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Abstract

Genome-wide pathway association studies provide novel insight into the biological mechanism underlying complex
diseases. Current pathway association studies primarily focus on single important disease phenotype, which is sometimes
insufficient to characterize the clinical manifestations of complex diseases. We present a multi-phenotypes pathway
association study(MPPAS) approach using principle component analysis(PCA). In our approach, PCA is first applied to
multiple correlated quantitative phenotypes for extracting a set of orthogonal phenotypic components. The extracted
phenotypic components are then used for pathway association analysis instead of original quantitative phenotypes. Four
statistics were proposed for PCA-based MPPAS in this study. Simulations using the real data from the HapMap project were
conducted to evaluate the power and type I error rates of PCA-based MPPAS under various scenarios considering sample
sizes, additive and interactive genetic effects. A real genome-wide association study data set of bone mineral density (BMD)
at hip and spine were also analyzed by PCA-based MPPAS. Simulation studies illustrated the performance of PCA-based
MPPAS for identifying the causal pathways underlying complex diseases. Genome-wide MPPAS of BMD detected
associations between BMD and KENNY_CTNNB1_TARGETS_UP as well as LONGEVITYPATHWAY pathways in this study. We
aim to provide a applicable MPPAS approach, which may help to gain deep understanding the potential biological
mechanism of association results for complex diseases.
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Introduction

Genome-wide association studies(GWAS) are successful for

identifying common genetic variation underlying complex diseases

in recent years [1]. In spite of the great power of GWAS, it may

miss the causal genes with moderate genetic effects due to the

stringent significant threshold of GWAS [2]. Moreover, the clinical

manifestations of complex diseases usually arise from the interplay

of multiple genetic and environmental risk factors through

epigenetic and dynamic mechanism. Single gene can also

participate in various biological processes. Identifying a small

number of significant genes in GWAS may be insufficient to

delineate the pathogenesis of complex diseases [3]. It is increasing

recognized that a joint test of association between complex

diseases and a group of functionally related genes, may provide

more useful biological interpretations of association results [4,5].

Motivated by the gene set enrichment analyses of microarray

data [6], researchers proposed pathway association study ap-

proaches, which detected associations between complex diseases

and a group of genes within a defined gene ontology or biological

pathways [2]. Compared with SNP association studies, pathway

association studies combine the association evidence of multiple

functionally related genes, and potentially have greater power for

revealing the biological mechanism underlying complex diseases

[2]. For instance, a causal pathway with genes individually having

weak genetic effects, but jointly contributing greatly to disease

risks, is more likely to be detected at pathway level than at SNP

level. Various pathway association study approaches were

developed [7,8,9,10,11,12], and successfully applied to genetic

studies of complex diseases, such as osteoporosis and coronary

heart disease [13,14].

Current pathway association studies primarily focus on single

important phenotype of complex diseases. A potential limitation of

single phenotype pathway association studies is that single

phenotype is sometimes insufficient to characterize complex

diseases due to its complicated clinical manifestations. For

example, obesity can be measured by body mass index, fat mass

and proportions of fat mass in total body mass in practice. To

address this issue, some researchers collected a set of disease-

related phenotypes, and conducted pathway association tests of

each phenotype ignoring the correlation among multiple disease

phenotypes [15]. Given the difference of genetic structure

underlying different disease phenotypes, it may be difficult to get

replicated associations among different single phenotype pathway

association studies. Additionally, multiple testing corrections were

usually requested to ensure normal type I error rates in these
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studies. Because of the correlation among multiple disease

phenotypes, multiple testing corrections (for example Bonferroni),

may be too strict to miss the pathways with moderate association

signals.

Recently, multivariable analyses approaches were applied to

SNP association studies, which could simultaneously detect

associations between SNPs and multiple disease phenotypes

[16,17]. The causal genes with moderate association signals in

single phenotype SNP association studies are likely to present

strong association signals in multiple phenotypes SNP association

studies avoiding multiple testing corrections. It may be reasonable

to consider that combining the genetic information of multiple

disease phenotypes was potentially able to enhance the association

signals of causal pathways, and therefore increased the power of

pathway association studies of complex diseases. However, to the

best of our knowledge, few multiple phenotypes pathway

association study(MPPAS) approach is available now.

