to the various changes in growth rate over childhood.

Children tend to have rapidly increasing BMI from birth to

approximately 9 months of age where they reach their adiposity

peak; BMI then decreases until around the age of 5–6 years at

adiposity rebound and then steadily increases again until after

puberty where it tends to plateau through adulthood. These

patterns of growth tend to be different in males and females where

females often reach each of the ‘landmarks’ (adiposity rebound,

puberty and plateau at adult BMI) at an earlier age than males.

These changes over time within each individual, as well as the

increasing variability over time of BMI between individuals, are

often difficult to capture accurately in a statistical model. This is

particularly the case when the aim is to detect modest genetic

effects. The World Health Organization recently conducted

research into statistical methods used to estimate growth curves

over childhood and examined 30 previously published methods, of

which only 7 could handle multiple measurements per child [37].

These methods range from non-linear, parametric curves [38] to

non-linear, non-parametric methods where the form of the curve

was allowed to differ for each subject [39,40] and from linear

mixed-effects models for longitudinal normally distributed data

[41,42] to a more general multilevel model, some with non-

parametric components [43,44,45]. Although many methods have

been previously used for growth modelling, not all are appropriate

for genetic association analyses or modelling growth profiles in

longitudinal birth cohorts.

We aim to compare various modelling approaches to assess the

genetic effects of BMI growth through infancy, childhood and

adolescence. To investigate the sensitivity of these different

modelling frameworks to detect genetic effects, we will use the

previously published adult obesity and BMI associated SNPs that

have been shown to be associated with childhood BMI and

explore their associations with childhood growth.

Methods

Subjects
The Western Australian Pregnancy Cohort (Raine) Study

[46,47,48] is a prospective pregnancy cohort where 2,900 mothers

were recruited prior to 18-weeks’ gestation between 1989 and

1991. Recruitment took place at Western Australia’s major

perinatal centre, King Edward Memorial Hospital, and nearby

private practices. The mothers completed questionnaires regard-

ing the children and the children had physical examinations at

average ages of 1, 2, 3, 6, 8, 10, 14 and 17 years. A DNA sample

was collected at the 14 and 17 year follow-ups. A subset of 1,506

individuals were used for analysis in this study using the following

inclusion criteria: at least one parent of European descent, live

birth, unrelated to anyone in the sample (one of every related pair,

including multiple births, was selected at random to exclude), no

significant congenital anomalies, a DNA sample and at least one

measure of body mass index (BMI) throughout childhood. Weight

and height were measured at each follow-up by trained members

of the research team [49]; weight was measured using a

Wedderburn Digital Chair Scale to the nearest 100 g with

children dressed in running shorts and a singlet top and height

was measured to the nearest 0.1 cm with a Holtain Stadiometer.

BMI was calculated from the weight and height measurements

(median 6 measures per person, interquartile range 5–7, range 1–8

measurements), with a total of 8,986 BMI measures. The study

was conducted with appropriate institutional ethics approval from

the King Edward Memorial Hospital and Princess Margaret

Hospital for Children ethics boards, and written informed consent

was obtained from all mothers. The cohort has been shown to be

representative of the population presenting to the antenatal

tertiary referral centre in Western Australia [48].

Genes
We wanted to investigate markers that have an effect on

childhood BMI, and more importantly, change in BMI over

childhood so selected the 17 genetic variants published in den

Hoed et al [32]. These SNPs were first discovered to be associated

with adult BMI and replicated in at least one study against

childhood BMI and change in BMI growth over childhood. At the

time of selecting SNPs for this study, they were the largest set of

SNPs shown to be associated with BMI over childhood and

adolescence. We did not include loci that have been shown to be

associated with only obesity risk but not BMI. Subsets of these 17

SNPs (either the same SNPs or a SNP in high LD [r2.0.8]) were

also presented by Elks et al [34] and Hardy et al [33], who showed

associations with changes in growth over childhood. Genetic

information on these 17 published genetic variants was available

for individuals in our sample, either directly genotyped SNPs

(rs925946 (BDNF), rs10913469 (SEC16B), rs2605100 (LYPLAL1),
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rs987237 (TFAP2B), rs10838738 (MTCH2), rs7138803

(BCDIN3D) and rs10146997 (NRXN3)) or from the best guess

genotype data imputed against HapMap release 22 (rs2815752

(NEGR1), rs6548238 (TMEM18), rs7647305 (ETV5), rs10938397

(GNPDA2), rs613080 (MRSA), rs1488830 (BDNF), rs8055138

(SH2B1), rs1121980 (FTO), rs17782313 (MC4R) and rs11084753

(KCTD15)). Genotyping and quality control has been described

elsewhere [50]. Briefly, our sample was genotyped using the

genome-wide Illumina 660 Quad Array. Genotyping was

performed on the Illumina BeadArray Reader at the Centre for

Applied Genomics, Toronto, Canada using 250 nanograms of

DNA. The genotype data was cleaned using standard thresholds

(HWE p-value .5.761027, call rate .95% and minor allele

frequency .1%). Individual level genotype data was extracted for

those SNPs of interest that were directly genotyped by the chip

and passed QC measures. Imputation of un-typed or missing

genotypes was also performed using MACH v1.0.16 for the all 22

autosomes with the CEU samples from HapMap Phase2 (Build 36,

release 22) used as a reference panel. Two variants in the BDNF

gene were investigated as they have previously been shown to be

Table 1. The phenotypic characteristics of the Raine sample.

