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Abstract

We introduce a method for calculating the extent to which chain non-crossing is important in the most efficient, optimal
trajectories or pathways for a protein to fold. This involves recording all unphysical crossing events of a ghost chain, and
calculating the minimal uncrossing cost that would have been required to avoid such events. A depth-first tree search
algorithm is applied to find minimal transformations to fold a, b, a=b, and knotted proteins. In all cases, the extra
uncrossing/non-crossing distance is a small fraction of the total distance travelled by a ghost chain. Different structural
classes may be distinguished by the amount of extra uncrossing distance, and the effectiveness of such discrimination is
compared with other order parameters. It was seen that non-crossing distance over chain length provided the best
discrimination between structural and kinetic classes. The scaling of non-crossing distance with chain length implies an
inevitable crossover to entanglement-dominated folding mechanisms for sufficiently long chains. We further quantify the
minimal folding pathways by collecting the sequence of uncrossing moves, which generally involve leg, loop, and elbow-
like uncrossing moves, and rendering the collection of these moves over the unfolded ensemble as a multiple-
transformation ‘‘alignment’’. The consensus minimal pathway is constructed and shown schematically for representative
cases of an a, b, and knotted protein. An overlap parameter is defined between pathways; we find that a proteins have
minimal overlap indicating diverse folding pathways, knotted proteins are highly constrained to follow a dominant
pathway, and b proteins are somewhere in between. Thus we have shown how topological chain constraints can induce
dominant pathway mechanisms in protein folding.
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Introduction

Protein folding is a structural transformation, from a disordered-

polymer conformational ensemble to an ordered, well-defined

structure. Quantifying the dynamical mechanism by which this

occurs has been a long-standing problem of interest to both

theorists and experimentalists [1–16]. It is currently not possible

experimentally to capture the full dynamical mechanism of a

folding protein in atomic detail, start to finish. Photon counting

analyses of single molecule folding trajectories can now extract the

mean transition path time across the distribution of productive

folding pathways [17]. Typically however, snapshots of the

participation of various residues in the folding transition state

are used to infer the relative importance of amino acids in defining

the protein folding nucleus [6,18–31]. An idea of how the nucleus

grows as folding proceeds may be gained by exploring the native

shift in the transition state as denaturant concentration is increased

[32], but ideally the goal is to quantify folding mechanisms under

constant environmental conditions. To this end, simulations and

theory have proved an invaluable tool [12,13,33–43], and have in

many respects succeeded in reproducing the general features of the

folding pathway (see e.g. references [44,45] for cytochrome c).

One conceptual refinement to arise from theoretical and

simulation studies is the study of ‘‘good’’ reaction coordinates

that correlate with commitment probability to complete the

protein folding reaction [36,46–51]. Reaction coordinates must

generally take into account the energy surface on which the

molecule of interest is undergoing conformational diffusion [52–

54], and the Markovian or non-Markovian nature of the diffusion

[55,56]. In a system with many degrees of freedom on a complex

energy landscape and obeying nontrivial steric restrictions, finding

a best reaction coordinate or even a good reaction coordinate is a

difficult task. Finding reaction paths between metastable minima is

an old problem, in which many approaches have been developed

to account for the underlying complex, multi-dimensional

potential energy surface [57–63].

An alternate approach, in the spirit of defining order parameters

in statistical and condensed matter physics, is to consider the

geometry of the product and reactant in defining a reaction

coordinate without reference to the underlying potential energy

landscape. The overlap function q of a spin-glass is an example of

a geometrically-defined order parameter [64], for which the

underlying Hamiltonian determines behavior such as the temper-

ature-dependence. We pursue such a geometric approach in this

paper.

A transformation connecting unfolded states with the native

folded state can be considered as a reaction coordinate. A

transformation can also be used as a starting point for refinement,
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by examining commitment probability or other reaction coordi-

nate formalism.

Several methods have been developed to find transformations

between protein conformational pairs without specific reference to

a molecular mechanical force field. These include coarse-grained

elastic network models [65,66], coarse-grained plastic network

models [67], iterative cluster-normal mode analysis [68], re-

strained interpolation (the Morph server) [69], the FRODA

method [70], and geometrical targeting (the geometrical pathways

(GP) server) [71].

In this paper we consider transformations between polymer

conformation pairs that would not be viable by a conjugate-

gradient type or direct minimization approach, in that dead-ends

would inevitably be encountered. We focus specifically on how one

might find geometrically optimal transformations that account for

polymer non-crossing constraints, which would apply to knotted

proteins for example.

By a geometrically optimal transformation, we mean a

transformation in which every monomer in a polymer, as

represented by the a-carbon backbone of a protein for example,

would travel the least distance in 3-dimensional space in moving

from conformation A to conformation B. This is a variational

problem, and the equations of motion, along with the minimal

transformation and the Euclidean distance covered, have been

worked out previously [72–75]. Although minimal transformations

have been found for the backbones of secondary structures, and

the non-crossing problem has been treated [74], minimal

transformations between unfolded and folded states for full protein

chain lengths have not been treated before.

The minimal transformation inevitably involves curvilinear

motion if bond, angle, or stereochemical constraints are involved

[72,76]. Such curvilinear transformations as a result of bond

constraints were developed in [72–75]. If such constraints are

neglected, the minimal distance corresponding to the minimal

transformation reduces to the mean of the root squared distance

(MRSD), or the mean of the straight line distances between pairs

of atoms or monomers. This is not the conventional RMSD. For

any typical pair of conformations, the MRSD is always less than

the RMSD [73]. Used as an alignment cost function, aligned

configurations using MRSD are globally different than those using

RMSD [75]. The RMSD can be thought of as a least squares fit

between the coordinates defining the two structures. Alternatively,

it may also be thought of as the straight-line Euclidean distance

between two structures in a high-dimensional space of dimension

3N , where N is the number of atoms in the protein, or Ca atoms if

the protein is coarse-grained. Fast algorithms have been

constructed to align structures using RMSD [77–82].

If several intermediate states are known along the pathway of a

transformation between a pair of structures, then the RMSD may

be calculated consecutively for each successive pair. This notion of

RMSD as an order parameter goes back to reaction dynamics

papers from the early 1980’s [57–60], however in these

approaches the potential energy governs the most likely reactive

trajectories taken by the system, and RMSD is simply accumulated

through the transition states.

In the absence of a potential surface except for that

corresponding to steric constraints, the incremental RMSD may

be treated as a cost function and the corresponding transformation

between two structures found algorithmically [71]. However, the

minimal transformation using RMSD (or 3ND Euclidean

distance) as a cost function is different than the minimal

transformation using 3D Euclidean distance (MRSD) as a cost

function, and the RMSD-derived transformation does not

correspond to the most straight-line trajectories. The RMSD is

not equivalent to the total amount of motion a protein or polymer

must undergo in transforming between structures, even in the

absence of steric constraints enforcing deviations from straight-line

motion. Conversely, the transformation corresponding to the

MRSD will be curvilinear in the 3N-dimensional space.

In what follows, we develop a computational scheme for

describing how difficult it might be for different proteins to reach

their folded configuration. The essence is a calculation of how

much ‘‘effort’’ the protein chain must expend to avoid having to

cross through itself as it tries to realize its folded state. This

involves finding the different ways a polymer can uncross or

‘‘untangle’’ itself, and then calculating the corresponding distance

for each of the untangling transformations. Since there are

typically several avoided crossings during a minimal folding

transformation, finding the optimal untangling strategy corre-

sponds to finding the optimal combination of uncrossing

operations with minimal total distance cost.

After quantifying such a procedure, we apply this to full length

protein backbone chains for several structural classes, including a-

helical proteins, b-sheet proteins, a-b proteins, 2-state and 3-state

folders, and knotted proteins. We generate unfolded ensembles for

each of the proteins investigated, and calculate minimal distance

transformations for each member of the unfolded ensemble to fold.

From this calculation, we obtain the mean minimal distance to

fold from the unfolded ensemble, for a given structural class. We

look for differences in the mean minimal distance between

structural and kinetic classes, and compare these to differences

in other order parameters between the respective classes. The

extra non-crossing distance per residue Dnx=N turns out to be the

most consistent discriminator between different structural and

kinetic classes of proteins. We find the extra distance covered to

avoid chain crossing is generally a small fraction (*1=10) of the

total motion. We also investigate how the various order

parameters either correlate or are independent from each other.

We then select three proteins, an a-helical, a b-sheet, and a

knotted protein, to further dissect the taxonomy of their minimal

folding transformations. We construct what might be called

‘‘multiple transformation alignments’’ that describe the various

different ways each protein can fold from an ensemble of unfolded

conformations. We find that noncrossing motions of an N- or C-

terminal leg are generally obligatory for a knotted protein, and

only incidental for an a protein. A consensus minimal folding

transformation is constructed for each of the above-mentioned

native folds, and rendered schematically. By investigating a

‘‘pathway overlap’’ order parameter, we find that non-crossing

constraints, as are prevalent in b proteins and pervasive in knotted

proteins, explicitly induce a pathway ‘‘mechanism’’ in protein

folding, as defined by a common sequence of events independent

of the initial unfolded conformation. We finally discuss our results

and conclude.

Methods

Calculation of the transformation distance
The value of the uncrossing or non-crossing distance, Dnx, is

calculated as follows: The chain transforms from conformation A

to conformation B as a ghost chain, so the chain is allowed to pass

through itself. The beads of the chain follow straight trajectories

from initial to final positions. This is an approximation to the

actual Euclidean distance D of the transformation, where straight

line transformations of the beads are generally preceded or

proceeded by non-extensive local rotations to preserve the link

length connecting the beads as a rigid constraint [72,73]. The

instances of self-crossing along with their times are recorded. The
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associated cost for these crossings is computed retroactively, for

example the distance cost for one arm of the chain to

circumnavigate another obstructing part is then added to the

‘‘ghost’’ distance to compute the total distance.

The method for calculating the non-crossing distance Dnx has

three major components, evolution of the chain, crossing

detection, and crossing cost calculation. Each are described in

the subsections below.

Evolution of the chain. As mentioned above, the condition

of constant link length between residues along the chain is relaxed,

so that the non-extensive rotations that would generally contribute

to the distance traveled are neglected here. This approximation

becomes progressively more accurate for longer chains. Thus ideal

transformations only involves pure straight-line motion. The

approximate transformation is carried out in a way to minimize

deviations from the true transformation (D), such that link lengths

are kept as constant as possible, given that all beads must follow

straight-line motion. We thus only allow deviations from constant

link length when rotations would be necessary to preserve it; this

only occurs for a small fraction of the total trajectory, typically

either at the beginning or the end of the transformation [72,73].

A specific example. As an example of the amount of distance

neglected by this approximation, consider the pair of configura-

tions in Figure 1, where a chain of 10 residues that is initially

horizontal transforms to a vertical orientation as shown in the

figure. The distance neglecting rotations (our approximation) is

77.78, in reduced units of the link length, while the exact

calculation including rotations [72,73] gives a distance of 78.56.

A few intermediate conformations are shown in the figure. In

particular note the link length change (and hence violation of

constant link length condition) in the fourth link for the gray

conformation (conformation F), resulting from our approximation.

If the link length is preserved, the transformation consists of local

rotations at the boundary points.

Also note that when transforming from cyan to magenta the first

bead moves less than d, because it reaches its final destination and

‘‘sticks’’ to the final point, and will not be moved subsequently. A

movie of this transformation is provided as Movie S1 in the

Supporting Information.

General method. The algorithm to evolve the chain is as

follows. Straight-line paths from the positions of the beads in the

initial chain configuration to the corresponding positions of the

beads in the final configuration are constructed. The bead furthest

away from the destination, i.e. the bead whose path is the longest

line, is chosen. Let this bead be denoted by index b where

0ƒbƒN. In the context of Figure 1, this bead corresponds to

bead number 9 (b9). The bead is then moved toward its destination

by a small pre-determined amount d, and the new position of bead

b is recorded. In this way the transformation is divided into say M
steps: M~dmax=d, where dmax is the maximal distance. Let i be

the step index 0ƒiƒM. If initially the chain configuration was at

step i (e.g. i~0), the spatial position of bead b at step i before the

transformation d is denoted by rb,i, and after the transformation by

rb,iz1. The upper bound d to capture the essence of the

transformation dynamics differs according to the complexity of

the problem. To capture all of the instances of self-crossing, a step

size d of two percent of the link length sufficed for all cases.