In this study, we present a flexible MPPAS approach using

principle component analyses (PCA). In our approach, PCA is first

applied to multiple correlated quantitative phenotypes for exacting

a set of orthogonal phenotypic components. The extracted

phenotypic components are then included into pathway associa-

tion analyses instead of original disease phenotypes. Four statistics

combining the association evidence of multiple genes within

testing pathways, were proposed for assessing the overall

association strength of the pathways with target traits. To illustrate

the application of our method, extensive simulation studies using

the real data from the HapMap project, were conducted to

evaluate the power and type I error rates of PCA-based MPPAS

under various scenarios, considering sample sizes, additive and

interactive genetic effects. PCA-based MPPAS can be applied to

GWAS data. A real GWAS data set of osteoporosis was analyzed

by PCA-based MPPAS in this study.

Results

Simulations
The power of PCA-based MPPAS using SC , Smax C , SRgen and

SRSNP statistics, were evaluated by the simulation studies

considering sample sizes, additive and interactive genetic effects.

Figure 1A presents the power comparison results of SC , Smax C ,

SRgen and SRSNP under various sample sizes. As expect, the power

of PCA-based MPPAS trended to increase with increasing sample

sizes in this study. SC performed better than other statistics, and

attained the highest power 92.07% with 2000 samples. SRSNP

performed slightly worse than SC , but outperformed Smax C and

SRgen.

Figure 1B summarizes the power comparison results of SC ,

Smax C , SRgen and SRSNP under various genetic effects. We

observed significant impact of genetic effects on the performance

of PCA-based MPPAS. The power of SC , Smax C , SRSNP and

SRgen increased with increased genetic effects of causal pathways in

this studies. Consistent with the simulation results of sample sizes,

SC attained the highest power, following by SRSNP, Smax C and

SRgen under various genetic effects investigated by this study. The

simulation results of interactive genetic effects are presented in

Figure 1C. We observed increased power of PCA-based MPPAS

as the interactive genetic effects of causla pathways increasing. SC

outperformed SRSNP, Smax C and SRgen under various interactive

genetic effects investigated by this study.

Figure 2 plot the type I error rates of PCA-based MPPAS using

SC , Smax C , SRSNP and SRgen for testing association under various

sample sizes. The type I error rates of SC , Smax C , SRSNP and

SRgen are not significant different from normal level (a= 0.05)

under various simulating parameters investigated by this study.

Genome-wide MPPAS of BMD
Figure 3 and figure 4 summarizes the genome-wide MPPAS

results of BMD at spine and hip. With PCA-based MPPAS using

SC , we identified 2 pathways associated with BMD, including

KENNY_CTNNB1_TARGETS_UP(p = 4.6261025) and

LONGEVITYPATHWAY (p = 3.5961025). Detailed description

of KENNY_CTNNB1_TARGETS_UP and LONGEVITY-

PATHWAY pathways can be found at GSEA Molecular

Signatures Database (http://www.broadinstitute.org).

Discussion

Pathway association studies are based on the fact that different

causal genes of a complex disease are likely to be functionally

related, for instance belonging to same biological pathways [18].

Therefore, examining the overall association strength of a pathway

may provide improved power for pathogenetic studies of complex

diseases, especially for the pathways with each gene having small

phenotypic effects, but all genes jointly contributing greatly to

disease risks. However, current pathway association studies

primarily focus on single important phenotype of complex

diseases, which may miss the pathways with weak genetic effects.

In this study, we presented a simple PCA-based MPPAS

approaches, which can simultaneously test multiple correlated

quantitative phenotypes. Simulations were conducted to evaluate

the performance of PCA-based MPPAS using SC , Smax C , SRSNP

or SRgen, and illustrated the application of PCA-based MPPAS for

pathway association studies of complex diseases. We also observed

significant impact of sample sizes and genetic effects on the

performance of PCA-based MPPAS. PCA-based MPPAS using

SC statistic appeared to outperform PCA-based MPPAS using

SRSNP, Smax C or SRgen statistics in this study.