All Male Female P-Value

(n = 1,506) (n = 773) (n = 733)

Age Year 1 (n = 1,375) 1.16 (0.10) 1.15 (0.10) 1.16 (0.10) 0.22

(yr) Year 2 (n = 402) 2.18 (0.14) 2.19 (0.14) 2.16 (0.14) 0.05

Year 3 (n = 994) 3.11 (0.12) 3.12 (0.13) 3.11 (0.10) 0.71

Year 5 (n = 1,324) 5.92 (0.18) 5.91 (0.19) 5.92 (0.18) 0.30

Year 8 (n = 1,320) 8.10 (0.35) 8.12 (0.34) 8.09 (0.36) 0.17

Year 10 (n = 1,274) 10.60 (0.18) 10.60 (0.19) 10.59 (0.17) 0.16

Year13/14 (n = 1,276) 14.07 (0.20) 14.07 (0.20) 14.07 (0.19) 0.55

Year 16/17 (n = 1,021) 17.05 (0.25) 17.03 (0.24) 17.06 (0.25) 0.06

BMI Year 1 (n = 1,375) 17.11 (1.40) 17.38 (1.38) 16.82 (1.37) 4.63E-14

(kg/m2) Year 2 (n = 402) 15.97 (1.29) 16.19 (1.28) 15.72 (1.25) 2.00E-04

Year 3 (n = 994) 16.15 (1.27) 16.29 (1.21) 16.00 (1.31) 2.00E-04

Year 5 (n = 1,324) 15.86 (1.76) 15.88 (1.70) 15.84 (1.82) 0.64

Year 8 (n = 1,320) 16.88 (2.54) 16.79 (2.47) 16.97 (2.62) 0.29

Year 10 (n = 1,274) 18.69 (3.41) 18.58 (3.38) 18.80 (3.45) 0.25

Year13/14 (n = 1,276) 21.45 (4.23) 21.21 (4.24) 21.71 (4.20) 0.03

Year 16/17 (n = 1,021) 23.02 (4.38) 22.83 (4.34) 23.23 (4.42) 0.15

Height Year 1 (n = 1,375) 0.78 (0.03) 0.78 (0.03) 0.77 (0.03) 1.04E-14

(m) Year 2 (n = 402) 0.90 (0.03) 0.91 (0.03) 0.90 (0.03) 3.00E-04

Year 3 (n = 994) 0.96 (0.04) 0.97 (0.04) 0.96 (0.04) 1.06E-09

Year 5 (n = 1,324) 1.16 (0.05) 1.17 (0.05) 1.15 (0.04) 6.05E-07

Year 8 (n = 1,320) 1.29 (0.06) 1.30 (0.06) 1.29 (0.06) 4.37E-06

Year 10 (n = 1,274) 1.44 (0.06) 1.44 (0.07) 1.44 (0.06) 0.97

Year13/14 (n = 1,276) 1.65 (0.08) 1.67 (0.09) 1.62 (0.06) 4.94E-26

Year 16/17 (n = 1,021) 1.73 (0.09) 1.79 (0.07) 1.66 (0.06) 1.94E-143

Weight Year 1 (n = 1,375) 10.34 (1.24) 10.67 (1.24) 9.99 (1.15) 5.03E-25

(kg) Year 2 (n = 402) 13.03 (1.49) 13.39 (1.48) 12.65 (1.40) 3.37E-07

Year 3 (n = 994) 15.06 (1.84) 15.42 (1.83) 14.69 (1.78) 3.99E-10

Year 5 (n = 1,324) 21.48 (3.37) 21.75 (3.42) 21.20 (3.30) 2.91E-03

Year 8 (n = 1,320) 28.42 (5.68) 28.58 (5.65) 28.24 (5.72) 0.28

Year 10 (n = 1,274) 39.01 (9.02) 38.80 (9.09) 39.23 (8.95) 0.40

Year13/14 (n = 1,276) 58.49 (13.44) 59.50 (14.49) 57.39 (12.11) 4.81E-03

Year 16/17 (n = 1,021) 68.69 (14.59) 73.15 (14.91) 64.12 (12.74) 3.91E-24

Number of follow-ups per person 5.97 (1.52) 5.96 (1.52) 5.97 (1.53) 0.91

Birth Weight (kg) 3.35 (0.59) 3.41 (0.59) 3.28 (0.58) 3.85E-05

Gestational Age (wks) 39.35 (2.11) 39.37 (2.05) 39.32 (2.17) 0.66

Preterm [% (N)] 8.77% (132) 8.03% (62) 9.55% (70) 0.34

Maternal smoking during pregnancy [% (N)] 25.22% (379) 22.77% (176) 27.81% (203) 0.03

