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Abstract

Background: Little is known about the serologic responses to Pneumocystis jirovecii major surface glycoprotein (Msg)
antigen in African cohorts, or the IgM responses to Msg in HIV-positive and HIV-negative persons with respiratory
symptoms.

Methods: We conducted a prospective study of 550 patients, both HIV-positive (n = 467) and HIV-negative (n = 83),
hospitalized with cough $2 weeks in Kampala, Uganda, to evaluate the association between HIV status, CD4 cell count, and
other clinical predictors and antibody responses to P. jirovecii. We utilized ELISA to measure the IgM and IgG serologic
responses to three overlapping recombinant fragments that span the P. jirovecii major surface glycoprotein: MsgA (amino
terminus), MsgB (middle portion) and MsgC1 (carboxyl terminus), and to three variations of MsgC1 (MsgC3, MsgC8 and
MsgC9).

Results: HIV-positive patients demonstrated significantly lower IgM antibody responses to MsgC1, MsgC3, MsgC8 and
MsgC9 compared to HIV-negative patients. We found the same pattern of low IgM antibody responses to MsgC1, MsgC3,
MsgC8 and MsgC9 among HIV-positive patients with a CD4 cell count ,200 cells/ml compared to those with a CD4 cell
count $200 cells/ml. HIV-positive patients on PCP prophylaxis had significantly lower IgM responses to MsgC3 and MsgC9,
and lower IgG responses to MsgA, MsgC1, MsgC3, and MsgC8. In contrast, cigarette smoking was associated with increased
IgM antibody responses to MsgC1 and MsgC3 but was not associated with IgG responses. We evaluated IgM and IgG as
predictors of mortality. Lower IgM responses to MsgC3 and MsgC8 were both associated with increased in-hospital
mortality.

Conclusions: HIV infection and degree of immunosuppression are associated with reduced IgM responses to Msg. In
addition, low IgM responses to MsgC3 and MsgC8 are associated with increased mortality.
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Introduction

Pneumocystis jirovecii continues to be an important cause of

pneumonia in immunosuppressed individuals, especially in those

with HIV infection who do not have access to or cannot tolerate

antiretroviral therapy (ARV) or Pneumocystis prophylaxis. Because

Pneumocystis is not easily cultured, serologic studies have been

particularly important in providing insights into Pneumocystis

exposure, transmission, disease activity and immune responses.

For instance, through these studies we have found that healthcare

workers with direct patient contact have higher antibody levels to

P. jirovecii than staff without patient contact, [1] suggesting

potential person-to-person transmission. We have also found that

the serologic responses to P. jirovecii are dependent on geographic
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location, [2,3] suggesting geographic variation in the level of P.

jirovecii exposure, exposure to different strains of P. jirovecii, or

differences in host immunologic responses to Pneumocystis in varied

human populations.

While early serologic studies used crude Pneumocystis antigen

preparations [4–10] that often led to poorly reproducible results,

recombinant P. jirovecii antigens such as major surface glycoprotein

(Msg) provide a more standardized and powerful tool for

understanding the interaction between the mammalian host and

P. jirovecii. Major surface glycoprotein represents a family of

proteins encoded by multiple genes. [11,12] Switching of Msg

gene expression gives rise to different Msg isoforms resulting in

antigenic variation. [13,14] Msg is also highly immunogenic and

contains both B and T cell protective epitopes.[11,12,15–19] We

have developed three overlapping recombinant fragments to the

Pneumocystis jirovecii major surface glycoprotein: MsgA, MsgB and

MsgC1 referring to the amino-terminus, middle portion and

carboxyl-terminus of the protein, respectively. [20,21] Of these

three regions, the carboxyl-terminus appears to be most

conserved. [22] To better define the reactivity of serum antibodies

to this region, we have developed three variations of MsgC1:

MsgC3, MsgC8 and MsgC9. [23] In studies using these

recombinant Msg fragments, we have found that HIV infection

is usually, but not always, associated with decreased serologic

responses to P. jirovecii. [2,20,21,24] Among HIV-infected persons,

we have found that low CD4 cell count, however, has not been

associated with reduced serologic responses to Msg, [3,20,25] with

the exception of one study finding greater serologic responses in

patients with active PCP who had CD4 cell counts .50 cells/ml.

[26].

Although considerable effort has been devoted to characterizing

the IgG responses to recombinant Msg fragments in various

populations, little is known about the IgM responses and the

factors that influence the magnitude of IgM antibody responses.

Furthermore, there is limited serologic data specific to sub-

Saharan African cohorts, where the majority of HIV-positive

persons reside. Therefore, we conducted a 14-month prospective

study of hospitalized patients with cough $2 weeks and suspected

pneumonia in Kampala, Uganda as part of the International HIV-

associated Opportunistic Pneumonias (IHOP) Study. Our objec-

tives were to evaluate the effects of HIV status, CD4 cell count,

and other clinical predictors on IgM and IgG antibody responses

to P. jirovecii recombinant Msg fragments, and to evaluate antibody

responses as predictors for mortality.