The neighboring beads (bz1 and b{1) should also follow paths

on their corresponding straight-line trajectories. Their new

position on their paths (rbz1,iz1 and rb{1,iz1) are then calculated

based on the constant link length constraints. This new position

corresponds to moving the beads by dbz1,i, db{1,i respectively.

Once rbz1,iz1 and rb{1,iz1 are calculated, we proceed and

calculate rbz2,iz1 and rb{2,iz1 until we reach the end points of the

chain. As an example consider Figure 1, going from the

conformation B (Green) to the conformation C (Yellow). First,

bead number 9, which is the bead farthest away from its final

Figure 1. Approximate minimal transformation for a simple
conformation pair, and the degree to which link length
changes. (a) Several intermediate conformations for a transformation
(A–G proceeding along the color sequence red, green, yellow, cyan,
magenta, gray, and blue) are shown. The step-size delta is shown. Note
the step in which the first bead of the chain (b0) is ‘‘snapped’’ into the
final conformation because its distance to the destination is less than d
(going from D to E). In the intermediate conformation F (Gray), beads 0
to 3 have reached their final locations and no longer move. Note also
the link length violation of link 4 in conformation F, due to the
approximation that ignores end point rotations, for this intermediate
figure. A milder violation is observed when going from D (cyan) to E
(magenta), since bead 1 through N all assume a step size of d while
bead 0 moved a step size vd. (b) Panel b shows a surface plot showing
link length as a function of link number and step number during
transformation. For the whole process, mean link length �‘‘ is 0.98 units
and standard deviation d‘ is 0.063.
doi:10.1371/journal.pone.0053642.g001
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destination, is moved by d, then taking constant link length

constraints and straight line trajectories into account, the new

position of bead 8 is calculated and so on, until all the new bead

positions which correspond to the yellow conformation are

calculated.

If somewhere during the propagation to the endpoints, a

solution cannot be constructed or no continuous solution exists, i.e.

limd?0 (rbzm,iz1{rbzm,i)=0, then we set rbzm,iz1~rbzm,i. That

is, the bead will remain stationary for a period of time [83].

Consequently rbzn,iz1~rbzn,i for all beads with nwm that have

not yet reached their final destination. This is because the new

position of each bead is calculated by the position of the bead next

to it for any particular step i. The same recipe is applied when

propagating incremental motions db,iz1 along the other direction

of the chain (going from b{n to b{n{1) as well. When a given

bead that has been held stationary becomes the furthest bead away

from its final position, it is then moved again. I.e. stationary beads

can move again at a later time during the transformation if they

become the furthest beads away from the final conformational

state. Such a scenario does not occur in the context of the simple

example of Figure 1, however in Movie S2 in the Supporting

Information, a transformation is given for a full protein that

involves such a process. During the course of such a transforma-

tion the viewer will notice that several beads on the chain (in the

upper right in the movie) remain stationary for a part of the

transformation. For these beads no continuous solution for the

motion exists, i.e. as d?0 the beads in question cannot move

without violating the constant link length constraint. At a later

time during the transformation, when the beads in the given

segment are farthest from the final folded conformation, the beads

resume motion.

Once the positions of all the beads in step iz1 are calculated,

the same procedure is repeated for step iz2 and so on, until the

chain reaches the final configuration. If the position of a given

bead b at step i is such that Drb,i{RbDvd, where Rb is the spatial

position of bead b in the final conformation, then rb,iz1 is set to

Rb. In other words we discretely snap the bead to the final position

if it is closer than the step size d. In the context of Figure 1, this

corresponds to going from conformation D (Cyan) to conforma-

tion E (Magenta). Bead 0 (b0) is snapped to the final conformation.

Once a bead reaches its destination it locks there and will never

move again. See conformation F (gray) in Figure 1.

Figure 2 shows a histogram of the mean link length over the

course of a transformation, for 200 transformations between

random initial structures generated by self avoiding random walks

(SAW), and one pre-specified SAW. The length of the random

chains was 9 links. The chains were aligned by minimizing MRSD

before the transformation took place [73–75], where MRSD

stands for the mean root squared distance and is defined by
1

N

XN

n~1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(rAn

{rBn
)2

q
~

1

N

XN

n~1
DrAn

{rBn
D. Deviations from

the full unperturbed link length are modest: the ensemble-

averaged mean link length is 96% of the initial link length.

Crossing Detection. As stated earlier, during the transfor-

mation the chain is initially treated as a ghost chain, and so is

allowed to cross itself. To keep track of the crossing instances of the

chain, a crossing matrix X is updated at all time steps during the

transformation. If the chain has N beads and N{1 links, we can

define an (N{1)|(N{1) matrix X that contains the crossing

properties of a 2D projection of the strand, in analogy with

topological analysis of knots. The element Xij is nonzero if link i is

crossing link j in the 2D projection at that instant. Without loss of

generality we can assume that the projection is onto the XY plane,

as in Figure 3. We illustrate the independence of our method on

projection plane explicitly for a crossing event in cold-shock

protein (1CSP) in File S1 (see figure SA). We use the XY plane

projection throughout this paper [84].

We parametrize the chain uniformly and continuously in the

direction of ascending link number by a parameter s with range

0ƒsƒN . So for example the middle of the second link is specified

by s~3=2. If the projection of link i is crossing the projection of

link j, then DXij D is the value of s at the crossing point of link i and

DXji D is the value of s at the crossing point of link j. If link i is over j

(i.e. the corresponding point of the cross on link i has a higher z
value than the corresponding point of the cross on link j) then

Xijw0, otherwise Xijv0. Thus after the sign operation, sign(X) is

an anti-symmetric matrix.

A simple illustrative example of the value of X for the 3-link

chain in Figures 3a and 3b is

X toð Þ~
0 0 {0:29

0 0 0

z2:82 0 0

2
64

3
75 ð1aÞ

X tozdð Þ~
0 0 z0:29

0 0 0

{2:82 0 0

2
64

3
75 ð1bÞ

The fact that X13 is negative at time to indicates that at that

instant, link 1 is under link 3 in 3D space, above the corresponding

point on the plane on which the projections of the links have

crossed (green circle in Figure 3).

At each step during the transformation of the chain, the matrix

X is updated. A true crossing event is detected by looking at X for

two consecutive conformations. A crossing event occurs when any

non-zero element in the matrix X discontinuously changes sign

Figure 2. Link length statistics for randomly generated
transformation pairs. Histogram of the average link length over
the course of a transformation, for transformations between 200
randomly generated structures of 9 links and the (randomly generated)
reference structure shown in the inset to the figure. The ‘‘native’’ or
reference state is shown in the inset, along with several of the 200 initial
states. For the ensemble of transformations shown, the ensemble
average of the mean link length is 0.96.
doi:10.1371/journal.pone.0053642.g002

Polymer Uncrossing and Unknotting in Folding

PLOS ONE | www.plosone.org 4 January 2013 | Volume 8 | Issue 1 | e53642



without passing through zero. Once Xij changes sign, Xji must

change sign as well. If the chain navigates through a series of

conformations that changes the crossing sense and thus the sign of

Xij , but does not pass through itself in the process, the matrix

elements Xij will not change sign discontinuously but will have

values of zero at intermediate times before changing sign.

Movie S3 in the Supporting Information shows the result of

applying crossing detection. In the movie of the transformation,

whenever an instance of self-crossing is detected, the transforma-

tion is halted and the image is rotated to make the location of the

crossings easier to visualize.

Crossing Cost calculation. Even in the simplest case of

crossing, there are multiple ways for the real chain to have avoided

crossing itself. The extra distance that the chain must have

traveled during the transformation to respect the fact that the

chain cannot pass through itself is called the ‘‘non-crossing’’

distance Dnx. If the chain were a ghost chain which could pass

through itself, the corresponding distance for the whole transfor-

mation would be the MRSD, along with relatively small

modifications that account for the presence of a conserved link

length. Accounting for non-crossing always introduces extra

distance to be traveled.

As the chain is transforming from conformation A to

conformation B as a ghost chain according to the procedure

discussed above, a number of self-crossing incidents occur. Figure 4

shows a continuous but topologically equivalent version of the

crossing event shown in Figure 3 (b). Even for this simple case,

there are multiple ways for the transformation to have avoided the

crossing event, each with a different cost.

Furthermore, later crossings can determine the best course of

action for the previous crossings. Figure 5 illustrates how non-

crossing distances are non-additive, so that one must look at the

whole collection of crossing events. Therefore to find the optimum

way to ‘‘untangle’’ the chain (reverse the sense of the crossings),

one must look at all possible uncrossing transformations, in

retrospect. The recipe we follow is to evolve the chain as a ghost

chain and write down all the incidents of self-crossings that happen

during the transformation. Then looking at the global transfor-

mation, we find the best untangling movement that the chain

could have taken.

To compute the extra cost introduced by non-crossing

constraints we proceed as follows: We construct a matrix that

we call the cumulative crossing matrix Y. Yij is non-zero if link i

has truly (in 3D) crossed link j, at any time during the

transformation. This matrix is thus conceptually different than

the matrix X, which holds only for one instant (one conformation)

and which can have crossings in the 2D projection which are not

true crossings during the transformation. The values of the

elements of Y are calculated in the same way that the values are

calculated for X. The sign also depends on whether the link was

crossed from over to under or from under to over, so that a given

projection plane is still assumed. The order in which the crossing

have happened are kept track of in another matrix YO. The

coordinates of all the beads at the instant of a given crossing are

also recorded. For example, if during the transformation of a

chain, two crossing have happened, then two sets of coordinates

for intermediate states are also stored. We describe a simple

concrete example to illustrate the general method next.

A Concrete Example. Figure 6 shows a simple transforma-

tion of a 7-link chain. During the transformation the chain crosses

itself in two instances. The first instance of self-crossing is between

link 5 and link 7. The second instance is when link 2 crosses link 4.

The location of the crossing along the chain is also recorded: i.e. if

we assume that the chain is parametrized by s~0 to N, then at the

instant of the first crossing (link 5 and link 7) s~4:4 (link 5) and

s~6:9 (link 7). The second crossing occurs at s~1:3 (link 2) and

s~3:8 (link 4). The full coordinates of all beads are also known: we

separately record the full coordinates of all beads at each instant of

crossing. The information that indicates which links have crossed

and their over-under structure can be aggregated into the

cumulative crossing matrix Y. For the example in Figure 6, the

cumulative matrix (up to a minus sign indicating what plane the

crossing events have been projected on) is

Figure 3. Crossing detection using projections. (a) A 3 link chain with its vertical projection. A crossing in the projection is shown with a green
circle. The crossing in the projection occurs at points s~0:29 and s~2:82, where the chain is parametrized uniformly from 0 to 3. Since link 1 is under
link 3 at the point of projection crossing, 0.29 will appear with a negative sign in the corresponding X (eqn 1). (b) The blue chain and the red chain
have the exact same vertical projection, however their corresponding X matrices are different in sign, as given in Eq. 2. This indicates that the over-
under sense has changed for the links whose projections are crossing. This in turn indicates that a true crossing has occurred when going from the
red conformation to the blue conformation, as opposed to a series of conformations where the chain has navigated to conformations having the
opposite crossing sense without passing through itself.
doi:10.1371/journal.pone.0053642.g003

Polymer Uncrossing and Unknotting in Folding
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Y~

0 0 0 0 0 0 0

0 0 0 1:3 0 0 0

0 0 0 0 0 0 0

0 {3:8 0 0 0 0 0

0 0 0 0 0 0 {4:4

0 0 0 0 0 0 0

0 0 0 0 6:9 0 0

2
666666666664

3
777777777775

:

Y tells us, during the whole process of transformation, which links

have truly crossed one another and what the relative over-under

structure has been at the time of crossing. For example, by

glancing at the matrix we can see that two links 5,7 and 2,4 have

crossed one another. We also know from the sign of the elements

in Y that both links 2 and 7 were underneath links 4 and 5 just

prior to their respective crossings in the reference frame of the

projection. Two links will cross each other at most once during a

transformation. If one link, e.g. link i, crosses several others during

the transformation, elements i,j, i,k etc… along with their

transposes will be nonzero.

The order of crossings can be represented in a similar fashion as

a sparse matrix.