The PCA-based MPPAS have potentially two advantages over

single phenotype pathway association studies. First, single pheno-

type is sometimes insufficient for characterizing complex diseases.

In this situation, one strategy is to collect multiple disease

phenotypes, and conduct single phenotype pathway association

studies following by picking up the shared pathways with

significant association signals among different studies. One issue

of this approach is that the association finding of common causal

pathways may be difficult to be replicated across various single

phenotype pathway association studies, due to the difference of

mechanism underlying different disease phenotypes. Second,

multiple testing corrections are usually requested by this approach.

Because of the stringent significant threshold after multiple testing

corrections, the causal pathways with moderate but meaningful

associations may be missed by single phenotype association

studies. In contrast, MPPAS incorporate the genetic information

of multiple correlated disease phenotypes into single test statistic.

The causal pathways with moderate association signals in single

phenotype pathway association studies, are likely to present strong

association signals in MPPAS avoiding multiple testing correc-

tions.

PCA-based MPPAS can be applied to GWAS data. A real

GWAS data of BMD was used to assess the performance of PCA-

based MPPAS in this study. We observed significant associations

with BMD for KENNY_CTNNB1_TARGETS_UP and LONG-

EVITYPATHWAY pathways. Previous studies may provide some

hints for understanding the associations detected by this study. For

instance, previous studies found that the GHR, GH1, ATK1,

IGF1 and IGF1R genes of LONGEVITYPATHWAY (containing

Multiple Phenotypes Pathway Association Studies
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14 genes) contributed to the variation of BMD [19,20,21,22].

KENNY_CTNNB1_TARGETS_UP consists of a set of genes

being the target of Wnt pathway, which plays an important in the

regulation of bone mass accrual [23,24]. Further studies may be

needed to validate the associations detected by this study.

A potential extension of our approach is that haplotype

association studies may also be applied to PCA-based MPPAS

instead of SNP association studies used by this study. It is known

that haplotype association studies preserving the polymorphism

and linkage disequilibrium information of multiple adjacent SNPs,

was more powerful for detecting rare genetic variants than SNP

association studies in some cases [25,26]. For instance, the causal

genes with multiple SNPs jointly having significant phenotypic

effects, but individual SNP making a small contribution, is likely to

be missed by SNP association studies. PCA-based MPPAS using

haplotype as basic unit for association testing, may provide

additional information for reveal the biological mechanism of

complex diseases. Further studies may be worth to investigate the

performance of MPPAS using haplotype as association testing

unit.

Population stratification is a problem in population–based SNP

association studies. SNP association studies conducted in an

admixed population with subpopulations having different allele

frequency distribution, may result in spurious association results

[27]. Because most of current pathway association studies are

based on the results of SNP association studies, the performance of

pathway association studies may also suffer from the impact of

population stratification. The best solution is to collect genetic

unrelated subjects as study samples. Additionally, some statistical

methods can also be applied to SNP association studies for

correcting population stratification, such as Structure and

Eigensoft [28,29]. Linkage disequilibrium(LD) is another concern

with pathway association studies, which may result in extensive

spurious associations [7]. In this study, the significance levels of

testing statistics of PCA-based MPPAS were evaluated by Monte

Carlo permutations, which used the same individuals and

maintained the same LD structure between original datasets and

subsequent randomized datasets. PCA-based MPPAS do not

depend on specific statistical assumption, for example the

normality assumption of target traits. This approach minimizes

the impact of LD on the performance of PCA-based MPPAS. The

computational cost of PCA-based MPPAS is also acceptable in

Figure 1. Power simulating results of PCA-based MPPAS using SC , Smax C , SRgen and SRSNP statistics under various sample sizes (A)
and genetic effects(B&C).
doi:10.1371/journal.pone.0053320.g001

Figure 2. Type I error rate simulating results of PCA-based
MPPAS using SC , Smax C , SRgen and SRSNP statistics under various
sample sizes.
doi:10.1371/journal.pone.0053320.g002

Multiple Phenotypes Pathway Association Studies
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practice. For instance, our genome-wide PCA-based MPPAS of

BMD needed about 12 days(1000 subjects and 50,000 replicates).