Continuous variables are expressed as means (SD); binary variables as percentage (number).
doi:10.1371/journal.pone.0053897.t001
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independently associated with obesity [22] (r2 = 0.11). The 17

SNPs are described in Table S1, including the available sample

size with complete data for each SNP. These 17 SNPs were used to

investigate the sensitivity of each method to detect genetic variants

in terms of point estimates and standard errors (SEs) across various

time points (for those methods that could be compared). Each SNP

was incorporated into the model independently assuming an

additive genetic effect for the obesity risk allele. In addition, an

‘obesity-risk-allele score’ was created on the subset of individuals

with complete genetic data by summing the number of risk alleles

an individual had (n = 1,219) [51]. The alleles were not weighted

by their effect size as this has previously been shown to only have

limited benefit [52].

Statistical Analysis
Four popular methods were compared to assess the accuracy of

estimation of BMI growth trajectories and the ability to detect

genetic effects influencing these trajectories. These methods

included: Linear Mixed Effects Model (LMM) [41], the Skew-t

Linear Mixed Effects Model (STLMM) [53,54,55], Semi-Para-

metric Linear Mixed Models (SPLMM) and a Non-Linear Mixed

Model (NLMM), also known as SuperImposition by Translation

and Rotation (SITAR) [40]. Although there are many possible

statistical methods that could be utilized in this context, these

methods were chosen as they allow for adjustment of potential

confounders, appropriately account for the complex correlation

structure between the repeated measures, allow for incomplete

data on the assumption that data are missing at random, and are

computationally feasible in the context of candidate gene and

genome-wide association studies. Once the best fitting model was

defined for each method, the model fit for each of the methods was

compared. A small simulation study was also conducted using re-

sampling techniques based on 1,000 non-parametric bootstrap

data sets with replacement [56] from the Raine data and

calculating an R2 statistic for each method fit to these simulated

datasets.

LMM. The LMM with a polynomial function is a common

tool for growth curve analysis with continuous repeated measures.

For a set of time points varying from 1,.,t, the time trend in the

sample can be described by a (q-1)st-degree polynomial function,

with q # t. The growth curve LMM for the jth individual and tth

time point and with the time scale measured by age is as follows:

BMIjt kg=m2
� �

~b0zSibi Agejt

� �i
zu0j

zSkukj Agejt{Age
� �k

zejt kƒi

Where Age is the mean age over the t time points in the sample

(i.e. 8 years), bi are the parameter estimates for the fixed effects, ukj

are the parameter estimates for the random effects assumed

multivariate normal and the ejt‘s are the error terms assumed

normally distributed N(0, S), where S is the within-individual

correlation matrix. Both age and the natural log transformation of

age were considered as the time component to identify the optimal

underlying scale. Both fixed (i) and random (k) effects up to

polynomial of degree 3 were tested for significance. Several within-

individual correlation structures were considered, including

autoregressive, continuous autoregressive, exchangeable (com-

pound symmetric) and unstructured.

Following the guidelines outlined in Cheng et al [57], the initial

saturated model considered included a cubic function of age for

both the fixed and random effects and BMI on the natural log

scale, was used to compare covariance (random effects) matrices.

Initially, likelihood ratio tests (LRT) were used to assess the

required degree of polynomial function for the random effects to

fit the data accurately, while keeping the fixed effects the same and

specifying an independence correlation matrix for the random

effects. Next, a similar approach was used to investigate within-

individual correlation structures in addition to the random effects.

Finally, models with both untransformed and natural log

transformed age were compared using diagnostic plots such as

fitted verses observed values, fitted versus residual values and

distribution of both random effects and error terms.

STLMM. The assumption of multivariate normal random

effects and within-subject errors is often violated, particularly when

modelling the childhood growth curve. This may lead to biased

estimation of fixed effects and their SEs and thus to wrong

statistical inference, in particular of the genetic association-related

parameters. A common approach to achieve normality is to

transform the response variable but generally there is not a unique

transformation that could be used and the results of the analyses

might depend on the transformation used. To avoid transforming

Table 2. Characteristics of the best model for each method.