YO~

0 0 0 0 0 0 0

0 0 0 2 0 0 0

0 0 0 0 0 0 0

0 2 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 1 0 0

2
666666666664

3
777777777775

:

Analyzing the structure of the crossings is similar to analyzing the

structure of a knot, wherein one studies a knot’s 2D projections,

noting the crossings and their over/under nature based on a given

directional parameterization of the curve [89–91]. One difference

here is that we are not dealing with true closed-curve knots (in the

mathematical sense), as a knot is a representation of S1 in S3. Here

we treat open curves.

Crossing substructures. By studying the crossing structure

of open-ended pseudo-knots in the most general sense, one can

identify a number of sub-structures that recur in crossing

transformations. Any act of reversing the nature of all the

crossings of the polymer can be cast within the framework of some

ordered combination of reversing the crossings of these substruc-

tures.

We identify three sub-structures: Leg, Loop, and Elbow.

Leg. Given any self-crossing point of a chain, a leg is defined

from that crossing point to the end of the chain. Therefore for

each self-crossing point two legs can identified as the shortest

distance along the chain from that crossing point to each end—see

Figure 7. A single leg structure is shown in Figure 8(a).

Loop. As stated earlier, when traveling along the polymer one

arrives at each crossing twice. If the two instances of a single

crossing are encountered consecutively while traveling along the

polymer, and no intermediate crossing occurs, then the substruc-

ture that was traced in between is a loop. See Fig. 8(b).

Elbow. If two consecutive crossings have same over-under

sense, then they form an elbow; see Fig. 8(c). Note that the same

two consecutive crossing instances will occur in reverse order on

the second visit of the crossings: these form a dual of the elbow. By

convention the segment with longer arc-length between the two

consecutive crossings is defined as the elbow. This would be the

horseshoe shaped strand in Figure 8(c).

Reversing the crossing nature. The goal of this formalism

is to assist in finding a series of movements that will result in

Figure 4. Two possible minimal uncrossing transformations.Two possible untangling transformations. The top transformation involves
twisting of the loop. The lower transformation involves a snake like movement of the vertical leg. A third one would involve moving the horizontal
leg, in a similar snake-like fashion. Note that the moves represented here are not necessarily the most efficient ones in their topological class, but
rather the most intuitive ones. There are transformations that are topologically equivalent but generally involve less total motion of the chain (see for
example Figures 11(a), 11(b)).
doi:10.1371/journal.pone.0053642.g004

Figure 5. Accounting for history-dependence in minimal
uncrossing transformations. The minimal untangling movement
in going from A to C (through B9) is less than the sum of the minimum
untangling movements going from A to B and then from B to C.
doi:10.1371/journal.pone.0053642.g005
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reversing the over-under nature of all the crossings, with the least

amount of movement required by the polymer. So at this point we

introduce basic movements that that will reverse the nature of the

crossings for the above substructures.

Using leg movement. A transformation that reverses the

over/under nature of a leg involves the motion of all the beads

constituting the leg. Each bead must move to the location of the

crossing (the ‘‘root’’ of the leg), and then move back to its original

location [74]. The canonical leg movement is shown schematically

in Figure 9.

We can reverse the nature of all the crossings that have occurred

on a leg, if more than one crossing occurs, through a leg

movement (see Figure 10). The move is topologically equivalent to

the movement of the free end of the leg along the leg up to the

desired crossing, and then moving all the way back to the original

position while reversing the nature of the crossing on the way back.

Loop twist and loop collapse. Reversing the crossing of a

loop substructure can be achieved by a move that is topologically

equivalent to a twist, see Figure 11 (a). This type of move is called a

Reidemeister type I move in knot theory. However the optimal

motion is generally not a twist or rotation in 3-dimensional space

(3D). Figure 11(b) shows a move which is topologically equivalent

to a twist in 3D, but costs a smaller distance, by simply moving the

residues inside the loop in straight lines to their final positions,

resulting in a ‘‘pinching’’ motion to close the loop and re-open it.

From now on we refer to the optimal motion simply as loop twist,

because it is topologically equivalent, but we keep in mind that the

actual optimal physical move, and the distance calculated from it,

is different.

Elbow moves. Reversing the crossings of an elbow substruc-

ture can be done by moving the elbow segment in the motion

depicted in Figure 12: Each segment moves in a straight line to its

corresponding closest point on the obstruction chain, and then it

moves in a straight line to its final position.

Operator Notation. The transformations for leg movement,

elbow, and twist can be expressed very naturally in terms of

operator notation, where in order to untangle the chain the

various operators are applied on the chain until the nature of all

the self-crossing are reversed.

If we uniquely identify each instance of self-crossing by a

number, then a topological loop twist at crossing i can be

represented by the operator R(i) (R for Reidemeister). An elbow

move, for the elbow defined by crossings i and iz1, can be

represented as E(i,iz1). As discussed above, for each self-

crossing, two legs can be identified corresponding to the two

termini of the chain. This was exemplified in Figure 7, by the red

and blue legs. Since we choose a direction of parametrization for

the chain, we refer to the two leg movements as the ‘‘start leg’’

Figure 6. Snapshots of a transformation with two crossings. A few snapshots during a transformation involving 2 instances of chain crossing.
The transformation occurs clockwise starting from initial configuration I and proceeding to final configuration F.
doi:10.1371/journal.pone.0053642.g006

Figure 7. Identification of leg-uncrossing. For the crossing points
indicated by the green circles, two legs, colored blue and red, can be
identified. Each leg starts at the crossing and terminates at an end.
doi:10.1371/journal.pone.0053642.g007
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movement and the ‘‘end leg’’ movement, and for a generic

crossing i we denote them as LN (i) and LC(i) respectively.

The operators that we defined above are left acting (similar to

matrix multiplication). So a loop twist at crossing i followed by an

elbow move at crossings j and jz1 is represented by

E(j,jz1)R(i).
Example. Figure 13 shows sample configurations before and

after untangling. The direction of parametrization is from the red

terminus to the cyan terminus. It can be seen that there are several

ways to untangle the chain. One example would be

R(3)LC(2)R(1), which consists of a twist of the green loop,

followed by the cyan leg movement, followed by a twist of the blue

loop. Another path of untangling would be E(2,3)LN (1), which is

movement of the red leg followed by the magenta elbow move.

For the two above transformations, the order of operations can

be swapped, i.e. they are commutative, and the resulting distance

for each of the transformations will be the same. That is

D½E(2,3)LN (1)�~D½LN (1)E(2,3)�. However, E(2,3)LN (1) is a

more efficient transformation than R(3)LC(2)R(1), i.e.

D½E(2,3)LN (1)�vD½R(3)LC(2)R(1)�.
Other transformation moves are not commutative in the

algorithm, for example in Figure 13, LN (1)R(3)R(2) is not

allowed, since R(2) will only act on loops defined by two instances

of a crossing that are encountered consecutively in traversing the

polymer, i.e. no intermediate crossings can occur. Therefore even

if crossing 2 happens kinetically before crossing 3 during the ghost

transformation, only transformation LN (1)R(2)R(3) is allowed in

the algorithm.

Minimal uncrossing cost. For each operator in the above

formalism, a transformation distance/cost can be calculated.

Hence the optimal untangling strategy is finding the optimal set of

operator applications with minimal total cost. This solution

amounts to a search in the tree of all possible transformations,

as illustrated in Figure 14. The optimal application of operators

can be computed by applying a version of the depth-first tree

search algorithm.

According to the algorithm, from any given conformation there

are several moves that can be performed, each having a cost

associated with the move. The pseudo-code for the search

algorithm can be written as follows:

procedure find min cost moves so far~None,cost so far~0,ð \

min total cost~InfinityÞ :

optim moves~NULL MOVE

if cost so farwmin total cost :

return Infinity, optim moves½ �

endif

for move in available moves moves so farð Þ:

temp cost,temp optim moves½ �~find min cost moves so farzmove,\ð

cost so farzcost moveð Þ,\

min total costÞ

if temp costvmin total cost :

min total cost~temp cost

optim moves~moveztemp optim moves

endif

endfor

return min total cost,optim moves½ �

endprocedure

The values to the right side of the equality sign in the arguments

of the procedure are the default values that the procedure starts

with. The procedure is called recursively, and returns both the set

of optimal uncrossing moves (for a given crossing matrix

Figure 8. Crossing substructures. (a) A single leg structure, (b) A loop structure, (c) An elbow structure.
doi:10.1371/journal.pone.0053642.g008

Figure 9. Schematic illustration of the canonical leg movement.
Schematic illustration of the canonical leg movement, either from left to
right as in (a) or effectively its time reverse as in (b). Both
transformations traverse the same distance. The transformation in (a)
is equivalent to the ‘‘plug’’ transformation analyzed in the context of
folding simulations for trefoil knotted proteins [134], while the
transformation in (b) (see ref. [74] for a detailed description of this
transformation) is equivalent to the ‘‘slipknotting’’ transformation more
often observed in the folding of knotted proteins [138].
doi:10.1371/journal.pone.0053642.g009

Figure 10. A single leg movement can undo several crossings.
One can reverse the over-under nature of all the crossings that have
occurred on a leg, through a single leg movement.
doi:10.1371/journal.pone.0053642.g010
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corresponding to a starting and final conformation), and the

distance corresponding to that set of optimal uncrossing moves.

The algorithm visits all branches of the tree of possible

uncrossing operations until it reaches the end. However it is

smart enough to terminate the search along the branch if the cost

of operations exceeds that of a solution already found. See

Figure 14 for an illustration of the depth-first search tree

algorithm. The above procedure was implemented using both

the GNU Octave programming language and C++. To optimize

speed by eliminating redundant moves, only one permutation was

considered when operators commuted.

Generating unfolded ensembles
To generate transformations between unfolded and folded

conformations, we adopt an off-lattice coarse grained Ca model

[92,93], and generated an unfolded structural ensemble from the

native structure as follows. For a native structure with N links, we

define three data sets:

N The set of Ca residue indices i, for which i~1 � � �N
N The set of native link angles hj between three consecutive Ca

atoms, for which j~2 � � �N{1

N The set of native dihedral angles wk between four consecutive

Ca atoms, i.e. the angle between the planes defined Ca atoms

(k{1, k, and kz1), and (k, kz1, and kz2). The index k

runs from k~2 � � �N{2.

The distribution of Ca-Ca distances in PDB structures is sharply

peaked around 3.76 Å (s~0:09Å). In practice we took the first

Ca-Ca distance from the N-terminus as representative, and used

that number for the equilibrium link length for all Ca-Ca distances

in the protein.

To generate an unfolded ensemble, we start by selecting at

random a Ca atom n (2ƒnƒN{1) in the native conformation,

and we then perform rotations that change the angle centered at

that randomly chosen residue n, hn, and that change the dihedral

defined by rotations about the bond n-(n+1), wn. If n~N{1 only

the angle is changed. The new angle and dihedral are selected at

random from the Boltzmann distributions as described below.

After each rotation, hn?hnew
n and wn?wnew

n . Changing these

angles rotates the entire rest of the chain, i.e. all the beads i with

iwn are rotated to a new position. This recipe corresponds to an

extension of the pivot algorithm [94,95].

However, we additionally require that the values of each angle

and dihedral that are present in the native structure, hNat
n and wNat

n ,

are more likely to be observed. We implement this criterion in the

following way. The new angle hn is chosen from a probability

distribution proportional to exp {bE hnð Þð Þ, where bE(hn) is

computed from:

bE(hn)~kh hn{hNat
n

� �2
, ð2Þ

where we have set kh~20. Similarly for the dihedral wn, the

probability distribution function is proportional to exp {bE wnð Þð Þ,
where bE wnð Þ is computed from

bE wnð Þ~kw1½1zcos(wn{wNat
n )�zkw3½1zcos(3(wn{wNat

n ))�, ð3Þ

where kw1~1, and kw3~0:5. The fact that the kws are much

smaller than kh means that for a given temperature, dihedral

angles are more uniformly distributed than bond angles. If all kh

and kw are set to zero, then all states are equally accessible and the

algorithm reduces to the pivot algorithm, i.e. a generator for

unbiased, self-avoiding random walks. If all kh and kw are set to ?,

then chain behaves as a rigid object and does not deviate from its

native state.

Each pivot operation results in a new structure that must be

checked so that it has no steric overlap with itself, i.e. the chain

must be self-avoiding. If the new chain conformation has steric

overlap, then the attempted move is discarded, and a new residue

is selected at random for a pivot operation.