In summary, we present a flexible PCA-based MPPAS

approach avoid multiple testing corrections. Simulations and real

GWAS data analyses results illustrated the application of PCA-

based MPPAS for identifying causal pathways underlying complex

diseases. PCA-based MPPAS may help to overcome the limita-

tions of single phenotype pathway association studies, and gain

deep understanding the molecular mechanism of association

results for complex diseases.

Materials and Methods

Ethics Statement
All studies were approved by the Institutional Review Boards of

Xi’an Jiaotong University. Informed-consent documents were read

and signed by all study participants.

General Model
Suppose a sample of n unrelated subjects and k quantitative

phenotypes, which was determined by a biological pathway with m

genotyped SNPs. Let Yi~(Yi1,:::,Yik)0 denote the k61 phenotype

vector, and Xi~(Xi1,:::,Xim)0 denote the m61 genotype vector of

Figure 3. Q-Q plot of genome-wide MPPAS results of BMD at spine and hip.
doi:10.1371/journal.pone.0053320.g003

Figure 4. Plot of genome-wide MPPAS results of BMD. The significant pathways are highlighted in red. Significant pathways were defined by p
values#5.1961025 after Bonferroni correction(0.05/963).
doi:10.1371/journal.pone.0053320.g004

Multiple Phenotypes Pathway Association Studies
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subject i (i = 1,…,n). In this study, we coded Xij (j = 1,…,m) to be 0,

1 or 2, representing the copy number of minor allele of subject i at

the jth SNP. Yil (l = 1,…,k) can be formulated as

Yil~mlz
Xm

j~1

bjlXijz
Xm

1ƒuvvƒm

cuvlXiuXivzeil , ð1Þ

where ml denotes the mean of the lth quantitative phenotypes. bjl

denotes the additive genetic effect of SNP j for the lth quantitative

phenotypes. cuvl denotes the interactive genetic effect between

SNP u and SNP v for the lth quantitative phenotypes. eil denotes

the residual environmental effect of subject i for the lth quantitative

phenotype.

Extracting Phenotypic Components by PCA
Because different phenotypes may be measured using different

units in practice, we first standardize the original quantitative

phenotypes. Let Y s~

Y s
11 . . . Y s

1k

..

.
P

..

.

Y s
n1 � � � Y s

nk

0
B@

1
CA denotes the matrix of k

standardized quantitative phenotypes for n subjects. The matrix

element Y s
il can be computed by

Y s
il~

Yil{ml

Sl

, ð2Þ

where ml and Sl denote the mean and standard deviation of the lth

quantitative phenotype, respectively.

PCA(implemented by R software, http://www.r-project.org/) is

then applied to Y s for extracting k orthogonal phenotypic

components. Following standard PCA precedure, let

P~

P11 . . . P1k

..

.
P

..

.

Pn1 � � � Pnk

0
B@

1
CA denotes the matrix of k extracted

phenotypic components for n subjects. The matrix element Pil is

calculated by

Pil~zlY
s
i , ð3Þ

where zl is calculated by PCA and denotes the eigenvector of the

lth phenotypic components. Y s
i denotes the standardized pheno-

typic vector of subject i.

Pathway Association Testing Statistics
The phenotypic components extracted by PCA are included

into pathway association analysis instead of original quantitative

phenotypes. Suppose a pathway with r genes and m genotyped

SNPs. For a given gene within the pathway, we first detect

associations between each SNP of the gene and each phenotypic

component. For each gene, the largest statistic of all SNPs mapped

to the gene is assigned to the gene as the statistic of the gene [7].