Scale of response Fixed effect parameters Random effect parameters
Within-individual
correlation matrix

Female LMM ln(BMI) 1+ age+age2+age3 1+ age+age2 corCAR1

STLMM BMI 1+ age+age2+age3 1+age None

SPLMM ln(BMI) piecewise cubic spline function of
age with knots at 2, 8 and 12 years

1+ age +0.5*age2 None

NLMM ln(BMI) size and a natural cubic spline
function of ln(age) for velocity with
3df

size and a natural cubic spline function
of ln(age) for tempo and velocity
parameters with 3df

corCAR1

Male LMM ln(BMI) 1+ age+age2+age3 1+ age+age2 corCAR1

STLMM BMI 1+ age+age2+age3 1+age None

SPLMM ln(BMI) piecewise cubic spline function of
age with knots at 2, 8 and 12 years

1+ age +0.5*age2 None

NLMM ln(BMI) size and a natural cubic spline
function of ln(age) for velocity with
4df

size and a natural cubic spline function
of ln(age) for tempo and velocity
parameters with 4df

corCAR1

doi:10.1371/journal.pone.0053897.t002
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the response and still obtain a valid inference under a non-normal

distribution assumption for the response, we utilised an extension

of the LMM model assuming a multivariate t distribution for the

error terms, ejt‘s, and a multivariate skew-normal distribution for

the random effects. The resulting model for the response over the t

time points is multivariate skew-t with specific parameters that

account for the asymmetry (skewness parameters) and long-tail

(degree of freedom of the t distribution) of the response distribution

[54]. The specification in terms of fixed and random effects was

identical to the LMM. No transformations were applied to either

BMI or age as the skewness in the data was accounted for by the

model structure.

SPLMM. Semi-parametric linear mixed models make use of

smoothing splines, which yield a smoother growth curve estimate

than the polynomial function in the LMM when fitting non-linear

relationships. The basic model for the jth individual and time-point

t is as follows:

BMIjt kg=mð Þ~b0zSibi Agejt

� �i
zSkck( Agejt{Age

� �
{kk)i

z

zu0jzSiuij Agejt

� �i
zSkgkj( Agejt{Age

� �
{kk)i

zzejt

Where kk is the k-th knot and (t – kk)+ = 0 if t # kk and (t – kk) if

t.kk, which is known as the truncated power basis that ensures

smooth continuity between the time windows.

Various numbers and positions of knots and the degree of

polynomial between knots were compared to find the best fit to the

data. Knot points were initially estimated visually from both

individual profiles and the population average curve in males and

females separately. To optimise the number and placement of the

knot points, we fit a series of models with the knot points placed at

6-month intervals around the estimated knot points and incorpo-

rated additional knot points to see if they improved the model fit.

The model with the lowest Akaike Information Criterion (AIC)

was selected as the final model. Finally, we investigated the degree

of polynomial, up to the third degree, required for each spline,

once again selecting the best model with the lowest AIC.

NLMM. The SITAR method [40] was recently defined to

summarize height growth in puberty (in particular peak height

velocity) and estimate subject-specific parameters that can be used

to investigate relationships with earlier exposures and later

outcomes. The SITAR method (referred to here as NLMM)

model has a single fitted curve at the population level and

individual level estimates of mean differences in size (shifting up or

down of the BMI curve), growth tempo (left-right shift of the curve

on the age scale) and velocity (shrinking or stretching of the age

scale).

The basic model for the growth curves is:

yit~aizh
(t{bi

e{yi

� �

Where:

yit = growth of subject i at age t.

h(t) = natural cubic spline curve of growth vs. age.

ai = random growth intercept that adjusts for differences in

mean height (size).

bi = random growth intercept to adjust for difference in timing

(tempo).

ci = random age scaling adjusting for the duration of the growth

spurt (velocity).

This model was fit with the three parameters (size, tempo and

velocity) as random effects, size and velocity as fixed effects, and

h(t) a natural cubic spline curve with 3 to 8 degrees of freedom (df)

fitted as fixed effects. BMI and age were fitted both untransformed

and natural log transformed, to identify the best fit to the data.

Model fit to the data were compared using AIC, deviance and

residual standard deviation. The estimates for the three param-

eters (size, tempo and velocity) were extracted for each individual

and used for genetic analyses.

Given that growth curves differ greatly between males and

females, particularly around puberty, and because different genes

may influence the timing of growth spurts in males and females,

sex stratified models were used for all analyses. Age was mean

centred prior to analysis. Due to the possibility of population

stratification in our sample given our sampling criteria of at least

one parent of European descent, a sensitivity analysis was

conducted adjusting the genetic analyses for the first five principal

components generated in the EIGENSTRAT software [58]. No

adjustment for multiple testing have been made as our goal was to

estimate a combined effect of SNPs that have already been

validated in previous studies and shown to be significantly

associated with childhood BMI and growth. All analyses were

conducted in R version 2.12.1 [59]; the spida library was used for

the SPLMM models and the sitarlib library was used for the

NLMM models. To enable comparison between the four methods,

maximum likelihood estimation was used for all mixed models.

Genetic loci were considered associated with BMI if the global

likelihood ratio test was significant at a a,0.05 level.

Results

Population Characteristics
Of the 1,506 children in the analysis, there are 773 males (51%)

and 733 females. Table 1 gives the characteristics of the Raine

sample used in the analysis. At birth, these babies were similar to

the Western Australian population of births with an average birth

weight of 3.35 Kg (SD = 0.59 Kg) and gestational age of 39.35

weeks (SD = 2.11 weeks), 25.21% of them were born to mothers

who smoked throughout pregnancy and 8.77% born preterm. The

mothers on average gained 8.79 kg (SD = 3.78) throughout

pregnancy and breast fed their infant for an average of 6 months

(IQR = 2–12 months). On average, the infants gained 6.98 Kg

(SD = 1.17 Kg) in the first year of life.