Figure 11. Relation of minimal loop uncrossing to Reidemeister
type I moves. (a)Reversing the over-under nature of a crossing
through a topological loop twist: Reidemeister move type I. (b) By
‘‘pinching’’ the loop before the twist, the cost in distance for changing
the crossing nature is reduced.
doi:10.1371/journal.pone.0053642.g011

Figure 12. Schematic of the canonical elbow move. Schematic of
the canonical elbow move. From left to right.
doi:10.1371/journal.pone.0053642.g012

Figure 13. A simple example depicting various crossing
substructures. A chain with several self-crossing points before and
after untangling. Various topological substructures that are discussed in
the text are color coded. For the case of the legs (red and cyan) note
that various other legs can be identified, for example a leg that starts at
crossing 2 and ends at the red terminus. Here we color only the shortest
legs from crossing 1 to the terminus as red, and crossing 2 to the
opposite terminus as cyan.
doi:10.1371/journal.pone.0053642.g013
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In practice, we defined steric overlap by first finding an

approximate contact or cut-off distance for the coarse-grained

model. The contact distance was taken to be the smaller of either

the minimum Ca-Ca distance between those residues in native

contact (where two residues are defined to be in native contact if

any of their heavy atoms are within 4.9 Å), or the Ca-Ca distance

between the first two consecutive residues. For SH3 for example

the minimum Ca distance in native contacts is 4:21Å and the first

link length is 3:77Å, so for SH3 all non-neighbor beads must be

further than 3:77Å for a pivot move to be accepted. Future

refinements of the acceptance criteria can involve the use of either

the mean Ca-Ca distance or other criteria more accurately

representing the steric excluded volume of residue side chains.

In our recipe, to generate a single unfolded structure we start

with the native structure and implement N successful pivot moves,

where N is related to the number of residues N by

N~ln(0:01)=ln½0:99(N{2)=(N{1)�.
For the next unfolded structure we start again from the native

structure and pivot N successful times, following the above recipe.

Note that N successful pivots does not generally affect all beads of

the chain. In the most likely scenario some beads are chosen

several times and some beads are not chosen at all, according to a

Poisson distribution. This particular choice of N means that for

polymers with Nv101 where
N{2

N{1
v0:99, the chance that any

given link is not pivoted at all during the N pivot operations is

0:01. On the other hand for longer polymers where
N{2

N{1
w0:99,

the probability that any particular segment of the protein with the

length 0:01 of the total length, has 0:01 chance of not having any

of its beads pivoted. For any N however, the shear number of

pivot moves generally ensures a large RMSD between the native

and generated unfolded structures.

Each unfolded structure generally retains small amounts of

native-like secondary and tertiary structure, due to the native

biases in angle and dihedral distributions. For example, for SH3

the number of successful pivot moves was 162 and the mean

fraction of native contacts in the generated unfolded ensemble was

0:06.

Protein dataset
The 45 proteins used in this study are given in Table 1. When

divided into kinetic classes, they consist of 25 2-state folders, 13

non-knotted 3-state folders, and 7 knotted proteins not used in the

kinetic analysis. Structurally there are 11 all a-helix proteins, 14 all

b-sheet proteins, 13 a-b proteins, and 5 knotted proteins. These

proteins were selected randomly from the datasets in references

[96,97], where kinetic rate data was available to categorize the

proteins into 2-state or 3-state folders. Our dataset contains 27 out

of the 52 proteins in [96], and 38 out of the 72 proteins in [97].

The datasets in [96,97] do not include knotted proteins however;

the Knotted proteins were taken from several additional sources,

including references [98] (1NS5) [99], (1MXI) [100], (3MLG)

[101], (2K0A) [102], (2EFV), and the protein knot server KNOTS

[103] (1O6D, 2HA8). Aside from the Stevadore knot in [102] we

did not consider pseudo-knots more complex than the 31 trefoil.

Several of these proteins (a-amylase inhibitor 2AIT and MerP

mercuric ion binding protein 2HQI) have disulfide bonds present

in the native structure. These constraints are not used in the

current analysis. The folding pathways we obtain may be thought

of as relevant to the initial folding event before disulfide bonds are

formed, or for a protein of equivalent topology but sequence

lacking the disulfide bond. Lack of preservation of disulfide bonds

is a shortcoming of the present algorithm; development of more

accurate computational algorithms for unfolded ensemble gener-

ation are a topic of future work.

Several of the proteins also have ligands present in the crystal or

NMR structures. These include 1A6N and 1HRC (heme ligands),

1RA9 (Nicotinamide adenine), 1GXT (sulfate), 1MXI (iodide ion),

2K0A (3 Zn ions), 2EFV (phosphate ion). Since we have removed

energetics in general from our analysis of geometrical pathways,

these ligands and any effect they may have on the folding pathway

due to protein-ligand interactions are not included here. In the

folding kinetics analysis of references [96,97], they are generally

not present either, e.g. the folding rate for 1A6N is actually that for

apomyoglobin [104].

Structural alignment properties of our protein

dataset. To categorize proteins as two- or three-state, we have

chosen proteins with folding rate data available. This dataset has

somewhat different structural alignment statistics than that for a

non-redundant (NR) database, e.g. [105]. The TM-score based

alignment of Zhang and Skolnick [106] can be used to obtain

structural alignment statistics. Their method resolves the problems

of outlier and length-dependent artifacts of RMSD-based align-

ments. Distributions of TM-score for both the above NR database,

our dataset, and the datasets in references [96,97], which non-

knotted proteins in our dataset were taken, are given in figure SB

of File S1, along with statistical analysis of the distributions. The

bulk of our proteins (98%) have TM-scores consistent with the NR

database of Thiruv et. al (see figure SB in File S1), however our

dataset and those of [96,97] contain a small number of structural

homologs not present in the NR dataset, which are tabulated in

table SB of File S1. We do not suspect that this small number of

homologs will significantly modify the conclusions derived from

statistical analysis of our dataset, however expansion and

Figure 14. Illustration of the depth-first tree search algorithm
for the given crossing structure shown. An example (subset) tree
of possible transformations for a given crossing structure. Accumulated
distances are given inside the circles representing nodes of the tree; the
non-crossing transformations and their corresponding distances are
shown next to the branches of the tree. The algorithm starts from the
bottom node and proceeds to the top nodes, starting in this case along
the right-most branch. The possible transformations to be considered
as candidate minimal transformations are : ½LC(3)R(2)R(1)�,
½E(3,4)R(2)R(1)�, ½R(2)LN (1)� which then terminates because the
accumulated distance exceeds the minimum so far of 25, and
½LC(2)LN (1)�.
doi:10.1371/journal.pone.0053642.g014
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Table 1. Proteins studied in this paper.

PDB x-State 2ndry str. LRO RCO ACO MRSD RMSD SDnxT SDnxT=N SDT(|103) SDT=N N

1A6N 3 a-helix 1.4 0.1 14.0 26.2 29.2 285 1.9 4.24 28.1 151

1APS 2 Mixed 4.2 0.2 21.8 22.7 25.4 201 2.1 2.43 24.8 98

1BDD 2 a-helix 0.9 0.1 5.2 14.0 14.9 76.5 1.3 0.91 15.2 60

1BNI 3 Mixed 2.5 0.1 12.3 20.8 22.8 209 1.9 2.46 22.8 108

1CBI 3 b-sheet 2.8 0.1 18.8 25.1 27.9 286 2.1 3.70 27.2 136

1CEI 3 a-helix 1.0 0.1 9.1 16.7 18.9 71.4 0.8 1.49 17.5 85

1CIS 2 Mixed 3.3 0.2 10.8 15.1 16.8 99.7 1.5 1.10 16.6 66

1CSP 2 b-sheet 3.0 0.2 11.0 16.8 18.4 98.0 1.5 1.23 18.3 67

1EAL 3 b-sheet 2.5 0.1 15.7 24.9 27.9 278 2.2 3.44 27.1 127

1ENH 2 a-helix 0.4 0.1 7.4 13.5 14.9 28.0 0.5 0.76 14.1 54

1G6P 2 b-sheet 3.8 0.2 11.7 16.4 18.0 83.1 1.3 1.17 17.7 66

1GXT 3 Mixed 3.7 0.2 18.6 21.1 23.5 148 1.7 2.03 22.8 89

1HRC 2 a-helix 2.2 0.1 11.7 19.6 22.2 126 1.2 2.17 20.8 104

1IFC 3 b-sheet 2.8 0.1 17.7 25.1 27.9 284 2.2 3.58 27.3 131

1IMQ 2 a-helix 1.7 0.1 10.4 16.1 17.9 80.7 0.9 1.46 17.0 86

1LMB 2 a-helix 1.1 0.1 7.1 17.0 18.6 76.8 0.9 1.55 17.9 87

1MJC 2 b-sheet 3.0 0.2 11.0 17.5 19.2 110 1.6 1.32 19.1 69

1NYF 2 b-sheet 2.8 0.2 10.6 15.3 17.0 87.4 1.5 0.97 16.8 58

1PBA 2 Mixed 2.6 0.1 12.0 18.9 20.8 156 1.9 1.69 20.8 81

1PGB 2 Mixed 2.1 0.2 9.7 14.1 15.7 25.4 0.5 0.81 14.5 56

1PKS 2 b-sheet 3.8 0.2 15.2 17.9 20.2 136 1.8 1.50 19.7 76

1PSF 3 b-sheet 2.8 0.2 11.7 16.8 19.4 72.1 1.0 1.23 17.8 69

1RA9 3 Mixed 3.4 0.1 22.3 25.5 28.6 402 2.5 4.46 28.1 159

1RIS 2 Mixed 3.0 0.2 18.4 21.5 23.9 163 1.7 2.25 23.2 97

1SHG 2 b-sheet 3.0 0.2 10.9 15.1 16.7 92.3 1.6 0.95 16.7 57

1SRL 2 b-sheet 3.1 0.2 11.0 14.8 16.3 94.5 1.7 0.92 16.5 56

1TIT 3 b-sheet 4.1 0.2 15.8 18.7 20.8 154 1.7 1.82 20.4 89

1UBQ 2 Mixed 2.4 0.2 11.5 17.0 18.9 92.1 1.2 1.39 18.2 76

1VII 2 a-helix 0.4 0.1 4.0 8.1 9.2 4.1 0.1 0.30 8.2 36

1WIT 2 b-sheet 5.0 0.2 18.9 20.4 22.7 168 1.8 2.07 22.2 93

2A5E 3 Mixed 2.6 0.1 8.3 22.2 23.9 354 2.3 3.82 24.5 156

2ABD 2 a-helix 2.3 0.1 12.0 18.2 20.0 77.5 0.9 1.65 19.1 86

2AIT 2 b-sheet 4.1 0.2 14.4 16.9 18.7 107 1.5 1.36 18.3 74

2CI2 2 Mixed 2.7 0.2 10.0 15.1 16.9 78.3 1.2 1.06 16.4 65

2CRO 3 a-helix 1.2 0.1 7.3 14.0 15.5 37.3 0.6 0.95 14.6 65

2HQI 2 Mixed 4.3 0.2 13.6 16.3 18.4 86.9 1.2 1.26 17.5 72

2PDD 2 a-helix 1.0 0.1 4.8 10.6 11.5 19.9 0.5 0.48 11.0 43

2RN2 3 Mixed 3.6 0.1 19.3 27.7 30.9 521 3.4 4.81 31.0 155

1O6D –{ Knotted 3.1 0.1 18.9 26.2 28.7 515 3.5 4.36 29.7 147

2HA8 –{ Knotted 3.3 0.1 16.2 25.7 28.5 671 4.1 4.84 29.9 162

2K0A –{ Knotted 3.4 0.1 14.6 22.4 24.5 369 3.4 2.81 25.8 109

2EFV –{ Knotted 2.1 0.2 12.6 20.0 21.8 147 1.8 1.79 21.8 82

1NS5 3 Knotted 2.9 0.1 18.2 27.5 30.4 503 3.3 4.71 30.8 153

1MXI 3 Knotted 2.8 0.1 16.7 26.1 29.0 643 4.0 4.85 30.1 161

3MLG 3 Knotted 1.2 0.1 21.4 27.7 30.8 481 2.8 5.16 30.5 169

{Data not available at present.
doi:10.1371/journal.pone.0053642.t001
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refinement to find the most relevant dataset is a topic for future

work.