Let Sij (i = 1,…,k and j = 1,…r) denotes the largest statstic of gene j

for the ith phenotypic component. Let S(i1)$S(i2) $…$S(ir)

denote the ordered statstics of the pathway for the ith phenotypic

component. Based on the idea that a pathway with more genes

associated with target traits, is more likely to be disease-causing

pathway, we present four statistics to evaluate the overall

association strength of a pathway with target traits. The first one

takes a linear combination of statistics of all genes within the

pathway, defined by

SC~
Xk

i

Ui

Xr

j~1

Sij , ð4Þ

where Ui is computed by PCA and denotes the proportion of

phenotypic variance explained by the ith phenotypic component.

The phenotypic information harboring by different components

are different, and can be measured by the explained proportions of

phenotypic variation in PCA. Sij are weighted by the explained

proportion of phenotypic variance, which gives higher weight to

the phenotypic components explained larger part of variance of

original k quantitative phenotypes.

Because of combining the association evidence of all genes

within the pathway, SC may be susceptive to the impact of

pathway sizes. Consider an extreme case that we have a vary large

pathway with only one significant gene. In this situation, the true

association signal of causal gene may be masked by the nosie of

other genes within the pathway. Therefore, we proposed the

second statistic Smax C , which taked the maximum value of

averaged statistics within the pathway. Smax C is defined by

Smax C~
Xk

i

Ui max
1ƒzƒr

Xz

j~1

S(ij)

z

( )
, ð5Þ

where Ui is defined in equation 4.

Recently, SNP raio tests were proposed for pathway association

studies [10]. This approach compared the ratio of significant and

no-significant SNPs within a pathway to the distribution of ratios

derived from GWAS results of randomized phenotypes. The

pathways with larger part of genes or SNPs associated with disease

phenotypes is more likely to contribute to disease risks. In this

study, we extended the ratio tests to PCA-based MPPAS, and

considered two ratio testing approaches, SNP ratio tests and gene

ratio tests. Let NsigGen and NsigSNP denote the numbers of

significant genes and SNPs within testing pathways. The pathway

ratio testing statistics can be expressed as

SRgen~
NsigGen

r
and SRSNP~

NsigSNP

m
, ð6Þ

where r and m denotes respectively the numbers of genes and SNPs

within the pathway.

For statistical tests, a permutation precedure was implemented

to evaluate the significance levels of SC , Smax C , SRgen and SRSNP

in this study. During each permutation, the sample labels were

randomly assigned to individuals following by computation of SC ,

Smax C , SRgen and SRSNP, respectively. 2,000 Monte Carlo

permutations were conducted to obtain the empirical distributions

of SC , Smax C , SRgen and SRSNP. The significance levels of SC ,

Smax C , SRgen and SRSNP were finally evaluated according to the

obtained empirical distributions.

Simulations
Genotype simulation. HAPGEN program was used here for

genotype simulations [30,31]. Based on known haplotype data,

HAPGEN can simulate whole-genome genotype data by imple-

menting a hidden Markov model [30,31]. Specific for this study,

the genome-wide haplotype data, minor allele frequencies (MAF)

and D9 of Caucasian were downloaded from the HapMap

website(http://hapmap.ncbi.nlm.nih.gov/downloads/index.html.

en). HAPGEN was then used to simulate genome-wide genotype

Multiple Phenotypes Pathway Association Studies
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data of Caucasian with default running parameters recommended

by HAPGEN developers.

333 pathways or gene ontology with sizes ranging from 20 to 40,

were collected from four public pathway databases, including

BioCarta(http://www.biocarta.com), KEGG(http://www.

genome.jp/kegg/), Ambion GeneAssist Pathway Atlas(http://

www5.appliedbiosystems.com/tools/pathway/), and GSEA Mo-

lecular Signatures Database(http://www.broadinstitute.org). The

obtained pathway-gene annotation file was used to link pathway

and gene information in following pathway simulation studies.
Phenotype simulations. Genetic epistatic model was ap-

plied here for quantitative phenotype simulations. Suppose a

complex disease underlying by a biological pathway, was mesured

by three correlated quantitaitve phenotypes, Q1, Q2 and Q3.