Model Fitting and Comparisons
The optimal model for each method was defined before any

cross-method comparisons were conducted. The selected models

for each method are summarized in Table 2.

LMM. The optimal LMM model for both males and females

was based on ln(BMI) and untransformed age, with cubic

polynomial of age in the fixed effects, a quadratic polynomial of

age in the random effects and a continuous autoregressive

correlation structure of order one. Hence, the final model for

both females and males was

ln BMI kg=m½ �ð Þ~b0zb1 Age{8ð Þzb2 Age{8ð Þ2z

b3 Age{8ð Þ3zu0zu1 Age{8ð Þzu2 Age{8ð Þ2ze

STLMM. The LMM model defined previously was used for

this method; however BMI was modelled on the untransformed

scale as the method accounts for the skewness and kurtosis of the

BMI distribution. The model would not converge with both linear
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and quadratic age components in the random effects so this was

reduced to only linear age. This was the most computationally

intensive method to fit as it uses an expectation-maximization

(EM) algorithm for parameter estimation, and hence took the

longest time to converge.

SPLMM. For females, the optimal model had three knot

points placed at two, eight and 12 years with a cubic slope for each

spline. The males displayed a similar curve to the females, also

with three knots at two, eight and 12 years and a cubic slope

between each knot.

NLMM. The optimal model for females had a natural cubic

spline curve with three degrees of freedom and both BMI and age

on the natural log transformed scale. Similarly, the optimal model

for males was with BMI and age on the natural log transformed

scale but with four degrees of freedom for the natural cubic spline

curve.

Comparisons. Table 3 displays the measures of fit used to

compare methods: R2, R2 from 1,000 simulated datasets,

observed-fitted values, number of SNPs detected and computa-

tional time. The R2, in conjunction with interquartile range of

variation of R2 estimated through simulations, clearly favour the

SPLMM as the best model fit for the females. The R2 estimates

from the simulations indicate that although the STLMM method

has higher R2 for both females and males, the interquartile range

is much larger for STLMM method, indicating the model fit is

more data dependent than the other methods, which is not

desirable for generalization to other cohorts. The conclusion for

the males is not as simplistic as the R2 is largest for the STLMM,

Figure 1. Q-Q plot of residuals for each of the methods by females (top four) and males (bottom four).
doi:10.1371/journal.pone.0053897.g001
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however with the considerably longer computational time and the

larger deviation the fitted values are from the observed values

indicates that this model might not be appropriate for large scale

genetic studies. Figure 1 displays the residuals from all four

methods in both males and females. The female residual plots

indicate the LMM, STLMM and SPLMM methods all have

residuals distributed close to the expected distribution (normal for

the LMM and SPLMM and skew-t for the STLMM). Several

within-subject outliers (at the tails of the distribution) were not

captured in all methods. However, the NLMM in particular had

additional outliers not present with the other methods. The LMM

and SPLMM methods both have some deviation from the normal

distribution at the top end of the curve signifying that they under

estimate the high BMI values. In contrast, there were an excess of

extreme residual values at both ends when using the NLMM

method indicating a poor fit for the data. It over estimates low

BMI values and under estimates high values, thus under estimating

within-individual variability and potentially leading to conserva-

Table 3. Statistical measures used to compare model fit of the four methods.

R2
R2 from 1,000 simulated
datasets [median (IQR)]

(Observed-fitted values)2

[median (IQR)]
Number of SNPs
detected

Average run time for genetic
modelT (median [IQR])

Female LMM 83.59% 83.60% (82.70, 84.44) 0.2705 (0.0579, 0.8755) 1 of 17 13.59 sec (13.41, 14.40)

STLMM 88.78% 91.80% (86.30, 95.54) 0.2728 (0.0613, 0.9007) 3 of 17 4505 sec (4490, 4784)

SPLMM 89.42% 89.47% (89.06, 89.84) 0.1720 (0.0374, 0.5871) 3 of 17 23.49 sec (23.41, 23.92)

NLMM 85.98% 85.97% (85.32, 86.65) 0.1678 (0.0350, 0.5752) 2 of 51 (three tests
per SNP)

0.01 sec (0.00,0.02)

Male LMM 80.67% 80.71% (79.64, 81.71) 0.2390 (0.0470, 0.8187) 3 of 17 15.84 sec (15.66, 16.55)

STLMM 88.72% 91.99% (87.88, 95.74) 0.2248 (0.0479, 0.8453) 4 of 17 3962 sec (3895, 3970)

SPLMM 87.59% 87.62% (87.24, 88.03) 0.1656 (0.0329, 0.5501) 4 of 17 24.07 sec (23.78, 24.52)