Methods

Study Population
Between May 2007 and June 2008, we screened consecutive

adults (.18 years old) admitted to Mulago Hospital in Kampala,

Uganda. Those with cough $2 weeks but ,6 months in duration

were eligible for the study. Those on anti-TB therapy or with

evidence of heart failure at the time of screening were excluded.

Data Collection
After obtaining written, informed consent, we collected

demographic and clinical information by a standardized question-

naire. We obtained a cigarette smoking history and determined

total pack-years of smoking. We calculated ‘‘cooking smoke-

years,’’ hours of cooking over wood and/or charcoal each day

multiplied by years of cooking with these biomass fuels, to estimate

indoor biomass smoke exposure. We defined rainy season months

(March, April, May and November) as those months in which the

average rainfall was .120 mm as reported at www.bbc.co.uk/

weather/. [27] Among HIV-infected patients, we obtained

information on use of antiretroviral therapy and PCP prophylaxis.

Diagnostic Evaluation
We tested all participants for HIV who did not already carry

this diagnosis, using a previously described sequential testing

algorithm incorporating three rapid enzyme immunoassays. [28]

We tested each finger-stick blood specimen using two rapid

enzyme immunoassays: Determine (Abbott Laboratories, Abbott

Park, IL, USA) and Uni-Gold (Trinity Biotech, Wicklow, Ireland).

If test results on the specimen were concordant, we performed no

further HIV testing. However, if test results were discordant, we

performed a third rapid enzyme immunoassay using Stat-Pak

(Chembio, Medford, NY, USA). Those with 2 out of 3 tests

positive were diagnosed with HIV, and those with 2 out of 3 tests

negative were considered to be HIV-negative. We determined

CD4 cell counts on all HIV-infected participants. We evaluated all

participants for tuberculosis and other HIV-associated pulmonary

diseases by a previously described protocol.[29–31] In brief, each

participant submitted two sputum specimens for acid-fast bacilli

(AFB) examination by Ziehl Neelsen method and for mycobac-

terial culture on Lowenstein-Jensen media. We performed

bronchoscopy with bronchoalveolar lavage (BAL) on consenting

AFB smear-negative patients if referred by the ward attending. We

performed bronchoscopic examination for endobronchial Kaposi

sarcoma. We analyzed BAL fluid for Mycobacterium tuberculosis using

AFB smear and culture, Pneumocystis jirovecii using a modified

Giemsa stain, and other fungi using potassium hydroxide smear,

India ink stain and culture on Sabouraud agar. At the University

of North Carolina we determined Pneumocystis colonization status

by performing PCR on BAL specimens, targeting P. jirovecii

mitochondrial large subunit rRNA. [32] Colonization was defined

as BAL fluid positive for P. jirovecii by PCR but negative by Giemsa

staining. Participants were followed throughout their hospitaliza-

tion. Serum was collected from each patient at the time of

enrollment, stored at 220uC and shipped to University of

Cincinnati and Cincinnati Veterans Administration Medical

Center, where it was stored at 280uC prior to analysis.

Recombinant Antigens
We used PCR with AmpliTaq enzyme (Applied Biosystems,

Carlsbad, CA, USA) to amplify three overlapping sections

spanning the entire length of Msg gene: Msg15-1119, Msg729-2282,

and Msg2015-3332 (subscripts denote number of nucleotides). [20]

We used genomic DNA from P. jirovecii infected human lung as the

template for Msg15-1119, and a lgt11 clone of human derived Msg

gene as the template for Msg729-2282 and Msg2015-3332. We then

inserted the amplified gene segments into the pET30 E. coli

expression system (Novagen, Madison, WI, USA) for generation of

MsgA, MsgB, and MsgC1 recombinant proteins encoded by the

gene segments Msg15-1119, Msg729-2282, and Msg2015-3332, respec-

tively. We then purified these proteins by affinity chromatography.

Using a similar process and P. jirovecii infected human lung, we

generated MsgC3, MsgC8, and MsgC9 recombinant proteins

from the same gene region as for MsgC1. [23] The overlapping

recombinant fragments generated are representative of the entire

major surface glycoprotein: MsgA (amino-terminus), MsgB (mid-

dle portion) and MsgC fragments (carboxyl-terminus).