During each phenotype simulation, we first randomly selected a

pathway as the causal pathway. Three SNPs (SNP1, SNP2 and

SNP3) were then randomly selected from different genes of the

causal pathway as the causal loci of Q1. The same precedure was

also conducted for Q2 and Q3, respectively. Let Yij denotes the jth

quantitative phenotype value of subject i, defined by

Yij~mjz
X3

u~1

bujXiuz
X3

1ƒuvvƒm

cuvjXiuXivzeij , ð7Þ

where mj denotes the mean of the jth quantitative phenotype. buj

denotes the additive genetic effect of SNP u for the jth quantitative

phenotype. Xiu(Xiu = 0, 1 or 2) denotes the copy number of minor

allele of subject i at SNP u. cuvj denotes the interactive genetic

effect between SNP u and SNP v for the jth quantitative phenotype.

Without loss of generality, we assume that there was an interactive

genetic effect between SNP1 and SNP3 for Q1 in this study. eij

denotes the residual environmental effect of subject i for the jth

quantitative phenotype, and follow a zero-mean normal distribu-

tion with variance s2
ej

.

Data analysis. The simulated genotype and phenotype data

were simultaneously analyzed by PCA-based MPPAS using SC ,

Smax C , SRgen and SRSNP, respectively. Sample sizes, additive and

interactive genetic effects were controlled to simulate various

scenarios of pathway association studies in practice. Detailed

parameter designs are presented in Table 1. 1,000 replicates were

conducted for each parameter setting. Power and type I error rates

were calculated respectively as the proportions of positive

association results (p values#0.05) obtained from the pathways

simulated with and without genetic effects in 1,000 replicates. All

our data simulations and analyses were implemented with

statistical package R [32], except for SNP association tests

implemented by PLINK [33].

Application to real GWAS Data of BMD
PCA-based MPPAS using SC was applied to a real GWAS data

consisting of 1,000 unrelated US whites. The sample character-

istics and experimental design have been detailed in previous study

[34]. Briefly, Affymetrix 500 k SNP arrays were used to genotype

a total of 500,568 SNPs. After quality control, 312,172 SNPs

covering 14,585 genes were retained for MPPAS of BMD in this

study. Areal BMD of spine and hip were measured by dual-energy

X-ray absorptiometry (DXA) with Hologic QDR 4500W densi-

tometers (Hologic, Inc., Bedford, MA, USA). Age and sex were

used to adjust the raw spine and hip BMD values as covariates for

subsequent analyses. The adjusted BMD data were normally

distributed. 963 pathways or gene ontology with sizes varying from

5 to 168, were derived from public pathway databases, including

BioCarta, KEGG, Ambion GeneAssist Pathway Atlas, and GSEA

Molecular Signatures Database. PCA-based MPPAS using SC was

used to detect association between each pathway and BMD.

50,000 replicates were conducted to evaluate the empirical p

values of SC for each gene set investigated in this study. Significant

pathway were defined by p values#5.1961025 after Bonferroni

correction(0.05/963).

Author Contributions

Conceived and designed the experiments: FZ XG. Performed the

experiments: FZ SXW. Analyzed the data: FZ. Contributed reagents/

materials/analysis tools: FZ YJL HS HWD. Wrote the paper: FZ JH

HWD.

Table 1. Parameter configurations in the simulation studies.