NLMM 85.10% 85.07% (84.41, 85.82) 0.1604 (0.0333, 0.5713) 5 of 51 (three tests
per SNP)

0.00 sec (0.00,0.02)

TMedian (IQR) of 100 models with the FTO SNP in R-64-bit version 2.12.1 on a 64-bit operating system with an Intel Core i7 CPU Processor (L 640 @ 2.13 GHz).
doi:10.1371/journal.pone.0053897.t003

Figure 2. Distribution of obesity-risk allele score, with error bars for mean BMI at age 14 years. The obesity-risk-allele score incorporates
genotypes from 17 loci (FTO, MC4R, TMEM18, GNPDA2, KCTD15, NEGR1, BDNF, ETV5, SEC16B, LYPLAL1, TFAP2B, MTCH2, BCDIN3D, NRXN3, SH2B1,
and MRSA) in the 1,219 individuals from the Raine study with complete genetic data. The error bars display the mean (95% CI) BMI at age 14 years
(the largest follow-up in adolescence) for each risk-allele score.
doi:10.1371/journal.pone.0053897.g002
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tive inference about genetic associations. The male residuals

displayed a similar pattern to females, although there were fewer

obvious outliers. In addition, as there was less skewness in the

males, the STLMM method deviated from the expected t

distribution but in the opposite direction to that of the females,

whereby the low values of BMI are underestimated. Based on

model fit, all four methods were adequate in modelling childhood

growth curves; however, the SPLMM was slightly better than the

other methods at accounting for outliers and had the best model

fit.

Genetic Results
Of the 17 SNPs, a likelihood ratio test indicated the LMM

method detected one significant association in the females and

three in males at the 5% level of significance, the STLMM method

detected three in females and four in males, the SPLMM detected

three in females and four in males and finally the NLMM method

detected no significant SNPs in either females or males for the size

parameter but 2 significant SNPs for the velocity parameter in

males. Results of all 17 SNPs can be found in Tables S2 (females)

and S3 (males). The first five principal components for population

stratification were not significantly associated with BMI in any of

the four methods and the genetic results of the 17 SNPs remained

consistent when adjusting for them (data not shown).

The obesity-risk allele score based on the genotypes at each of

the 17 loci was normally distributed and showed an approximately

linear association with BMI across childhood, based on the mean

BMI (95% confidence interval) for each score at each age

(Figure 2). When incorporating the risk-allele score into the four

longitudinal models, it was associated with increasing BMI in

females using all four methods however only three methods

detected an association in males (Table 4). For the females, the

LMM, STLMM and SPLMM methods all detected an increase in

BMI per allele increase in the obesity-risk-allele-score (LMM

b= 0.0046, P = 0.0216; STLMM b= 0.0492, P = 0.0410; SPLMM

b= 0.0049, P = 0.0181), in addition to an increase in linear slope

over time (LMM b= 0.0012, P = 0.00002; STLMM b= 0.0153,

P = 0.00003; SPLMM b= 0.0012, P = 0.0006). No significant

associations in the LMM, STLMM or SPLMM methods were

detected for the quadratic interactions with the risk-allele score,

however the cubic interaction was significant in the LMM

(b= 20.00001, P = 0.0067) and STLMM (b= 20.0001,

P = 0.0236). This indicates that, according the LMM and

STLMM methods, females with higher allele scores plateau to

adult BMI at an earlier age. In contrast, the NLMM method in

both females and males was unable to detect a significant

association with an increase in size or velocity, but did detect a

decrease in tempo (assumed to be adiposity rebound) for each

increase in risk allele. In the males, the LMM, STLMM and

SPLMM methods, also detected an increase in BMI (LMM

b= 0.0073, P = 0.0001; STLMM b= 0.0423, P = 0.0481; SPLMM

b= 0.0071, P = 0.0001) and BMI/year per allele increase (LMM

b= 0.0010, P = 0.0001; STLMM b= 0.0083, P = 0.0070; SPLMM

b= 0.0008, P = 0.0068). No significant associations in the LMM,

STLMM or SPLMM methods were detected for the quadratic

and cubic interactions with the risk-allele score, indicating that the

shape of the curve is consistent across the score categories.

Further analysis focused on the SPLMM model, as this method

was shown to give the best fit to these data. There are potentially

different genetic pathways leading to increased growth rate in

males and females as SNPs from different genes are associated

with BMI trajectory; in females, SNPs in the NRXN3, BDNF and

MRSA genes were significantly associated with BMI trajectory

whereas in males FTO, NRXN3, GNPDA2 and TMEM18 were

significant. Figure 3 displays the population average curves for

individuals with 15, 17 or 18 (25th, 50th and 75th percentile)

obesity-risk alleles. The growth curves in each of the genders show

different patterns; females begin their trajectory smaller than

males, they have an earlier rebound, and by the age of 18 years

they are beginning to plateau at their potential adult BMI. In

contrast, males go through puberty at a slightly later age resulting

in their BMI continuing to increase at the age of 18 years. It is

apparent that the genetic effect begins later for females, around

seven and a half years (P = 0.03), than males at four years

(P = 0.02)(Figure 4).