IgM and IgG ELISA
Using previously developed ELISA protocols for IgG

[3,20,21,23,25,26] and IgM, [25] we measured serologic responses

to each recombinant Msg fragment. We tested serum specimens

and standard reference sera against the recombinant Msg
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fragments, using phosphate-buffered saline (PBS) without Msg as

the negative control. We corrected the reactivity of each serum

specimen to Msg by subtracting the reactivity of each serum

specimen to PBS (mean optical density (OD) with Msg – mean

OD with PBS alone) and quantified the results using methods

described by Bishop and Kovacs. [33] We prepared a standard

serum with specificity for each Msg construct by mixing the sera

from 4 to 6 specimens with high reactivity for the specific

construct. We selected these specimens by testing banks of sera

from blood donors and HIV-infected patients. The initial standard

pool for each antigen was defined as having a value of 100 U in

100 ul of a 1:100 dilution. We used the same standard pools

throughout the study, and as a further measure to ensure

consistency between assays, we titrated subsequent standard pools

against those initial standards. From the standard pool, we

generated a standard curve for each Msg construct on each day

the assay was used. We used this curve to calculate the units of

reactivity to the Msg construct. We diluted test serum samples at

1:100 to 1:200 to fit the linear portion of the standard curves.

Taking into account the dilution, we then calculated units of

reactivity.

Ethics Approval
The study was approved by the institutional review boards at

University of California San Francisco, University of Cincinnati,

Mulago Hospital, Makerere University, and the Uganda National

Council for Science and Technology.

Statistical Analysis
We evaluated associations between clinical predictors and

antibody responses to Msg fragments using tobit regression for

left and right censored data, with log-transformed Msg antibody

level as the dependent variable. Mean antibody levels were

exponentiated and presented as tobit-estimated geometric means

with 95% confidence intervals (CI). Predictors tested were HIV

status, age, sex, cigarette pack-years, cooking smoke-years, and

specimen collection during rainy season. In HIV-positive individ-

uals additional factors tested were: CD4 cell count; antiretroviral

(ARV) use; Pneumocystis pneumonia (PCP) prophylaxis; P. jirovecii

colonization; and diagnosis of active PCP, active tuberculosis (TB),

and other symptomatic pulmonary infections. If predictors were

associated with Msg antibody levels at p,0.2 in bivariate analysis,

we adjusted for them in multivariate models. We used logistic

regression to model in-hospital death as the outcome with each

logged Msg level as the predictor, controlling for age, CD4 cell

count, ARV use, PCP prophylaxis, and PCP diagnosis. Odds of

death were calculated per 5 original Msg units of increase

(equivalent to 1.61 logged Msg units).

Results

Cohort
Of 636 patients eligible for the study, 550 were enrolled

(Figure 1). Four hundred sixty-seven (85%) were HIV-positive and

83 (15%) were HIV-negative (Table 1). HIV-positive participants

were significantly younger than those without HIV (mean age 34.2

years vs. 43.7 years, p,0.001), and a higher percentage of HIV-

positive individuals were female (54.8% vs. 32.5%, p,0.001). The

proportion of cigarette smokers (ever and current) and the

proportion who cooked meals with wood and/or charcoal stoves

indoors was similar between HIV-positive and HIV-negative

patients. However, HIV-positive patients had smoked fewer pack-

years (median 3.0 vs. 9.0, p = 0.002) and reported less cumulative

exposure to indoor biomass smoke as measured by cooking smoke-

years (median 57.7 vs. 79.6, p = 0.01).

Among HIV-positive participants, 30.0% were newly diagnosed

with HIV infection at the time of enrollment (Table 1). Two

hundred fifty-six (54.9%) of all HIV-positive participants were

taking PCP prophylaxis at the time of enrollment: 253 (99.0%) on

trimethoprim/sulfamethoxazole and 3 on dapsone. Only 71

(15.2%) were on ARV therapy at the time of enrollment. Of

these, the specific ARVs taken were known for 56. The most

common ARV combination taken was stavudine, lamivudine and

nevirapine, n = 21. Most HIV-positive patients were severely

immunosuppressed; 80.1% had a CD4 cell count ,200 cells/ml

and 49.9% had a CD4 count ,50 cells/ml at enrollment. In-

hospital mortality was high: all participants, 11.5%; HIV-positive

participants, 12.0%; and HIV-negative participants, 8.4%. There

was no statistically significant difference in mortality between the

HIV-positive and HIV-negative groups (p = 0.35).

There were no statistically significant differences between those

excluded (n = 86) from the study and those enrolled with two

exceptions: those excluded were more likely to have an undeter-

mined final diagnosis compared to those included (48.2% vs.

25.3%, p,0.001), and had less cooking smoke-years exposure

(20.0 vs. 60.7, p,0.001).