Sample size Genetic effecta

SNP1 SNP2 SNP3 SNP16SNP3

Simulation 1 600 3.00% 1.50% 1.00% 1.50%

800 3.00% 1.50% 1.00% 1.50%

1000 3.00% 1.50% 1.00% 1.50%

2000 3.00% 1.50% 1.00% 1.50%

Simulation2 1000 1.00% 0.50% 0.25% 0.50%

1000 2.00% 1.00% 0.50% 1.00%

1000 3.00% 1.50% 1.00% 1.50%

1000 3.50% 2.00% 1.50% 2.00%

Simulation3 1000 2.00% 1.00% 0.50% 1.00%

1000 2.00% 1.00% 0.50% 1.50%

1000 2.00% 1.00% 0.50% 2.00%

1000 2.00% 1.00% 0.50% 3.00%

adenote the phenotypic variance explained by the additive genetic effects of SNP1, SNP2 and SNP3 as well as an interactive effect between SNP1 and SNP3, respectively.
333 pathways with sizes varying from 20 to 40, were collected from public pathway databases and used for pathway simulations.
doi:10.1371/journal.pone.0053320.t001

Multiple Phenotypes Pathway Association Studies

PLOS ONE | www.plosone.org 6 December 2012 | Volume 7 | Issue 12 | e53320



References

1. Visscher PM, Brown MA, McCarthy MI, Yang J (2012) Five years of GWAS

discovery. Am J Hum Genet 90: 7–24.

2. Wang K, Li M, Hakonarson H (2010) Analysing biological pathways in genome-

wide association studies. Nat Rev Genet 11: 843–854.

3. Barabasi AL (2007) Network medicine–from obesity to the ‘‘diseasome’’.

N Engl J Med 357: 404–407.

4. Askland K, Read C, Moore J (2009) Pathways-based analyses of whole-genome

association study data in bipolar disorder reveal genes mediating ion channel

activity and synaptic neurotransmission. Hum Genet 125: 63–79.

5. Lesnick TG, Papapetropoulos S, Mash DC, Ffrench-Mullen J, Shehadeh L, et

al. (2007) A genomic pathway approach to a complex disease: axon guidance

and Parkinson disease. PLoS Genet 3: e98.

6. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, et al. (2005)

Gene set enrichment analysis: a knowledge-based approach for interpreting

genome-wide expression profiles. Proc Natl Acad Sci U S A 102: 15545–15550.

7. Wang K, Li M, Bucan M (2007) Pathway-based approaches for analysis of

genomewide association studies. Am J Hum Genet 81: 1278–1283.

8. Luo L, Peng G, Zhu Y, Dong H, Amos CI, et al. (2010) Genome-wide gene and

pathway analysis. Eur J Hum Genet 18: 1045–1053.

9. Zhang K, Cui S, Chang S, Zhang L, Wang J (2010) i-GSEA4GWAS: a web

server for identification of pathways/gene sets associated with traits by applying

an improved gene set enrichment analysis to genome-wide association study.

Nucleic Acids Res 38: W90–95.

10. O’Dushlaine C, Kenny E, Heron EA, Segurado R, Gill M, et al. (2009) The

SNP ratio test: pathway analysis of genome-wide association datasets.

Bioinformatics 25: 2762–2763.

11. Yu K, Li Q, Bergen AW, Pfeiffer RM, Rosenberg PS, et al. (2009) Pathway

analysis by adaptive combination of P-values. Genet Epidemiol 33: 700–709.

12. Chen L, Zhang L, Zhao Y, Xu L, Shang Y, et al. (2009) Prioritizing risk

pathways: a novel association approach to searching for disease pathways fusing

SNPs and pathways. Bioinformatics 25: 237–242.

13. Zhang L, Guo YF, Liu YZ, Liu YJ, Xiong DH, et al. (2010) Pathway-based

genome-wide association analysis identified the importance of regulation-of-

autophagy pathway for ultradistal radius BMD. J Bone Miner Res 25: 1572–

1580.

14. de Las Fuentes L, Yang W, Davila-Roman VG, Charles Gu C (2012) Pathway-

based genome-wide association analysis of coronary heart disease identifies

biologically important gene sets. Eur J Hum Genet.

15. Liu YJ, Guo YF, Zhang LS, Pei YF, Yu N, et al. (2010) Biological pathway-

based genome-wide association analysis identified the vasoactive intestinal

peptide (VIP) pathway important for obesity. Obesity (Silver Spring) 18: 2339–

2346.

16. Mei H, Chen W, Dellinger A, He J, Wang M, et al. (2010) Principal-component-

based multivariate regression for genetic association studies of metabolic

syndrome components. BMC Genet 11: 100.

17. Yang Q, Wu H, Guo CY, Fox CS (2010) Analyze multivariate phenotypes in

genetic association studies by combining univariate association tests. Genet

Epidemiol 34: 444–454.

18. Holmans P, Green EK, Pahwa JS, Ferreira MA, Purcell SM, et al. (2009) Gene

ontology analysis of GWA study data sets provides insights into the biology of
bipolar disorder. Am J Hum Genet 85: 13–24.

19. Dennison EM, Syddall HE, Rodriguez S, Voropanov A, Day IN, et al. (2004)
Polymorphism in the growth hormone gene, weight in infancy, and adult bone

mass. J Clin Endocrinol Metab 89: 4898–4903.

20. Ulici V, Hoenselaar KD, Agoston H, McErlain DD, Umoh J, et al. (2009) The
role of Akt1 in terminal stages of endochondral bone formation: angiogenesis

and ossification. Bone 45: 1133–1145.
21. Dennison EM, Syddall HE, Jameson KA, Sayer AA, Gaunt TR, et al. (2009) A

study of relationships between single nucleotide polymorphisms from the growth

hormone-insulin-like growth factor axis and bone mass: the Hertfordshire cohort
study. J Rheumatol 36: 1520–1526.

22. Lakatos PL, Bajnok E, Tornai I, Folhoffer A, Horvath A, et al. (2004) Insulin-like
growth factor I gene microsatellite repeat, collagen type Ialpha1 gene Sp1

polymorphism, and bone disease in primary biliary cirrhosis. Eur J Gastroenterol
Hepatol 16: 753–759.

23. Rawadi G, Roman-Roman S (2005) Wnt signalling pathway: a new target for

the treatment of osteoporosis. Expert Opin Ther Targets 9: 1063–1077.
24. Sims AM, Shephard N, Carter K, Doan T, Dowling A, et al. (2008) Genetic

analyses in a sample of individuals with high or low BMD shows association with
multiple Wnt pathway genes. J Bone Miner Res 23: 499–506.

25. Stephens JC, Schneider JA, Tanguay DA, Choi J, Acharya T, et al. (2001)

Haplotype variation and linkage disequilibrium in 313 human genes. Science
293: 489–493.

26. Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA (2002) Score
tests for association between traits and haplotypes when linkage phase is

ambiguous. Am J Hum Genet 70: 425–434.
27. Deng HW (2001) Population admixture may appear to mask, change or reverse

genetic effects of genes underlying complex traits. Genetics 159: 1319–1323.

28. Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000) Association
mapping in structured populations. AmJHumGenet 67: 170–181.

29. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, et al. (2006)
Principal components analysis corrects for stratification in genome-wide

association studies. NatGenet 38: 904–909.

30. Spencer CC, Su Z, Donnelly P, Marchini J (2009) Designing genome-wide
association studies: sample size, power, imputation, and the choice of genotyping

chip. PLoS Genet 5: e1000477.
31. Marchini J, Howie B, Myers S, McVean G, Donnelly P (2007) A new multipoint

method for genome-wide association studies by imputation of genotypes. Nat
Genet 39: 906–913.

32. R-Development-Core-Team (2007) R: A language and environment for

statistical computing. Vienna, Austria.
33. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, et al. (2007)

PLINK: a tool set for whole-genome association and population-based linkage
analyses. AmJHumGenet 81: 559–575.

34. Liu XG, Tan LJ, Lei SF, Liu YJ, Shen H, et al. (2009) Genome-wide association

and replication studies identified TRHR as an important gene for lean body
mass. Am J Hum Genet 84: 418–423.

Multiple Phenotypes Pathway Association Studies

PLOS ONE | www.plosone.org 7 December 2012 | Volume 7 | Issue 12 | e53320