Table 4. Results from association analysis of the obesity-risk allele score with BMI trajectory using the four methods.

LMM STLMM SPLMM NLMM

Beta 95% CI P-Value Beta 95% CI P-Value Beta 95% CI P-Value Beta SE
P-
Value

Female Score 0.0720 0.0107,
0.1335

0.0216 0.0492 0.0020,
0.0964

0.0410 0.0758 0.0131,
0.1388

0.0181 Size 20.0003 0.0008 0.6910

Score*Age 0.0182 0.0099,
0.02645

1.68E-05 0.0153 0.0082,
0.0225

2.84E-05 0.0185 0.0080,
0.0290

0.0006 Tempo 20.0090 0.0030 0.0023

Score*Age2 20.00001 20.0008,
0.0008

0.9848 0.0005 20.00004,
0.0011

0.0685 20.0077 20.0214,
0.0061

0.2763 Velocity 0.0045 0.0024 0.0562

Score*Age3 20.0002 20.0003,
20.00004

0.0067 20.0001 20.0002,
20.00002

0.0236 20.0058 20.0128,
0.0013

0.1077

Male Score 0.1073 0.0553,
0.1595

0.0001 0.0423 0.0004,
0.0843

0.0481 0.1053 0.0516,
0.1591

0.0001 Size 0.0005 0.0007 0.4850

Score*Age 0.0144 0.0074,
0.0215

0.0001 0.0083 0.0023,
0.0144

0.0070 0.0122 0.0034,
0.0210

0.0068 Tempo 20.0072 0.0026 0.0053

Score*Age2 20.0006 20.0012,
0.0001

0.1043 20.00001 20.0005,
0.0004

0.9586 20.0003 20.0120,
0.0114

0.9573 Velocity 0.0009 0.0016 0.5820

Score*Age3 20.0001 20.0002,
0.000002

0.0550 20.0001 20.0001,
0.00003

0.1940 0.0007 20.0052,
0.0065

0.8270

doi:10.1371/journal.pone.0053897.t004
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Discussion

The current study has shown that of the four statistical methods

evaluated, the semi-parametric linear mixed model (SPLMM)

method was the most efficient for modelling childhood growth to

detect modest genetic effects in the longitudinal pregnancy cohort

study investigated. In addition, we have shown that there are

potentially different genetic pathways leading to increased growth

rate in males and females and that the obesity-risk-allele score

increases both average BMI and rate of growth throughout

childhood.

There are several different statistical methods that can be used

to model childhood growth. We selected four methods that would

allow for adjustment of potential confounders, appropriately

account for the correlation between the repeated measures, allow

for incomplete data, and were computationally feasible in the

context of candidate gene studies and GWAS. The evidence

suggested that the SPLMM method does a better job at

accounting for the variation in BMI growth than the LMM as it

had a smaller residual standard deviation. The SPLMM and

NLMM methods produce similar differences between observed

and fitted values. The LME and STLMM methods have a larger

range which indicates the prediction of BMI for each individual

over time is worst using both of these methods, introducing bias

whereby they over estimate low BMI values and under estimate

high BMI values. As seen in the residual plots, there are a small

number of outliers in this dataset, which are highly influential for

both the LMM and STLMM and will effect there ability for

accurate prediction. Furthermore, the estimates of skewness from

the STLMM model were relatively large (intercept = 4.5791

[SE = 1.0957] and slope = 2.2336 [SE = 0.6269] for females and

intercept = 2.8590 [SE = 0.5943] and slope = 1.6628

[SE = 0.4155] for males), which could be influenced by outliers

and result in inaccurate predictions. Although residual plots

indicate the STLMM method has the best fit to the data, it does

not produce the most accurate predictions. Based on model fit, all

four methods are adequate in modelling childhood growth curves;

however the SPLMM produces the most accurate fitted values and

can account for outliers.

Of the 17 genetic variants associated with adult BMI and

obesity risk that we investigated, the SPLMM method was able to

detect a higher proportion of associations with childhood growth

in both males and females than the other methods. The NLMM

method performed poorly in both males (five significant tests of 51)

and females (two significant tests of 51) consistent with it being

Figure 3. Population average curves from the SPLMM method in females and males. Predicted population average BMI trajectories from
1–18 years for individuals with 15 (lower quartile), 17 (median), and 18 (upper quartile) risk alleles in the allele score.
doi:10.1371/journal.pone.0053897.g003
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more conservative than the other three methods. The STLMM

method detected a number of genetic effects, however it was a

more computationally intensive method, which would prove

difficult in larger scale genetic studies such as genome-wide

association studies. Moreover, it is not as flexible as the other

methods in terms of extensions to evaluate gene-environment or

gene-gene interactions. The current study provides evidence that

the SPLMM method is the most effective method to detect genetic

associations and allows the flexibility for extensions into large scale

and more complex genetic analyses.

Single genetic loci typically have small effects on complex

diseases or explain only a small proportion of the variability in a

quantitative trait; therefore, major increases in disease risk are

expected from simultaneous exposure to multiple genetic risk

variants. A post hoc power calculation using 1,000 non-parametric

bootstrap simulations based on the Raine data indicated that this

study had 97% power to detect the FTO loci rs1121980 with

MAF = 0.41, which has one of the larger effect sizes on BMI, but

still had 83% power to detect a more realistic smaller effect size

like the BDNF SNP rs1488830 association in females with

MAF = 0.21. In contrast, the power to detect the allele score,

combining all risk alleles, was 95% in both males and females

separately. The current study is the first to investigate, separately

in males and females, an association between 17 published obesity-

risk loci as an allele score and BMI trajectory throughout

childhood and adolescence. Hoed et al [32] used a similar

approach with a 17-loci allele-score but focused on two cross-

sectional association analyses in pre2/early pubertal children and

adolescents. By utilizing a longitudinal design, the current study

reduced the number of genetic association tests conducted from

eight in a cross-sectional setting to one per gender, reducing the

necessity of adjusting for multiple testing and potentially missing

important genetic loci. A second study by Elks et al [34] evaluated

the association between adult obesity risk genes and growth

throughout childhood using a smaller subset of obesity suscepti-

bility loci and with analyses only up to age 11 years. Both studies

conducted analysis adjusting for gender; however, this does not

allow each gender to have different growth trajectories or the

investigation of different timing of the genetic effects. We found

substantial differences between males and females in the timing of

the adiposity rebound and plateauing towards adulthood. Addi-

tionally, we detected genetic effects had different timing and effects

in each gender. By combining males and females into one analysis,

these genetic differences may have been averaged out and the

biology underlying the differences may remain undetected.

A recent longitudinal study investigating the life-course effects of

variants in the FTO gene and near the MC4R gene demonstrated

that the effects strengthen throughout childhood and peak at age

20 before weakening during adulthood [33]. We detected a similar

pattern with the obesity-risk allele score throughout childhood,

where the effect begins around four years in males and seven years

of age in females and increases in size each year. One limitation of

the current study is that the cohort currently only has data

available up to 18-years. It will be of interest to follow the cohort in

Figure 4. Associations between the risk-allele score and BMI at each follow-up in females and males. Regression coefficients (95% CI)
presented on ln(BMI) scale from the Semi-Parametric Linear Mixed Model (SPLMM) longitudinal model, derived at each of the average ages of follow-
up. For example, a male with 17 obesity-risk-alleles is likely to have an ln(BMI) 0.005 units higher at age 6 than a male with 16 risk-alleles and by age
14 this difference will be increased to 0.010 units.
doi:10.1371/journal.pone.0053897.g004
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order to investigate how the combined effect of these SNPs

changes as the cohort progresses into adulthood. Further, it would

be valuable to confirm that the SPLMM method is the most

appropriate statistical method in other cohorts investigating the

genetic determinants of childhood growth and the patterns of

association across the life course.

Further studies are now required to assess the validity of these

findings and also extend them to perhaps focus on interactions

between genes and the environment. Interactions, both gene-gene

and gene-environment, are an important area of research that is

critical for understanding the mechanisms underlying obesity. We

performed a small simulation study using re-sampling techniques

based on 1,000 non-parametric bootstrap data sets with replace-

ment from the Raine data and calculating the power to detect a

gene-gene interaction. Two SNP combinations were investigated

to gather an understanding of the range of power in our study;

these included the two most commonly reported BMI associated

loci, FTO rs1121980 (MAF = 0.41) by MC4R rs17782313

(MAF = 0.23) as well as two loci with large minor allele frequency,

FTO rs1121980 by NEGR1 rs2815752 (MAF = 0.38). Based on

these simulations, our study had 58.0% power to detect an

interaction between two SNPs with larger minor allele frequencies

(FTO*NEGR1) and effect sizes (FTO 0.019 kg/m2; NEGR1

0.011 kg/m2), while assuming a multiplicative model for the

interaction. However, the power decreases rapidly with the minor

allele frequency (FTO*MC4R) and effect size (FTO 0.0044 kg/

m2; MC4R 0.0020 kg/m2) to 4.6%. We therefore believe that our

study was not appropriately designed to detect gene-gene or gene-

environment interactions but instead think that meta-analyses of

multiple cohorts might be a better way to tackle this problem.

In conclusion, we have shown that although all four statistical

methods investigated for modelling childhood growth were

appropriate to model growth curves in childhood, the SPLMM

method was the most efficient in these data in terms of predicted

values and detection of genetic effects. Further, we have shown

that there is some evidence that genetic variations in established

adult obesity-associated genes are associated with childhood

growth; however these effects differ by gender and timing of

effect. This study provides further evidence of genetic effects that

may identify individuals early in life that are more likely to rapidly

increase their BMI through childhood, which provides some

insight into the biology of childhood growth.
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