Predictors of Antibody Responses to P. jirovecii Msg
HIV infection. HIV-positive patients had significantly lower

IgM antibody levels to most recombinant Msg fragments

compared with HIV-negative participants, even after adjustment

for age, sex, cigarette pack-years smoked, cooking smoke-years,

and season of hospitalization/specimen collection (Table 2). The

geometric mean IgM antibody levels to all Msg carboxyl-terminus

fragments (MsgC1, MsgC3, MsgC8 and MsgC9) were significantly

decreased in HIV-positive patients compared to HIV-negative

patients. IgM antibody levels to these Msg fragments were 4.4-fold

to 9.5-fold lower in the HIV-positive cohort compared with the

HIV-negative cohort: MsgC1, 4.0 vs. 19.7 (p,0.001); MsgC3, 1.1

vs. 10.5 (p,0.001); MsgC8, 1.5 vs. 9.7 (p,0.001); and MsgC9, 3.0

vs. 13.1 (p,0.001). In contrast, geometric mean IgM antibody

levels to MsgA and MsgB, although decreased in unadjusted

models, were not significantly decreased when adjusted for

covariates. While IgM levels to most Msg fragments were

decreased, IgG levels were only decreased significantly (p = 0.01)

to MsgA in HIV-positive patients compared with HIV-negative

patients. Of the 467 HIV-positive patients enrolled in the study,

Figure 1. Study enrollment flow diagram.
doi:10.1371/journal.pone.0051545.g001
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140 (30.0%) were newly diagnosed with HIV. In comparison to

those with an established HIV diagnosis, newly diagnosed patients

appeared to have more robust IgM and IgG serologic responses

(1.3–3.3 fold higher antibody levels; p values ,0.001–0.04) to all

Msg constructs tested except for IgG to MsgA and MsgB.

However, these differences were not statistically significant in

multivariate analysis.

CD4 cell count. As with HIV infection, the severity of

immunosuppression quantified by CD4 cell count was also

associated with significant decreases in IgM antibody levels to all

P. jirovecii Msg carboxyl-terminus fragments (Table 3). Among

HIV-positive patients, those with a CD4 cell count ,200 cells/ml

had significantly lower geometric mean IgM antibody levels to

MsgC1, MsgC3, MsgC8 and MsgC9 compared to those with a

CD4 cell count $200 cells/ml, both in unadjusted analysis and

when adjusted for confounding variables. Geometric mean IgM

antibody levels in HIV-positive participants with CD4 count

,200 cells/ml were 1.8-fold to 2.5-fold lower than seen in those

HIV-positive participants with CD4 count $200 cells/ml: MsgC1,

3.6 vs. 6.6 (p = 0.02); MsgC3, 1.0 vs. 2.1 (p = 0.03); MsgC8, 1.3 vs.

3.3 (p = 0.01); and MsgC9, 2.7 vs. 5.2 (p = 0.01). Although CD4

cell count was associated with IgM responses, it was not predictive

of IgG responses, except for IgG to MsgC1 (6.2 vs. 3.2, p = 0.047).

PCP and P. jirovecii colonization. Of 467 HIV-infected

patients enrolled in the study, 142 AFB smear negative patients

were eligible and referred by the ward attending for bronchoscopy.

One hundred twenty-two were consented, cleared by pre-

bronchoscopy history and physical, and underwent bronchoscopy

with BAL evaluation for Pneumocystis infection and colonization. Of

those who underwent bronchoscopy, 6 were diagnosed with PCP

by modified Giemsa staining, 7 additional patients were colonized

(Giemsa negative but PCR positive), and 109 had no evidence of

PCP infection or Pneumocystis colonization. Patients with active

PCP demonstrated higher IgM and IgG antibody responses to all

the Msg fragments when compared with P. jirovecii colonization.

However, this was only statistically significant in multivariate

analysis for IgM to MsgA (42.6 vs. 15.6, p = 0.002); IgM to MsgB

(19.8 vs. 2.0, p,0.001); and IgG to MsgC1 (43.6 vs. 11.0,

p = 0.02). Antibody levels to the Msg fragments were similar

between PCP negative and P. jirovecii colonized groups, with no

significant differences.

Pulmonary tuberculosis. Of the 550 enrolled in-patients,

303 (55.1%) were diagnosed with pulmonary tuberculosis. There

were no statistically significant associations between the diagnosis

of active pulmonary TB and serologic responses to the different

Msg fragments.

Other predictors. HIV-positive patients taking PCP pro-

phylaxis at the time of enrollment had decreased antibody levels to

Msg fragments when compared with HIV-positive patients not on

PCP prophylaxis (Table 4). Those on PCP prophylaxis had

significantly lower geometric mean IgM levels to MsgC3 and

MsgC9, and significantly lower geometric mean IgG levels to

MsgA, MsgC1, MsgC3 and MsgC8. In contrast, in HIV-positive

patients, amount of cigarette smoking as indicated by cigarette

pack-years was associated with significantly increased IgM

antibody responses to MsgC1 and MsgC3, but was not associated

Table 1. