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Abstract

The failure of animals to fit all life-cycle stages into an annual cycle could reduce the chances of successful breeding. In
some cases, non-optimal strategies will be adopted in order to maintain the life-cycle within the scope of one year. We
studied trade-offs made by a High Arctic migrant shorebird, the red knot Calidris canutus islandica, between reproduction
and wing feather molt carried out in the non-breeding period in the Dutch Wadden Sea. We compared primary molt
duration between birds undertaking the full migratory and breeding schedule with birds that forego breeding because they
are young or are maintained in captivity. Molt duration was ca. 71 days in breeding adults, which was achieved by an
accelerated feather replacement strategy. Second-year birds and captive adults took ca. 22% and 27% longer, respectively.
Second-year birds start molt in late June, more than four weeks before captive adults, and almost seven weeks before adults
that return from breeding in late July–August. Adults finish molt in October when steeply increasing thermostatic costs and
reductions in food availability occur. Primary molt duration was longer in female than in male knots (all ages), which was
accordance with the somewhat larger body size of females. Since fast growth leads to lower quality feathers, the speedy
wing molt shown by Arctic-breeding birds may represent a time constraint that is an unavoidable and routine cost of
reproduction. So far it was hypothesized that only birds over 1 kg would have difficulty fitting molt within a year. Here we
show that in birds an order of magnitude smaller, temporal imperatives may impose the adoption of non-optimal life-cycle
routines in the entire actively breeding population.
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Received September 3, 2012; Accepted December 5, 2012; Published January 17, 2013

Copyright: � 2013 Dietz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was funded by operational grants from the NIOZ Royal Netherlands Institute for Sea Research. NWO-PIONIER grant to Theunis Piersma
and funding from the Waddenfonds (programme Metawad). The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interest exist.

* E-mail: M.W.Dietz@rug.nl

Introduction

Organisms have developed an endless variety of strategies to

exploit what the most productive seasons offer and to cope with

what the harshest seasons dictate. Relatively mobile animals have

opportunities to use resources and avoid environmental stressors

by strategically moving across the seasonally changing landscapes

[1,2]. Nevertheless, there is one hard boundary condition for all:

the length of the year [3–5]. Whether sedentary or migratory, to

cope with the seasonal changing environments, adult vertebrates

each year go through several consecutive life-cycle stages during

which they adjust their morphology, physiology and behavior

[6,7]. To maximize reproductive opportunities, animals will

generally try to complete all necessary seasonal activities within

the period of a year [5]. Small species with shorter life-cycle stages,

or animals with fewer such stages per year, are predicted to be

relatively flexible in the timing of these stages [4,7]. For some

animals, particularly larger ones, it will take longer to complete a

full cycle of life-history stages. This may also apply when mutually

exclusive activities, such as breeding and migration, are necessary

or when maintenance of plumage or pelage (e.g. flight feather

molt) requires dedicated time [4].

Some bird species carry out molt at the same time as other life-

cycle stages [7,8]. Molt can also be interrupted and spread over a

longer time [9], and the rates and extent of molt can be adjusted to

individual circumstances [10,11]. Birds that accelerate molt incur

costs in terms of increased daily energy costs for molt, flight and

thermoregulation, decreased flight abilities and therefore increased

predation danger, and a lower quality of feathers grown, resulting

in negative effects on e.g. pigmentation or ornaments, length,

resistance to wear, and insulation [10,12–21]. In long-distance

migrant shorebirds, i.e. habitat specialists with tightly timed

annual cycles [22,23], wing molt rarely overlaps with breeding,

and even more rarely with migration [12,24]. North temperate

wintering shorebirds have to complete molt before the onset of

severe weather conditions in late autumn [12,25] when they may

be faced with time constraints on the completion of molt.

To examine possible trade-offs between breeding and migra-

tion, and wing molt, we investigated timing and duration of

primary molt in red knots Calidris canutus islandica in comparative

and experimental ways. These birds breed on the High Arctic

tundra in Greenland and Canada, and molt and winter in the

Dutch Wadden Sea, the UK, and the French Atlantic coast [26].