Calculating distance metrics for the unfolded ensemble
To obtain minimal transformations between unfolded and

native structures for a given protein, the Ca backbone was

extracted from the PDB native structure, and 200 coarse-grained

unfolded structures were generated using the methods described

above. The unfolded structures were then aligned using RMSD

and the average (residual) RMSD was calculated. The unfolded

structures were then aligned by minimizing MRSD, and the

residual MRSD was calculated. Then conformations were further

coarse-grained (smoothed) by sampling every other bead, hence

reducing the total number of beads. By the above further-coarse

graining which is in the spirit of the initial steps of Koniaris-

Muthukumar-Taylor reduction [107–110], we eliminate all

instances of potential self-crossing in which the loop size or elbow

size is smaller than three links. Each structure was then

transformed to the folded state by the algorithm discussed earlier

in Methods. The self-crossing instances, along with the coordinates

of all the beads, were recorded as well. Appropriate data structures

were formed and relevant crossing substructures (leg, elbow, and

loop) were detected. With topological data structures at hand, the

minimal uncrossing cost was found, through the depth-first search

in the tree of possible uncrossing operations that was described

above. Finally, the minimal uncrossing cost, Dnx, and the total

distance, D are calculated for each unfolded conformation. These

differ from one unfolded conformation to the other; the ensemble

average is recorded and used below. The ensemble average of

MRSD and RMSD are also calculated from the 200 unfolded

structures that were generated.

Importance of non-crossing. We define the importance of

non-crossing (INX) as the ratio of the extra untangling movement

caused by non-crossing constraints, divided by the distance when

no such constraints exists, i.e. if the chain behaved as a ghost

chain. Mathematically this ratio is defined as

INX~Dnx= MRSD|Nð Þ.
Other metrics. Other metrics investigated include absolute

contact order ACO [85], relative contact order RCO [85], long-

range order LRO [86], and chain length N [87,88].

Following [86], we define Long-range Order (LRO) as:

LRO~
X
ivj

nij=N where nij~
1 if Di{jDw12

0 otherwise

�
ð4Þ

where i and j are the sequence indices for two residues for which

the Ca{Ca distance is ƒ8 Å in the native structure.

Likewise we define Relative Contact Order (RCO) following

[85]:

RCO~
1

L|N

XN

ivj

DLij , ð5Þ

where N is the total number of contacts between non-hydrogen

atoms in the protein that are within 6 Å in the native structure, L

is the number of residues, and DLij is the sequence separation

between contacts in units of the number of residues.

Similarly, Absolute Contact order (ACO) [85] is defined to be:

ACO~
1

N

XN

ivj

DLij~RCO|L ð6Þ

Results

Proteins were classified by several criteria:

N 2-state vs. 3-state folders

N a-helix dominated, vs b-sheet dominated, vs mixed.

N knotted vs unknotted proteins

Several questions are answered for each group of proteins:

N What fraction of the total transformation distance is due to

non-crossing constraints?

N How do the different order parameters distinguish between the

different classes of proteins?

N How do the different order parameters correlate with each

other?

Order paramaters discriminate protein classes
In Table 2, we compare the unfolded ensemble-average of

several metrics between different classes of proteins, and perform a

p-value analysis based on the Welch t-test. The null hypothesis

states that the two samples being compared come from normal

distributions that have the same means but possibly different

variances. Metrics compared in Table 2 are INX, LRO, RCO,

ACO, MRDS, RMSD, Dnx, Dnx=N, D, D=N and N.

The most obvious check of the general method outlined in the

present paper is to compare the non-crossing distance Dnx

between knotted and unknotted proteins. Here we see that

knotted proteins traverse about 3:5| the distance as unknotted

proteins in avoiding crossings, so that the two classes of proteins

are different by this metric. The same conclusion holds for knotted

vs. unknotted proteins if we use Dnx=N , D, D=N, or INX. Of all

metrics, the statistical significance is highest when comparing

D=N, which is important because the knotted proteins considered

here tend to be significantly longer than the unknotted proteins, so

that chain length N distinguishes the two classes. Dividing by N
partially normalizes the chain-length dependence of D, however

D=N still correlates remarkably strongly with N when compared

for all proteins (r~0:824 see table SJ in File S1).

It was somewhat unusual that MRSD and RMSD distinguished

knotted proteins from unknotted proteins better than D (or Dnx),

which accounts for non-crossing. All other quantities, including

INX, ACO, and RCO distinguish knotted from unknotted

proteins. The only quantity that fails is LRO.

The importance of noncrossing INX , measuring the ratio of the

uncrossing distance Dnx to the ghost-chain distance N|MRSD,

was largest for knotted proteins, followed by b proteins, with a
proteins having the smallest INX . Mixed proteins had an average

INX value in between that for a and b proteins.

In distinguishing all-a and all-b proteins, we find that LRO and

RCO are by far the best discriminants. Interestingly, INX and

Dnx=N also discriminate these two classes comparably or better

than ACO does. Dnx is marginal, while all other metrics fail.

All metrics except for N and D are able to discriminate a from

mixed a-b proteins, with LRO performing the best by far.

Polymer Uncrossing and Unknotting in Folding
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Interestingly, none of the above metrics can distinguish b proteins

from mixed a-b proteins.

It is sensible that energetic considerations would be the

dominant distinguishing mechanism between two- and three state

folders. Intermediates are typically stabilized energetically. We can

nevertheless investigate whether any geometrical quantities

discriminates the two classes. Indeed LRO and RCO fail, as does

INX. This supports the notion that intermediates are not governed

by ‘‘topological traps’’ that are undone by uncrossing motion, but

rather are energetically driven. ACO performs marginally. Three-

state folders tend to be longer than 2-state folders, so that N

distinguishes them and in fact provides the strongest discriminant,

consistent with previous results [111]. Interestingly RMSD,

MRSD, and D perform comparably to N. However these

measures also correlate strongly with N (see table SJ in File S1).

D=N, Dnx and Dnx=N also perform well, but still correlate with N,

albeit more weakly than the above metrics.

Figure 15A shows a scatter plot of all proteins as a function of

Dnx=N vs. and LRO. Knotted and unknotted proteins are

indicated, as are a, b, and mixed a-b proteins. Two and three

state proteins are indicated as triangles and squares respectively.

From the figure, it is easy to visualize how LRO provides a

successful discriminant between a=b and a=(mixed) proteins, but is

unsuccessful in discriminating b=(mixed), knotted and unknotted,

and two and three state folders. It is also clear from the figure how

Dnx=N discriminates knotted from unknotted proteins. One can

also see distribution overlap, but nevertheless successful discrim-

ination between a and b and a and mixed proteins.

Figure 15B shows a scatter plot of all proteins as a function of

Dnx vs. N, using the same rendering scheme for protein classes as

in Figure 15A. From the figure, one can see how the metrics

Table 2. Comparison of order parameters for various protein classes.

Class INX PINX LRO PLRO RCO PRCO

2-state folders 7.55e-02 (3.93e-01) 2.7 (9.46e-01) 1.58e-01 (5.07e-02)

3-state folders 8.25e-02 2.6 1.31e-01

a-helix proteins 5.21e-02 a b:4.01e-05 1.2 ab:7.40e-08 1.10e-01 ab:3.34e-07

b-sheet proteins 9.04e-02 b M:(5.71e-01) 3.3 b M:(4.27e-01) 1.72e-01 b M:(2.68e-01)

Mixed secondary structure 8.64e-02 a M:5.44e-04 3.1 a M:6.20e-07 1.56e-01 a M:3.48e-03

Unknotted proteins 7.79e-02 1.48e-03 2.6 (9.20e-01) 1.49e-01 1.49e-02

knotted proteins 1.30e-01 2.7 1.24e-01

Class ACO PACO MRSD PMRSD RMSD PRMSD

2-state folders 11.4 4.50e-02 16.4 5.89e-04 18.1 4.88e-04

3-state folders 14.7 21.9 24.4

a-helix proteins 8.5 ab:3.76e-04 15.8 ab:(1.19e-01) 17.5 ab:(1.14e-01)

b-sheet proteins 13.9 b M:(7.08e-01) 18.7 b M:(4.50e-01) 20.8 b M:(4.73e-01)

Mixed secondary structure 14.5 a M:1.62e-03 19.9 a M:4.11e-02 22.1 a M:4.16e-02

Unknotted proteins 12.5 5.59e-03 18.3 1.79e-04 20.3 3.18e-04

knotted proteins 16.9 25.1 27.7

Class Dn x=N PDn x=N Dn x PDn x
D PD

2-state folders 1.3 1.71e-02 94.9 3.30e-03 1309 8.06e-04

3-state folders 1.9 238 2924

a-helix proteins 8.74e-01 ab:1.88e-04 80.4 ab:4.50e-02 1450 ab:(4.14e-01)

b-sheet proteins 1.7 b M:(6.65e-01) 146 b M:(2.99e-01) 1802 b M:(3.10e-01)

Mixed secondary structure 1.8 a M:1.56e-03 195 a M:2.30e-02 2274 a M:(1.06e-01)

Unknotted proteins 1.5 5.33e-04 144 2.05e-03 1862 2.67e-03

knotted proteins 3.3 476 4074

Class D=N PD=N N PN

2-state folders 17.6 8.56e-04 71.3 4.17e-04

3-state folders 23.8 116

a-helix proteins 16.7 ab:(6.95e-02) 77.9 ab:(6.57e-01)

b-sheet proteins 20.4 b M:(4.67e-01) 83.4 b M:(2.49e-01)

Mixed secondary structure 21.6 a M:2.68e-02 98.3 a M:(1.59e-01)

Unknotted proteins 19.7 1.04e-04 86.9 3.54e-03

knotted proteins 28.4 140

Order parameters for various classifications of proteins. The data set of 2- and 3-state folders is the same as the data set for a-helical b-sheet and mixed proteins, and is
given in Table 1. This is also the same data set as the unknotted proteins. Knotted proteins are separately classified, and not included as either 2-state or 3-state
proteins. A discrimination is deemed statistically significant if the probability of the null hypothesis is less than 5%.
doi:10.1371/journal.pone.0053642.t002
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correlate with each other, and how they both discriminate knotted

from unknotted proteins and 2-state from 3-state proteins.

Moreover one can see how despite the significant correlation

between Dnx and N, Dnx can discriminate a proteins from either b
proteins or mixed a/b proteins, while N cannot.

As a control study for the above metrics, we took random

selections of half of the proteins, to see if random partitioning of

the proteins into two classes resulted in any of the metrics

distinguishing the two sets with statistical significance. No metric in

this study had significance: the p-values ranged from about 0.32 to

0.94.

Figure 16 shows a plot of the statistical significance for all the

metrics in Table 2 to distinguish various pairs of proteins classes: 2-

state from 3-state proteins, a from b, a from mixed a=b, b from

mixed, and knotted from unknotted. We can define the most

consistent discriminator between protein classes as that metric that

is statistically significant for the most classes, and for those classes

has the highest statistical significance. By this criterion Dnx=N is

the most consistent discriminator between the general structural

and kinetic classes considered here.

Interestingly, in all cases, the extra distance introduced by non-

crossing constraints is a very small fraction (less than 13%) of the

MRSD, which represents the ghost distance neglecting non-

crossing. This was not an obvious result, but it was encouraging

evidence for the reason simple order-parameters that neglect an

explicit accounting of non-crossing have been so successful

historically [49,85,112–116].

Scaling laws for pathway distances across domains and
whole proteins

Larger proteins will typically have larger MRSD. A protein of

twice the chain length need not have twice the MRSD however;

we plot the unfolded ensemble averaged MRSD of the proteins in

our dataset as a function of N in Figure 17A. The plot shows sub-

extensive scaling for the straight-line path distance per residue:

MRSD*N0:65. On the other hand, the non-crossing distance per

residue, Dnx=N, shows superextensive scaling: Dnx=N*N1:33,

indicating that non-crossing induced entanglement becomes

progressively more important even on a per-residue basis for

longer proteins, and likely polymers in general. In fact, the steeper

slope of Dnx=N indicates a crossover such that when N is larger

than about 3600, chain non-crossing dominates the motion of the

minimal folding pathway. It is noteworthy that the scatter in the

Figure 15. Clustering of protein classes depending on order parameter. (A) Scatter plot of all proteins as a function of Dnx=N and LRO.
Knotted proteins are indicated as green circles and are clustered; unknotted proteins are clustered using with the black closed curve, and contain a-
helical proteins clustered in red, and mixed a-b proteins clustered in magenta. Beta proteins are indicated in blue. Two and three state proteins are
indicated as triangles and squares respectively. LRO provides a strong discriminant agains a and mixed proteins, but not knotted and unknotted
proteins, while Dnx=N discriminates knotted from unknotted proteins, and moderately discriminates a proteins from mixed proteins. (B) Scatter plot
of all proteins as a function of Dnx and N . The rendering scheme for protein classes is the same as in panel (A). Kinetic 2-state folders are indicated by
the black dashed curve. Both Dnx and N distinguish knotted from unknotted proteins, and 2-state from 3-state proteins. By projecting a proteins and
either mixed a/b or all-b proteins onto each order parameter, one can see how Dnx can discriminate a proteins from both mixed or b proteins, while
N cannot. This is despite the significant correlation between Dnx and N .
doi:10.1371/journal.pone.0053642.g015

Figure 16. Statistical significance for all order parameters in
distinguishing between different classes of proteins. The -log of
the statistical significance is plotted as a function of pairs of protein
classes, so that a higher number indicates better ability to distinguish
between different classes. The blue horizontal line indicates a threshold
of 5% for statistical significance.
doi:10.1371/journal.pone.0053642.g016
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log-log scaling plot of Figure 17A is much larger for Dnx=N than

for MRSD, illustrating the larger dispersion of Dnx=N for proteins

of the same length but different native topology.

The above analysis can be applied to domains within a single

protein, to test how autonomous their folding mechanisms are as

compared to separate proteins. Run on our dataset, the program

DDomain [117] only finds multiple domains in methyltransferase

domain of human tar (HIV-1) RNA binding protein (PDB 2HA8)

(Wu, H. et. al. unpublished data), between residues 20–88 and 89–

178 (residue 20 is the first resolved residue in the crystal structure).

The domain finding program DHcL [118] also finds domains in

this protein between residues 20–83 and 84–178. DHcL also finds

domains in several other proteins, some generally accepted as

single domain, however one of these proteins is clearly a repeat

protein containing a 36 residue helix-turn-helix motif: tumor

suppressor P16INK4A (PDB 2A5E) [119]. For this protein, DHcL

finds domains between the 1st and 2nd, and 2nd and 3rd repeating

units. We manually added a domain boundary between the 3rd

and 4th repeating units to yield 4 domains containing residues 1–

36, 37–72, 73–108, and 109–144. The domains of 2HA8 and

2A5E are illustrated in Figure 17C.

Using the above domain structures for 2HA8 and 2A5E, we

analyze the scaling of MRSD with chain length N in Figure 17B.

In these plots the individual domains are considered as separate

proteins, then combined together if the domains are contiguous,

e.g. for 2A5E proteins consisting of domains 1, domains 1 and 2

together, 1, 2, and 3 together, all domains together, and all

contiguous combinations therein are examined. This yields the

same scaling law for both proteins: MRSD*N0:76, which has a

larger power law than the scaling between proteins above. Chain

connectivity constraints apparently induce cross-talk between

domains even for MRSD. Likewise, the scaling law for noncross-

ing distance per residue is Dnx=N*N2:51, indicating significant

polymer chain interference between domain folding. The individ-

ual domains of multidomain proteins apparently show less severe

chain constraints than single domain proteins of the same size.

Quantifying minimal folding pathways
The minimum folding pathway gives the most direct way that

an unfolded protein conformation can transform by reconfigura-

tion to the native structure. However, different configurations in

the unfolded ensemble transform by different sequences of events,

for example one unfolded conformation may require a leg

uncrossing move, followed by a Reidemeister move elsewhere on

the chain, followed by an uncrossing move of the opposite leg,

while another unfolded conformation may require only a single leg

uncrossing move.

The sequence of moves can be represented as a color-coded bar

plot, which, for the 3 proteins rendered in Figure 18, is shown in

Figures 19, 20, 21. In these figures, the sequence of moves is taken

from right to left, and the width of the bar indicates the non-

crossing distance undertaken by that move. A scale bar is given

underneath each figure indicating a distance of 100 in units of the

link length. Red bars indicate moves corresponding to the N-

terminal leg (LN ) of the protein, while green bars indicate moves

Figure 17. Approximate scaling laws for MRSD and non-
crossing distance per residue Dnx=N, across proteins and for
domains within a single protein. (A) MRSD (blue circles) as a
function of chain length N for our protein dataset. The slope of the best
fit line on the log-log plot gives the power law scaling: MRSD*N0:65.
Non-crossing distance per residue Dnx=N (red circles) vs. N shows
much larger scatter across native topologies, but follows an approx-
imate scaling law Dnx=N*N1:33 which is superextensive, indicating an
increasing importance of chain non-crossing per residue as system size
is increased. At system sizes larger than N&3600, even minimal motion
is dominated by entanglement. (B) Same quantities as in panel (A), but
for the domains in proteins 2A5E and 2HA8. The scaling laws are

different than in panel (A), and show stronger chain-length depen-
dence. For 2HA8, domains 1, 2 and 1-2 together (the full protein) are
considered; for 2A5E domains 1,2,3,4, 1-2, 2-3, 3-4, 1-2-3, 2-3-4, and 1-2-
3-4 (the full protein) are considered. Based on these scaling laws found
by building up proteins from subdomains, at system sizes larger than
N&400, minimal pathways become entanglement-dominated. (C)
Schematic renderings of the domains, color-coded in 2HA8 (left) and
2A5E (right).
doi:10.1371/journal.pone.0053642.g017
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corresponding to the C-terminal leg (LC ). Blue bars indicate

Reidemeister ‘‘pinch and twist’’ moves, while cyan bars indicate

elbow uncrossing moves.

The typical sequence of moves varies depending on the protein.

Figure 19 shows the uncrossing transformations of the all-a protein

acyl-coenzyme A binding protein (PDB id 2ABD [120], see

Figure 18A). Panels A and B depict the same set of transforma-

tions, but in A they are sorted from largest to smallest values of LN

uncrossing, and in B they are sorted from largest to smallest values

of LC uncrossing. The leg moves in each panel are aligned so that

the left end of the bars corresponding to the moves being sorted

are all lined up. Some transformations partway down in panel A

do not require an LN move; these are then ordered from largest to

smallest LC move. The converse is applied in panel B. Some

moves do not require either leg move; these are sorted in

decreasing order of the total distance of Reidemeister loop twist

moves. Finally, some transformations require only elbow moves;

these are sorted from largest to smallest total uncrossing distance.

Figure 20 shows the noncrossing transformations for the Src

homology 3 (SH3) domain of phosphatidylinositol 3-kinase (PI3K),

a largely-b protein (about 23% helix, including 3 short 310 helical

turns; PDB id 1PKS [121], see Figure 18B), sorted analogously to

Figure 19. Figure 21 shows the uncrossing transformations

involved in the minimal folding of the designed knotted protein

2ouf-knot (PDB id 3MLG [100], Figure 18C).

Interestingly, for the all-a protein 2ABD, &12% of the 172

transformations considered did not require any uncrossing moves,

and proceed directly from the unfolded to the folded conforma-

tion. These transformations are not shown in Figure 19. For the b
protein and knotted protein, every transformation that we

considered (195 for 1PKS and 90 for 3MLG) required at least

one uncrossing move.

As a specific example, the top-most move in Figure 21 panel B

consists of a C-leg move (green) covering &90% of the non-

crossing distance, followed by N-leg move (red) covering &7% of

the distance, then a short elbow move (cyan), a short Reidemeister

loop move (blue), another short elbow move (cyan), and finally a

short Reidemeister move (blue). In some cases the elbow and loop

moves commute if they involve different parts of the chain, but

generally they do not. For this reason we have not made any

attempt to cluster loop and elbow moves, rather we have just

represented them in the order they occur. On the other hand,

consecutive leg moves commute and can be taken in either order.

In Figures 19, 20,21, one can see that significantly more motion

is involved in the leg uncrossing moves than for other types of

move. The total distance covered by leg moves is 82% for 3MLG,

69% for 1PKS, and 49% for 2ABD. For 3MLG, the total leg move

distance is comprised of 44% LN moves, and 38% LC moves. For

1PKS, leg move distance is comprised of 18% LN moves, and

51% LC moves. For 2ABD, distance for the leg moves is roughly

symmetric with 26% LN and 23% LC .

One difference that can be seen for the all-a protein compared

to the b and knotted proteins is in the persistence of the leg

motion. For 2ABD, only 24% of the transformations require LN

moves and only 30% of the transformations require LC moves. On

the other hand the persistence of leg moves is greater in the b
protein and greatest in the knotted protein. For 1PKS, LN and LC

moves persist in 74% and 66% of the transformations respectively.

In 3MLG, LN and LC moves persist in 92% and 41% of the

transformations respectively.

Inspection of the transformations for the b protein 1PKS in

panels A and B of Figure 20 reveals that uncrossing moves

generally cover larger distance than in the a protein 2ABD (the

mean uncrossing distance for is 136 for 1PKS vs. 77.5 for 2ABD).

We also notice that in contrast to the leg uncrossing moves in

2ABD, both LN and LC moves are often required (44% of the

transformations require both LN and LC moves, compared to 5%

for 2ABD). The asymmetry of the protein is manifested in the

asymmetry of the leg move distance: the LN moves are generally

shorter than the LC moves, covering about 1/4 of the total leg

move distance. As mentioned above, LC moves comprise about

51% of the total distance for the 195 transformations in 20, while

LN moves only comprise about 18% of the distance on average.

Both LN and LC moves are persistent as mentioned above. A leg

move of either type is present in 95% of the transformations.

Inspection of the transformations in Figure 21 reveals that every

transformations requires either an LN or LC move. This is sensible

for a knotted protein, and is in contrast to the transformations for

the a protein 2ABD, where many moves do not require any leg

uncrossing at all and consist of only short Reidemeister loop and

elbow moves. In this sense the diversity of folding routes [40,41]

for the knotted protein 3MLG is the smallest of the proteins

considered here, and illustrates the concept that topological

constraints induce a pathway-like aspect to the folding mechanism.

The N-terminal LN leg move is the most persistently required

uncrossing move, present in about 92% of the transformations.

This is generally the terminal end of the protein that we found was

involved in forming the pseudo-trefoil knot. Sometimes however,

the C-terminal end is involved in forming the knot, though this

move is less persistent and is present in only 41% of the

transformations. However when an LC move is undertaken, the

distance traversed is significantly greater, as shown in Panel B of

Figure 21. This asymmetry is a consequence of the asymmetry

already present in the native structure of the protein.

Figure 18. Schematic renderings of the three proteins whose
minimal transformations we investigate in detail. (A) acyl-
coenzyme A binding protein, PDB id 2ABD [120], an all-a protein; (B)
Src homology 3 (SH3) domain of phosphatidylinositol 3-kinase, PDB id
1PKS [121], a largely b protein; (C) The designed knotted protein 2ouf-
knot, PDB id 3MLG [100].
doi:10.1371/journal.pone.0053642.g018
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Figure 19. Bar plots for the uncrossing operations involved in minimal transformations from an unfolded ensemble, for the a
protein 2ABD. The sequence of noncrossing operations the transformation corresponding to a given pair of conformations is represented as a
color-coded series of bars, with the sequence of moves going from right to left, and the length of the bar indicating the non-crossing distance
undertaken by a particular move. Red bars indicate N-terminal leg (LN ) uncrossing, green bars indicate C-terminal leg (LC ) uncrossing, blue bars
indicate Reidemeister ‘‘pinch and twist’’ loop uncrossing moves, and cyan bars indicate elbow uncrossing moves. The same set of 172
transformations is shown in panels A and B. Panel A sorts uncrossing transformations by rank ordering the following move types, largest to smallest:
LN , LC , loop uncrossing, elbow move. Panel B sorts moves by LC , LN , loop uncrossing, elbow move. The scale bar underneath each panel indicates a
distance of 100 in units of the link length. The arrow in each panel denotes the ‘‘most representative’’ transformation, as defined in the text.
doi:10.1371/journal.pone.0053642.g019

Figure 20. Bar plots of the uncrossing operations involved in minimal transformations for the b-sheet protein 1PKS. See Figure 19
and the text for more details. Red bars: LN uncrossing moves; green bars: LC uncrossing moves; Blue bars: loop uncrossing moves; Cyan bars: elbow
uncrossing moves. The same set of 195 transformations is shown in panels A and B, sorted as in Figure 19. The scale bar underneath each panel
indicates a distance of 100 in units of the link length.
doi:10.1371/journal.pone.0053642.g020
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Consensus minimal folding pathways
From the transformations described in Figures 19, 20, 21, we

see that there are a multitude of different transformations that can

fold each protein. The pathways for the a protein 2ABD are more

diverse than those for the b or knotted proteins. From the

ensemble of transformations for each protein, we can average the

amount of motion for each uncrossing move to obtain a quantity

representing the consensus or most representative minimal folding

pathway for that protein. This takes the form of the histograms in

Figure 22, with the x-axes representing the order of uncrossing/

untangling events, right to left, and the y-axes representing the

average amount of motion in each type of move.

The ensemble of untangling transformations can be divided into

three different classes: transformations in which leg LN is the

largest move, transformations in which leg LC is the largest move,

and transformations in which an elbow E or loop R (for

Reidemeister type I) are the largest moves. Moreover, if LN and

LC moves occur consecutively they can be commuted, so without

loss of generality we take the LN move as occurring before the LC

move in the x-axes of Figure 22. The leg moves, if they occur first,

are then followed by either elbow (E) and/or loop (R) moves, of

which there may be several. In general, the leg moves may both

occur before the collection of loop and elbow moves, after them, or

may bracket the elbow and loop moves (e.g. 2nd bar in Figure 21b).

By the construction of our approximate algorithm, if two LN

moves were encountered during a trajectory (they were encoun-

tered only a few times during the course of our studies), they would

be aggregated into one LN move involving the larger of the two

motions, in order to remove any possible redundancy of motion.

Hence no more than one LN or LC move is obtained for all

transformations. We found that three pairs of elbow and loop

moves was sufficient to describe about 93% of all transformations

(see the x-axes of Figure 22). In summary, the sequence LN , LC ,

R, E, R, E, R, E, LN , LC (read from left to right) characterized

almost all transformations, and so was adopted as a general

scheme. Any exceptions simply had more small elbow and loop

moves that were of minor consequence; for these transformations

we simply accumulated the extra elbow and loop moves into the

most appropriate R or E move. The general recipe for rendering

loops R in Figure 22 is as follows: if one R move is encountered

(regardless of where), each half is placed first and last (third) in the

general scheme. If two R moves are encountered, they are placed

first and last, and if three R moves are encountered, they are

simply partitioned in the order they occurred. For four or more R

moves, the middle N{2 are accumulated into the middle slot in

the general scheme. The same recipe is applied to elbow moves E.

As a specific example, the first bar in Figure 21b consists of LC ,

LN , E1, R1, E2, R2, which after permutation of the first two leg

moves falls into the general scheme above as LN , LC , R1, E1, 0, 0,

R2, E2, 0, 0. The bottom-most transformation in Figure 21B

consists of R1, R2, R3, E1, E2, E3, LN , which becomes 0, 0, R1,

E1, R2, E2, R3, E3, LN , 0 in the general scheme.

Figure 22 shows histograms of the minimal folding mechanisms,

obtained from the above-described procedure. Note again there

are 3 classes of transformation, one where LN is the largest move,

one where LC is the largest move, and one where either loop R or

elbow E is the largest move. Each uncrossing element of the

transformation, C-leg, N-leg, Reidemeister loop, or elbow,

contributes to the height of the corresponding bar, which

represents the average over transformations in that class. The

percentage of transformations that fall into each class is given in

the legend to panels A–C of Figure 22.

Most of the transformations (71:5%) for the a-protein 2ABD fall

into the class with a dominant loop or elbow move, which itself

Figure 21. Bar plots of the uncrossing operations involved in the minimal transformations for the knotted protein 3MLG. See
Figure 19 and the text for more details. Red bars: LN uncrossing moves; green bars: LC uncrossing moves; Blue bars: loop uncrossing moves; Cyan
bars: elbow uncrossing moves. The same set of 90 transformations is shown in panels A and B, sorted as in Figure 19. The scale bar underneath each
panel indicates a distance of 100 in units of the link length. The arrow in each panel denotes the ‘‘most representative’’ transformation, as defined in
the text. The transformation located 8 bars up from the bottom of Panel A requires both LN and LC moves, however both leg motions are very small.
doi:10.1371/journal.pone.0053642.g021
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tends to cover less uncrossing distance than either C- or N-leg

uncrossing (ordinates of Panels A–C Figure 22). This is a signature

of a diverse range of folding pathways: minimal folding pathways

need not involve obligatory leg uncrossing constraints. In this

sense, the b protein 1PKS is more has a more constrained folding

mechanism than the a protein; there is a significantly larger

percentage of transformations for which a leg transformation LC

or LN dominates, though the mean distances undertaken when a

leg move does dominate are comparable for LC and even larger

for the a protein for LN .

The knotted protein 3MLG has the most constrained minimal

folding pathway. A leg move from either end dominates for 91%

of the cases. Even for the transformations where loop or elbow

moves dominate, there is still relatively significant LN motion. The

dominant pathways for knotting 3MLG involve leg crossing from

either N or C terminus. When the C terminus is involved in the

minimal transformation, the motion can be significant

(Figure 22B).

Among all transformations of a given protein, a transformation

can be found that is closest to the average transformation for one

of the three classes in Figure 22. This consensus transformation

has a sequence of moves that when mapped to the scheme in

Figure 22, has minimal deviations from the averages shown there.

Further, we can find the transformation that has minimal

deviation to any of the three classes in Figure 22. For the knotted

protein 3MLG, the best fit transformation is to the class with LN -

dominated moves, for the a protein 2ABD, the best fit

transformation is to the class with miscellaneous-dominated

moves, and the b protein 1PKS, the best fit transformation is

the class with LC-dominated moves. For the a, b, and knotted

proteins, these are the transformations denoted by a short arrows

to the left of the transformation in panels A and B of Figures 19,

20, and 21 respectively. For the a, b, and knotted proteins, the

transformations are illustrated schematically in Figures 23, 24, and

25 respectively.

Inspection of the most representative transformation for the all-

a protein 2ABD shown in Figure 23 indicates that the

transformation requires remarkably little motion: it contains a

negligible leg motion followed by a loop uncrossing of modest

distance, followed by a short elbow move that is also inconse-

quential: in shorthand E½9�R½20�LN ½1�, where the numbers in

brackets indicate the cost of the moves in units where the link

length is unity. In constructing a schematic of the representative

transformation in Figure 23, we ignore the smaller leg and elbow

moves and illustrate the loop move roughly to scale. Although

additional crossing points appear from the perspective of the

figure, the remainder of the transformation involves simple

straight-line motion.

Figure 22. Consensus histograms of the transformations
described in Figures 19, 20, 21. See text for a description of the
construction. Each bar represents the distance of a corresponding move
type, N or C leg (LN or LC ), elbow E, or loop R. The order of the
sequence of moves is taken from right to left along the x-axis. An all-a
protein (2ABD), an all-b protein (1PKS), and a knotted protein (3MLG)
are considered. (A) Transformations with leg LN as the largest move.
These encompass 15% of the transformations those in the a protein,
16% of the transformations in the b protein, and 73% of the
transformations for the knotted protein. (B) Transformations with leg
LC as the largest move, which encompass 13% of the a protein
transformations, 54% of b protein transformations, and 18% of knotted
protein transformations. (C) Transformations with either an elbow E or
loop R as the largest move, which encompass 71% of the a protein
transformations, 29% of b protein transformations, and 9% of knotted
protein transformations.
doi:10.1371/journal.pone.0053642.g022
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Figure 24 shows the most representative folding transformation

for the b protein 1PKS. The sequence of events constructed from

the most representative minimal transformation,

E½18�R½24�LC ½48�, consists of a dominant leg move depicted in

steps 4 and 5 of the transformation, followed by shorter loop and

elbow Reidemeister moves that are neglected in the schematic.

Loops and crossing points appear from the perspective of the

figure, however the remainder of the transformation involves

simple straight-line motion.

Figure 25 shows the most representative folding transformation

for the knotted protein 3MLG. The sequence of events

constructed from the minimal transformation,

R½21�R½18�LN ½125� in the above notation, consists of a dominant

leg move depicted in steps 4 and 5 of the transformation, and two

relatively short loop moves that are neglected in the schematic as

inconsequential. Loops appear from the perspective of the figure,

and the crossing points appear to shift in position, however the

remainder of the transformation involves simple straight-line

motion.

Topological constraints induce folding pathways
From Figures 19, 20, 21, one can see that topological non-

crossing constraints can induce pathway-like folding mechanisms,

particularly for knotted proteins, and in part for b-sheet proteins as

well. The locality of interactions in conjunction with simple

tertiary arrangement of helices in the a-helical protein profoundly

affects the nature of the transformations that fold the protein, such

that the distribution of minimal folding pathways is diverse.

Conversely, the knotted protein, although largely helical, has non-

trivial tertiary arrangement, which is manifested in the persistence

of a leg crossing move in the minimal folding pathway. In this way,

a folding ‘‘mechanism’’ is induced by the geometry of the native

structure.

We can quantify this notion by calculating the similarity

between minimal folding pathways. To this end we note that, for

example, the transformation that is 6 bars from the bottom in

Figure 21b, which contains an LN move followed by 2 short loops

and an elbow, should not fundamentally be very different than the

transformation 10 from the bottom in that figure, which contains a

loop and 2 short elbows followed by a larger LN move. In general

we treat the commonality of the moves as relevant to the overlap

Figure 23. Schematic of the most representative transformation for the a protein 2ABD.
doi:10.1371/journal.pone.0053642.g023

Figure 24. Schematic of the most representative transforma-
tion for the b protein 1PKS.
doi:10.1371/journal.pone.0053642.g024
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rather than the specific number of residues involved, or the order

of the moves that arises from the depth-first tree search algorithm.

Thus for each transformation pair we define two sequence

overlap vectors in the following way. Overlaying the residues

involved in moves for each transformation along the primary

sequence on top of each other as in Figure 26, we count as unity

those moves of the same type that overlap in sequence for both

transformations, otherwise a given move is assigned a value of

zero. So for example in Figure 26 the result is two vectors of binary

numbers, one with 4 elements for transformation a and one with 5

elements for transformation b, based on the overlap of moves of

the same type. That is, the first vector is ~DDa~(1,1,0,1) and the 2nd

vector is ~DDb~(1,0,1,0,1). To find the pathway overlap, we also

record the noncrossing distances of the various transformations

which here would be two vectors of the form

~DDa~(Da
LN

,Da
R1

,Da
R2

,Da
LC

), and ~DDb~(Db
LN

,Db
R1

,Db
R2

,Db
E1

,Db
LC

).

Square matrices D are constructed for a and b, where each row

is identical and equal to the vector ~DD. This matrix then operates on
~DD to make a new vector that has distances for the elements that are

nonzero in ~DD, and is the same length for both a and b. In the

above example shown in Figure 26, Da ~DDa~(Da
LN

,Da
R1

,Da
LC

) and

Db ~DDb~(Db
LN

,Db
R2

,Db
LC

). These vectors are then multiplied

through the inner product, and divided by the norms of ~DDa and
~DDb to obtain the overlap Qab. In the above example,

Qab~(Da
LN
Db

LN
zDa

R1
Db

R2
zDa

LC
Db

LC
)=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i Dað Þ2i

P
j (Db)2

j

q
. In

general, the formula for the overlap is given by

Qab~
(Da ~DDa):(Db ~DDb)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
( ~DDa: ~DDa)( ~DDb: ~DDb)

q : ð7Þ

Figure 25. Schematic of the most representative transformation for the knotted protein 3MLG.
doi:10.1371/journal.pone.0053642.g025

Figure 26. Overlap between minimal transformations. Schemat-
ic diagram for the residues involved in uncrossing operations for two
minimal transformations labelled by a and b, to illustrate the sequence
overlap between transformations.
doi:10.1371/journal.pone.0053642.g026
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When a~b, Qab~1. In the above example, Qab
v1 even if all

loops were aligned, because there is no elbow move in

transformation a. If two transformations have an identical set of

moves, Qab~1 if all the moves have at least partial overlap with a

move of the same type in primary sequence. If a loop move in

transformation b overlaps two loop moves in transformation a, it is

assigned to the loop with larger overlap in primary sequence. For

the first two transformations in Figure 21A, Qab~0:988, and for

the first two transformations in Figure 21B, Qab~0:999. On the

other hand for the first and last transformations in Figure 21B,

Qab~0:033.

Figure 27 shows the distributions of overlaps Qab between all

pairs of transformations indicated in Figures 19, 20, 21, for the

three proteins shown in Figure 18. The distributions show a

transition from multiple diverse minimal folding pathways for the

a protein, to the emergence of a dominant minimal folding

pathway for the knotted protein. The mean overlap Q between

transformations can be obtained by averaging Qab in Equation (8)

over all pairs of transformations: Q~
P

avb Qab= N N{1ð Þ=2ð Þ.
Mean overlaps for each protein are given in the caption to

Figure 27. This illustrates that topological constraints induce

mechanistic pathways in protein folding. We elaborate on this in

the Discussion section.

Discussion

The Euclidean distance between points can be generalized

mathematically to find the distance between polymer curves; this

can be used to find the minimal folding transformation of a

protein. Here, we have developed a method for calculating

approximately minimal transformations between unfolded and

folded states that account for polymer non-crossing constraints.

The extra motion due to non-crossing constraints was calculated

retroactively for all crossing events of a ghost chain transformation

involving straight line motion of all beads on a coarse-grained

model chain containing every other Ca atom, from an ensemble of

unfolded conformations, to the folded structure as defined by the

coordinates in the protein databank archive. The distances

undertaken by the uncrossing events correspond to straight-line

motions of all the beads from the conformation before the crossing

event, over and around the constraining polymer, and back to the

essentially identical polymer conformation immediately after the

crossing event. Given a set of chain crossing events, the various

ways of undoing the crossings are explored using a depth-first tree

search algorithm, and the transformation of least distance is

recorded as the minimal transformation.

We found that knotted proteins quite sensibly must undergo

more noncrossing motion to fold than unknotted proteins. We also

find a similar conclusion for transformations between all-b and all-

a proteins; all-a proteins generally undergo very little uncrossing

motion during folding. In fact the uncrossing distance, Dnx,

averaged over the unfolded ensemble, can be used as a

discrimination measure between various structural and kinetic

classes of proteins. Comparing several metrics arising from this

work with several common metrics in the literature such as

RMSD, absolute contact order ACO, and long range order LRO,

we found that the most reliable discriminator between structural

classes, as well as between two- and three-state proteins, was Dnx

per residue. (later paragraph moved here:) Knotted proteins, as

compared to unknotted proteins, are the most distinguishable class

of those we investigated, in that all metrics we investigated except

for LRO significantly differentiated the knotted from unknotted

proteins. The differentiation between structural or kinetic classes

Figure 27. Distribution of pathway overlap between minimal
transformations, for an a, b, and knotted protein. Pathway
overlap (Qab) distributions for the 3 proteins in Figure 18, as defined by
Equation (8), operating on the transformations in Figure 19, 20, 21. (a)
The pathway overlap distribution for the all-a protein 2ABD indicates a

large contribution for Qab~0 (the peak height in the distribution is
&0:62), indicating a diverse set of minimal transformations fold the
protein. The average Q for these transformations is 0:18. (b) The
pathway overlap distribution for the b-protein shows the emergence of
a peak around Qab~1, indicating partial restriction of folding pathways.

The peak near Qab~0 still carries more weight in the distribution. The
average Q~0:45. (c) The peak around Qab~1 becomes dominant for
the pathway overlap distribution of the knotted protein, indicating the
emergence of a dominant restricted minimal folding pathway. The
average Q~0:62.
doi:10.1371/journal.pone.0053642.g027
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of proteins as studied here is a separate issue from the question of

which order parameters may best correlate with folding rates

[28,86,96,122,123]; this latter question is an interesting topic of

future research. Differentiating native-structure based order

parameters that provide good correlates of folding kinetics is a

complicated issue, in that different structural classes may correlate

better or worse with a given order parameter [123].

Non-crossing distance per residue Dnx=N increases more

rapidly with chain length than the mean straight line distance

between residue pairs (MRSD). Considering proteins as separate

domains indicates a crossover at long chain length, about

N~3600. Considering proteins built up by adding successive

domains, specifically for two representative multi-domain proteins

in our dataset (2HA8 and 2A5E), indicates a crossover to

entanglement-dominated folding mechanisms at shorter lengths-

about N~400. This crossover point may indicate a regime where

energetics begins to play a role in order to fold domains

independently, and avoid progressively more significant polymer

disentanglement in order to fold.

Even for knotted proteins, the motion involved in avoiding non-

crossing constraints is only about 13% of the total ghost chain

motion undertaken had the noncrossing constraints been neglect-

ed. This was not an obvious result, to these authors at least. In

contrast to melts of long polymers, chain non-crossing and the

resultant entanglement does not appear to be a significant factor in

protein folding, at least for the structures and ensembles we have

studied here. It is tempting to conclude from this that chain non-

crossing constraints play a minor role in determining folding

mechanisms. It is nevertheless an empirical fact that knotted

proteins fold significantly slower than unknotted proteins

[100,124]. As well, raw percentages of total motion do not take

into account the difficulty in certain types of special polymer

movement, in particular when the entropy of folding routes is

tightly constrained [12,40,41,125–127]. The small percentage of

non-crossing motion may offer some explanation however, as to

why simple order parameters, such as absolute contact order, that

do not explicitly account for noncrossing in characterizing folding

mechanisms have historically been so successful in predicting

kinetics.

The non-crossing distance was calculated here for a chain of

zero thickness, so that non-crossing is decoupled from steric

constraints. Finite volume steric effects would likely enhance the

importance of non-crossing constraints, since the volume of phase

space where chains are non-overlapping is reduced, and thus chain

motions must be further altered to respect these additional

constraints [128]. Steric constraints may significantly alter the

shape of reactive trajectories, and slow kinetics by enforcing

entropic bottlenecks. Such constraints may become particularly

important for collapsed or semi-collapsed proteins, and knotted

proteins where they restrict stereochemically-allowed folding

pathways. These effects may in principle be treated by extending

the present formalism to include non-zero chain thickness, and by

extending the minimal folding pathway to the partition function of

pathways, with each pathway having weight proportional to the

exponent of the distance [72]. Such a treatment is an interesting

and important topic of future work.

One potential issue in the construction of the algorithm used

here is that the approximated minimal transformation is generally

not equivalent to a kinetically realizable transformation. In the

depth-first tree search algorithm illustrated in Figure 14, the set of

crossing points defines a set of uncrossing moves that may be

permuted, or combined for example through a compound leg

movement as in Figure 10. However the kinetic sequence of

crossing events, in particular those significantly separated in

‘‘time’’ along the minimal transformation, may not be permutable

or combinable physically, at least not without modifying the

distance travelled [129] Hence the transformations are treated

here as approximations to the true minimal transformations that

respect non-crossing.

The algorithm as described above may underrepresent the

amount of motion involved in noncrossing by allowing kinetically

separated moves to be commutable. On the other hand, the

motion assumed in the algorithm to be undertaken by a crossing

event contains abrupt changes in the direction of the velocity

(corners) at the time of the uncrossing event, and so is larger than

the true minimal distance. These errors cancel at least in part. It is

an interesting topic of future research to develop an improved

algorithm that computes minimal transformations, perhaps using

these approximate transformations as a starting point for further

optimization or modification.

The mathematical construction of minimal folding transforma-

tions can elucidate folding pathways. To this end we have

dissected the morphology of protein structure formation for several

different native structures. We found that the folding transforma-

tions of knotted proteins, and to a lesser extent b proteins, are

dominated by persistent leg uncrossing moves, while a proteins

have diverse folding pathways dominated simply by loop

uncrossing.

A pathway overlap function can then be defined, the structure

of which is fundamentally different for a proteins than for knotted

proteins. While the overlap function supports the notion of a

diverse collection of folding pathways for the a protein, the overlap

function for the knotted protein indicates that topological polymer

constraints can induce JmechanismJ into how a protein folds, i.e.

these constraints induce a dominant sequence of events in the

folding pathway. This effect is observed to some extent in the b
protein we investigated, but is most pronounced for knotted

proteins.

Other approaches have been made previously to quantify

topological frustration, and construct folding pathways that

minimize such frustration. Norcross and Yeates [126] have

extended the earlier analysis of Connolly et. al [130], to show

that edges between consecutive Ca atoms in the coarse-grained

primary sequence can be surrounded by a ring of other Ca atoms

consisting of the vertices of tetrahedra from Delauney tesselation.

They then find the folding pathways that minimize the number of

times a ring forms before its thread is formed within a single-

sequence approximation: these indicate topologically-frustrated

pathways. As an interesting example in [126], strand IV of

superoxide dismutase (SOD1) is highly buried by parts of the Zn-

binding loop, electrostatic loop, and neighboring strands V and

VII. In vitro folding studies [131,132] show however that this

problem is resolved by Zn-binding after folding of the b-barrel,

which is coupled with structural formation of the Zn-binding and

electrostatic loops (loops IV and VII). The apo state is an

energetically stressed, metastable intermediate [133]. In general,

folding coupled to ligand binding could remove topological

frustration by inducing unfrustrated pathways in the folding

mechanism.

Similar schematic ‘‘average’’ folding mechanisms as in

Figures 23, 24, 25, based on minimal folding pathways, were

proposed for the complex Stevedore knotted protein a-haloacid

dehalogenase by Bölinger et al [102], based on folding simulation

statistics of G�oo models.

Coarse-grained simulation studies of the reversible folder YibK

[99] showed that non-native interactions between the C-terminal

end and residues towards the middle of the sequence were a

prerequisite for reliable folding to the trefoil knotted native
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conformation [134], the evolutionary origins of which were

supported by hydrophobicity and b-sheet propensity profiles of

the SpoU methyltransferase family. This suggests a new aspect of

evolutionary ‘‘design’’ involving selective non-native interactions,

beyond the generic role that non-native interactions may play in

accelerating folding rate [135,136]. Low kinetic success rates

*1{2% in purely structure-based Gō simulations are also seen in

coarse-grained simulation studies of YibK [137] and all-atom

simulation studies of the small a=b knotted protein MJ0366 [138].

In these studies by Onuchic and colleagues, a ‘‘slip-knotting’’

mechanism driven by native contacts is proposed, rather than the

‘‘plug’’ mechanism in [134], which is driven by non-native

contacts. Both slip-knotting and plug mechanisms were described

by Mohazab and Plotkin as optimal un-crossing motions of protein

chains in [74]. Such mechanisms may be facilitated by flexibility in

the protein backbone: highly conserved glycines in the hinge

regions of both knotted and slipknotted [139] proteins modulate

the knotted state of the corresponding subchain of the protein

[140]. Further bioinformatic studies that investigate evolutionary

selection by strengthening critical native or non-native interactions

in knotted proteins are an interesting topic of current and future

research. There is certainly a precedent of selection for native

interactions that penalize on-pathway intermediates in some

proteins such as ribosomal protein S6 [40,41,141]. Structural

analysis of the deeply buried trefoil knot in acetohydroxy acid

isomeroreductase indicates swapping of secondary structural

elements across replicated domains likely arising from gene

duplication [109], which argues in favor of knot formation driven

by native interactions, through a mechanism apparently distinct

from slipknotting.

Lua and Grosberg have found that, due to enhanced return

probabilities originating from finite globule size along with

secondary structural preferences, protein chains have smaller

degree of interpenetration than collapsed random walks, and thus

fewer knots than would be expected for such collapsed random

walks [142], in spite of the fact that collapse dramatically enhances

the likelihood of knot formation [110], an effect foreshadowed by

the dramatic decrease in characteristic length for knot formation

as solvent quality changes from good to ideal (theta) [107,108]. It is

still not definitively answered whether this statistical selection

against knots in the protein universe is a cause or consequence of

the above size and structural preferences. Similarly, Mansfield

[143,144] has suggested that the polar nature of the N- and C-

termini of the protein chain energetically penalize processes that

would result in the formation of knots.

Conversely, some functional roles may benefit from the

presence of knotted topologies. Virnau and colleagues [145] have

suggested that the presence of complex knots in proteins involved

in regulation of ubiquitination and proteolysis serve a protective

role against incidental proteasome degradation, and as well, they

observe evidence for the modulation of function by alteration of an

enzymatic binding site through either the presence or absence of a

knot in homologues of transcarbamylase. Phylogenetic analysis

indicates that the presence of a knot is most likely mediated by a

single evolutionary event involving insertions of short segments in

the primary sequence [146].

The interplay between sequence-determined energetics and

chain connectivity in the folding of proteins with complex or

knotted topologies is a topic of much current interest, despite the

fact that the number of proteins exhibiting knots or slipknots in

their native structures is relatively small. It will be interesting to see

how evolution has optimized sequence or facilitated protein-

chaperone interactions to enable folding for these ‘‘problem

children’’ of the proteome.
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