Our study focused on red knots wintering in the Dutch Wadden

Sea. We compared their performance with those of birds not

spending time on breeding and migration. These include second-

year birds that remain in the Wadden Sea the whole summer

[24,27] and birds kept in captivity in outdoor aviaries. The latter
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two categories were not constrained in time or food, and served as

a reference point against which actual molt of possibly time-

pressed reproducing adults were compared.

Materials and Methods

Ethics Statement
All handling of the birds complied with the Dutch Flora and

Fauna Law and the Dutch Law on Animal Experiments, and was

covered by the permit DEC-NIOZ-08.01 issued by the Animal

Experiments Committee of the Royal Netherlands Academy of

Sciences (DEC-KNAW). Mist netting of the red knots was

supervised by very experienced bird catchers, who also ringed

the birds and measured their biometry and scored molt. The birds

were released as soon as possible. Molt scoring of the captive Red

Knots was part of the caretaking routine and did therefore not

impose any extra discomfort on the animals. The red knots were

brought into captivity for other purposes several years earlier.

Life Cycle Stages of Red Knot Calidris canutus islandica
In June, red knots (subspecies islandica) breed at the arctic tundra

of Greenland and Canada. Both parents incubate the eggs, but

after hatching, the females leave to prepare for migration to the

wintering grounds in the Dutch Wadden Sea, the UK, and the

French Atlantic coast [26,28–31]. The male cares for the young.

When the young are independent, the males depart to wintering

grounds [31]. The young depart later and migrate independent of

the adults. Due to this asynchrony, and because most but probably

not all birds fly directly to the wintering areas without a stopover

[27], the arrival period at the wintering grounds is long (July–

September), with first the adult females, then the adult males and

lastly the young arriving [31,32]. Adults start molting flight and

body feathers shortly after arrival [23,25,27,33]; the juveniles do

not molt flight feathers. At the end of winter, a second period of

body molt starts resulting in a full rufous breeding plumage in

adults in early May [25]. During this body molt, adults prepare for

spring migration in early April, and fly the first leg of migration at

the end of April [32]. After a stopover at Iceland or northern

Norway, the knots reach their breeding grounds in late May/early

June [28,32]. Second-years, i.e. birds born in the year before,

remain in the wintering area during summer [25,27]. However,

we cannot exclude that a few second-years may migrate

northwards as far as the staging areas (to the best of our

knowledge no second-year birds were ever recorded in the

breeding areas), nor can we exclude that a few adults may

oversummer in the Wadden Sea e.g. due to poor condition.

Free-living Birds
In 1998–2006, red knots were caught with mist nets close to a

high tide roost in the Dutch Wadden Sea (Richel, 53u169N

5u089E, or Simonszand, 53u319N 6u239E) during New Moon

periods (dark nights) in July–October. After capture, they were

banded and body mass (61 g), general biometry and feather

growth scores determined. Primary growth was scored in the left

wing from 0 (old primary) to 5 (new primary) conforming with [9].

The sum of the feather growth scores over all primaries gives the

primary molt score. Age (juvenile, second-year, or adult) was

determined from plumage characteristics [34]. A small blood

sample was drawn from the wing vein and stored in 95% ethanol

for molecular sex determination [35].

From mid-July onward, two subspecies of red knot occur in the

Dutch Wadden Sea: C. c. islandica which overwinters and molts

there, and C. c. canutus which fuels up to migrate further to west

Africa where they overwinter [28,36]. Although the two subspecies

differ in body size [29,37], the large overlap precludes the use of

body size to distinguish subspecies. However, as second-year and

adult islandica knots molt flight feathers on the Wadden Sea [25,32]

and canutus knots do not, birds in active primary molt were

assumed to be of C. c. islandica. There were a few outliers with

atypical molt patterns and suspended molt in the data set (22 adult

males, 26 adult females, 4 second-year males and 4 second-year

females). Including the outliers in the analysis did not significantly

change the results, but because we are interested in the typical

primary molt pattern of the average red knot, we nevertheless

deleted them. Final sample sizes were 522 adult males, 758 adult

females, 258 second-year males, and 319 second-year females.

Captive Birds
In 2009, 32 adult C. c. islandica knots (21 males and 11 females)

were housed in groups of 8 birds in open outdoor aviaries at the

Royal Netherlands Institute for Sea Research (NIOZ) (53u009N

4u479E). Red knots were fed ad libitum trout pellets (Trouvit Classic

2P, Skretting, Hendrix SpA, Italy; composition: crude protein

45%, carbohydrate 21%, crude fat 16%, crude ash 9%, lysin 3%,

indigestible fibres 2%, phosphorus 1%). For details of the housing

conditions see [38]. The birds experienced the local light-dark

cycle and ambient temperatures and under these conditions C. c.

islandica knots maintain natural seasonal cycles in body mass, molt,

and physiological characteristics such as corticosterone [39,40].

Many red knots have been kept at our facility on the trout diet for

over 18 years without health or molt problems, nor have they

shown changes in the annual cycles of body mass and molt. The

birds were examined weekly, weighed (61 g), and primary molt

was recorded.

The knots were captured in the Dutch and German Wadden

Sea in the period 1994 to 2004. To investigate if long-term

captivity affected primary molt, we examined also primary molt in

the first year in which they went through a complete molt cycle in

captivity (usually the year after the year of capture) in relation to

molt in 2009. Data on 17 of 32 knots of 2009 (13 males and 4

females) were available for this analysis.

Primary Molt Analysis of Free-living Birds
We analyzed the primary molt pattern using the models of [41]

and [42]. These give estimates of molt duration and average start

date (from which average end date can be calculated) and also the

standard deviation of the start date, and require an index of molt

increasing linearly with time. Two of the five molt situations

considered by [41] and [42] were used in this study. Type 2

applied to second-year birds as all were present in the study area

before any molt started. Type 4, for situations where some birds

start molt before all birds are present, applied to adults. A molt

index [41] which increased linearly with time was obtained using

feather growth scores and relative masses of each primary (from

[43], see Tables S1, S2, S3, and S4, Fig. S1).

Female knots are heavier and larger than males (e.g. [29,37])

resulting in more feather mass to replace [44], which may affect

molt duration and timing (replacing more feather mass may take

more time [44]). Therefore we checked if sexes and age classes

differed in body dimensions. Because wing length may vary due to

feather wear, only birds that had completed wing molt were

included. Female red knots were indeed heavier and larger (except

for tarsus length) than males, but wing length and other body size

characteristics did not differ between age classes of the same sex

(Table S5).

In some free-living adults, primary molt was relatively advanced

compared to the majority of adults, while in some second-years

primary molt was delayed (Fig. S3). Possibly, the advanced adults

Seasonality Constrains Molt of Migrant
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had left the breeding grounds very early, e.g. after clutch failure

due to predation [45], or had not migrated but over-summered in

the Wadden Sea. The delayed second-years may have migrated to

the stopover site, or age was not correctly determined. Since we

were interested in the general pattern, we excluded these birds

from the analysis.

Primary Molt Analysis of Captive Birds
Because molt of captive birds was scored on a weekly basis, we

had to adjust procedures to obtain comparable molt model

parameters. The data are of Type 2 [41], but using the model

failed, possibly because sample size was relative small for this

model, and because the data were organized on a weekly basis.

Instead, results of linear regression of molt indices against time for

actively molting birds were used to give individual estimates of

molt duration, start and end date. R-squared values were high,

averaging 0.987 (60.020 SD) over the 32 individuals; samples

ranged from 9 to 15 observations per individual. A comparison of

the body sizes of captive and free-living birds was impossible

because in captive birds measurements were not made when the

molt data were gathered.

Duration of captivity had no effect on the primary molt

parameters; estimated molt start and end date, and molt duration

did not differ between the first molt in captivity and molt in 2009

(Table S6, sexes pooled, ANOVA, F1,47 = 1.035, P = 0.314, and

F1,47 = 0.028, P = 0.869, for duration and start date, respectively).

The data on first molt and 2009 molt were not pooled to avoid

problems with repeated measures in about half of the individuals.

We used the 2009 group because that group gave the largest

sample.

Statistics
We used Julian day (January 1 is day 1) as time scale in the

analyses and tables, but depicted calendar date in the graphs. The

primary molt parameters of the free-living knots were estimated

with the R package moult (available from the Comprehensive R

Archive Network, CRAN, at url http://cran.r-project.org/

package = moult; [46]). For free-living knots, we tested for

differences between age categories within sex, and between males

and females within age category, by modeling a series of models

that estimated a combination of the variables (duration, start date

and SD of start date) separately for age category or sex and

calculating AIC values. We followed this procedure because the R

package moult does not allow a comparison of nested groups. The

best models were selected on basis of AIC-values: best models had

the lowest AIC and differed in AIC by less than 2. In addition,

Akaike’s weight (wi) was calculated for the models. Statistical

comparisons with the captive birds were not possible because

different methods were necessary to estimate molt parameters in

the two groups. Molt model results are presented as means 6

asymptotic standard errors for free-living birds and as means 6SE

for captive birds. Individual primary model results are presented as

means 6 asymptotic standard errors. Other data are presented as

means 6SE. An ANOVA with post hoc Tukey analysis (PASW

Statistics 18.0.3) was used to determine differences between means

of groups.

Results

We predicted that wing molt in breeding adults would be time-

constrained due to a trade-off between breeding and migration.

The nonbreeding over-summering second-years and captive

adults, not faced with this trade-off, would be predicted to use

more time to molt than the reproductively active adults. Consistent

with these expectations wing molt duration was shortest in free-

living adults, ca. 71 days, and longer –and mutually comparable–

in second-years and captive adults, varying from 81 to 93 days

(Fig. 1C). For both free-living males and females, the best models

were the models that estimated all molt parameters separately per

age class, as indicated by the lowest AIC for these models (Table 1).

Hence molt duration differed significantly between adults and

second-years. Molt duration was ca. 22% longer in second-years

than in free-living adults, and ca. 27% longer in captive adults. In

the Supporting Information is shown how the differences in molt

duration were established by presenting the individual primary

molt durations for all groups (Fig. S2).

As shown by the model comparison (Table 1), not only

duration, but also timing of wing molt differed between groups.

Second-years were the first to start molt (ca. 21 June), more than

four weeks before the captive adults, and almost seven weeks

before free-living adults started in early August (Fig. 1A, see Table

S6 for details). Adults completed molt at comparable dates, mid- to

Figure 1. Primary molt start and end date (A, B), and molt
duration (C), in free-living and captive red knots. Symbols: closed
symbols, males; open symbols, females. Group abbreviations: SYM,
second-year males; SYF, second-year females; FAdM, free-living adult
males; FAdF, free-living adult females; CAdM, captive adult males; CAdF,
captive adult females.
doi:10.1371/journal.pone.0053890.g001
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late October, independently of living conditions (Fig. 1B). Second-

years completed molt a month earlier.

Molt parameters differed between sexes in second-years as

indicated by the lowest AIC for the model that estimated all

parameters separately for males and females (Table 1, wi = 0.99).

In free-living adults, two models were equally plausible, one that

estimated start date and SD of start date separately for the sexes

and one that estimated all parameters separately (wi = 0.63 and

wi = 0.37, respectively). The model estimating start date and SD of

start date separately was 1.7 times (0.63/0.37) more likely than the

model estimating all parameters separately. In free-living adults

and second-years, females started molt before males and molted

longer than males (Fig. 1). Although captive females also tended to

take longer to molt than captive males, this difference was not

significant (ANOVA, F1,30 = 4.014, P = 0.054). Start date did also

not differ between the sexes in captive adults (ANOVA,

F1,30 = 0.055, P = 0.817). Combining sexes we checked if molt

parameters differed between aviaries, which was not the case

(ANOVA, duration, start and end date, all P.0.4).

Discussion

Primary molt duration of adult red knots in the Wadden Sea

was similar to adult C. c. islandica in Scotland (77 days; [47]), but

much shorter than in adult C. c. canutus knots in South Africa (95

days; [47]). Primary molt duration of second-years and captive

adults resembled however more that of the C. c. canutus than of the

Scottish free-living adult C. c. islandica. The sexual differences in

molt parameters are in accord with body size differences and

behavioral differences. Female knots are somewhat larger than

males (Table S5; [29,37]) and therefore have more feather mass to

replace. A longer primary molt duration in females (Fig. 1) is thus

not unexpected. As in many Arctic-breeding shorebirds, female

and male knots both incubate the eggs, but only males care for the

young. Adult females leave the breeding grounds earlier than

males and arrive earlier in the wintering areas [28–30]. Stable

isotope data indicate that knots start molt ca. 4 days after arrival in

the Dutch Wadden Sea [27], and adult females are thus expected

to start molt earlier than adult males (Fig. 1). That the average

difference in start date (6 days) is smaller than the young-caring

period (17–18 days; [31]) may be because of earlier departure of

males that lose their clutch or brood, or where unable to find a

mate [45].

Primary molt duration was much shorter (ca. 22%) in free-living

adults than in the non-breeding second-years. This is also the case,

with a similar percentage, in north temperate wintering grey

plovers Pluvialis squatarola [48], which are slightly larger than red

knots and have a comparable timing of molt and other life-cycle

stages, including the skipping of breeding in their second year of

life. Interestingly, when adult red knots were brought into

captivity, molt duration increased to equal that of second-years

(Fig. 1). The short molt duration in free-living adults, their ability

to slow progression of molt when brought into captivity, and the

rapid onset of molt after arrival in the Wadden Sea [27] suggest

that molt is seriously time-constrained in free-living north-

temperate wintering adult red knots. This time constraint may

well relate to (1) a restriction on the onset of molt because adults

do not arrive before late July in the Wadden Sea and do not molt

primaries or body feathers during breeding or in transit, and (2) a

restriction on the time during which molt needs to be completed

because of increases in thermostatic costs and stormy weather in

the course of the year. Indeed, second-years finished molt well

before October, when thermoregulatory costs started to increase

rapidly (Fig. 2). Free-living adults started molt when thermoreg-

ulatory costs were still low, but these showed a steep increase

during the last part of molt. Precipitation, not included in the

calculation of cost-levels, also increased from mid-October

onwards, thus adding to the pressures later in the year. Adult

molt was finished well before thermoregulatory costs had reached

maximal winter levels. An important additional reason for adult

knots to complete molt before thermostatic costs have increased

too much is that their winter plumage provides better insulation

than their summer plumage [38,49].

There may yet be other factors. The gap in the wing during

molt has negative effects on flight abilities and flight costs [50].The

larger the gap, the larger this effect will be [50], and the more

vulnerable will the birds be to predation [51]. The increasing

precipitation, wind speed and considerably stronger wind gusts in

autumn may add to the negative effects of molt on flight ability

and costs. However, birds could compensate for these effects with

a decrease in body mass and an increase in pectoral muscle mass

[50,52], just as captive knots decreased body mass while

maintaining stable pectoral muscle mass when exposed to raptor

models [53]. Free-living adult knots would have completed molt in

the first five primaries before the number of peregrines Falco

peregrinus in the Dutch Wadden Sea started to increase steeply from

ca. 15 in September to ca. 45 in October ([54]; Fig. 2), and

probably relied on their predation avoidance tactics during the

remainder of primary molt [55–57]. Second-year birds were close

to finishing molt at that time. Note also that the preferred and

most profitable foods of knots become scarcer in September when

knots tend to switch from bivalves to the less profitable mudsnail,

Hydrobia ulvea [56,58].

Table 1. Comparison of molt parameters between ages
(within sex) or sex (within age) in free-living adult and second-
year red knots.

Model D AICi wi

free-living males

duration, start date, and SD start date separately 0.0 1.0

start date and SD start date separately 11.7 0.0

duration separately 539.0 0.0

adults and second-years combined 1084.2 0.0

free-living females

duration, start date, and SD start date separately 0.0 1.0

start date and SD start date separately 48.0 0.0

duration separately 558.9 0.0

adult and second-years combined 1174.4 0.0

free-living adults

start date and SD start date separately 0.0 0.63

duration, start date, and SD start date separately 1.1 0.37

duration separately 78.2 0.00

males and females combined 142.8 0.00

free-living second-years

duration, start date, and SD start date separately 0.0 0.99

start date and SD start date separately 9.5 0.01

duration separately 27.1 0.00

males and females combined 29.4 0.00

Best models (underlined) were selected using AICs. Models are equally plausible
when the difference from the best model, DAICi, is smaller than 2. wi is the
Akaike weight for model i.
doi:10.1371/journal.pone.0053890.t001
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Flight feather quality is likely to be very important to a long-

distance migrant that makes non-stop flights of many thousands of

kilometers [23,28]. The ubiquitous finding that fast growth, i.e.

relative short molt duration, leads to lower quality feathers [13–

21,59–62] (but note that in the sedentary house sparrow, Passer

domesticus, this effect was condition dependent [19]) that deteriorate

more between molts [16–18], implies that the speedy wing molt

carried out by northerly wintering knots represents a cost of

reproduction. This trade-off may drive the timing of molt in adults

in such a way that the endpoint is as late as possible, so that

accumulated feather wear during northward and post-breeding

southward migration is as small as possible to minimize the

increase in flight costs due to feather wear. This may explain why

captive adults timed molt such that the endpoint coincided with

that of free-living adults and not of second-years.

That reproduction affects molt and vice versa has been shown

before. Generally, reproductive activities tend to delay molt, e.g.

resulting in reduced lean tissue mass during the pre-migratory

period [59], a lower insulation [21], or a decrease in feather

quality [62]. Interestingly, the carry-over effects on molt were only

found in late (or experimentally delayed) breeders: i.e., some birds

managed to escape the timing effect. Here we have an example

where all individual northerly wintering migrating red knots are

caught between a rock (the breeding season in the High Arctic and

the time needed to travel there and back) and a hard place (steeply

deteriorating environmental conditions in the course of autumn),

simply by having a life-history that involves a migration towards

and from High Arctic breeding locations. The general finding that

fast growth leads to lower quality feathers implies that the speedy

wing molt shown by birds that have reproduced in the High Arctic

represents an unavoidable and routine cost of reproduction.

Interestingly, Hedenström [4], on the basis of a review of body

size scaling relationships of different annual cycle components,

predicted that only in birds reaching masses of several kilograms, a

year would be too short to include breeding, molt, and migration.

That large birds encounter problems with the timing of molt is also

demonstrated by [45], who show that molt becomes incomplete in

birds over 1 kg that maintain flight during molt. To this we can

now add that even in birds an order of magnitude smaller,

temporal imperatives impose the adoption of non-optimal life-

cycle routines in the entire actively breeding population.

Supporting Information

Figure S1 The cumulative proportion of feather mass
grown (PFMG) during molt in free-living adult and
second-year red knots, and captive adult red knots,
determined via the individual primary models. The data

were pooled for the sexes because molt models could not be fitted

for primaries 1 and 7 in captive females. For second-years we had

no or insufficient data for primaries 1–5 (Table S3). Since at the

end of molt PFMG equals 1, the PFMG grown by primaries 1–5

could be determined and added to the proportion of feather mass

grown obtained from the known primaries. For want of data, we

excluded the first 10 days of available data from the graph. The

thick lines show cumulative PFMG curves (solid, free-living adults;

dashed, captive adults; dash-dot, second-years). The thin lines

correspond to uniform growth rates. For second-years this is the

estimated uniform growth rate calculated using the mean start

date obtained from the general molt models and end date from the

individual primary models. The horizontal grey lines indicate the

quartiles of PFMG and their durations for free-living adults

(continuous arrows) and captive adults (dashed arrows). In all

groups PFMG increased sufficiently linearly with time to make

them good indices of molt progression.

(TIF)

Figure S2 Molt duration of individual primaries versus
relative primary feather mass for free-living adult and
second-year knots (solid lines) and captive adult red
knots (dashed lines). Each point on each curve corresponds to

an individual primary as relative primary mass increases with

increasing primary number. For adult captive females, the models

did not converse to a significant solution for primaries 1 and 7. For

second-years we had insufficient data of active molt for primaries 1–

5 (Table S3) and data for the sexes were pooled. Closed symbols,

males; open symbols, females; grey symbols, second-years; circle,

Type 2 model; square, Type 4 model. The inset graph shows the

number of simultaneously growing primaries (mean 6 SE) for each

primary in molt for the average free-living adult knot.

(TIF)

Figure S3 The relationship between the proportion of
primary feather mass grown and time of the year for
free-living adult and second-year red knots, and captive
adult red knots. Left panels, males, closed symbols; right panels,

females, open symbols. Solid lines represent the general molt

models, dashed lines give the 95% confidence intervals.

(TIF)

Information S1 Extra Information for Tables S1, S2, S3,
and S4 and Figures S1 and S2. Description of the Results of

the Individual Primary Molt Analyses.

(DOCX)

Figure 2. The average temporal distribution of primary molt in
free-living adult and second-year red knots, and captive adult
red knots (sexes combined, grey blocks). The dashed vertical grey
lines indicate when the knots had completed growth of primary 5. Also
plotted are the estimated weekly maintenance costs for a red knot
living in the Wadden Sea, calculated using the model of [63] (equation
5; using mudflat conductances) from daily wind, ambient temperature
and solar radiation data obtained over the same period as the molt data
(1998–2006; data from the Royal Netherlands Meteorological Institute
(KNMI) weather station at Hoorn on the island Terschelling in the Dutch
Wadden Sea, 52u239N 5u219E). Note that basal and thermoregulatory
costs are included in maintenance costs, but molt costs (feather
synthesis and increased thermoregulation) are not. Maintenance costs
are indicated with circles; open circles indicate the period during which
adult red knots are migrating or in the breeding areas [63]. In addition,
daylength in the Wadden Sea is given (solid line, right Y-axis, data from
KNMI, 2006). Arrows indicate the start of the rapid increase in number
of peregrines in the Wadden Sea (P; [54]), and when the diet of free-
living knots changes from shellfish to less profitable mudsnails (D;
[56,58]).
doi:10.1371/journal.pone.0053890.g002
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Table S1 Estimates (with asymptotic standard errors)
of individual primary models of Types 2 and 4 for free-
living adult male red knots.
(DOCX)

Table S2 Estimates (with asymptotic standard errors)
of individual primary models of Types 2 and 4 for free-
living adult female red knots.
(DOCX)

Table S3 Estimates (with asymptotic standard errors)
of individual primary models of Types 2 and 4 for free-
living second-year red knots (sexes combined).
(DOCX)

Table S4 Estimates (with asymptotic standard errors)
of individual primary models of Types 2 and 4 for
captive adult male and female red knots.
(DOCX)

Table S5 Body mass and body size characteristics of
free-living second-year and adult red knots that had
completed primary molt.
(DOCX)

Table S6 Final estimates (with asymptotic standard
errors for free-living red knots and SE for captive knots)
of general molt parameters.

(DOCX)
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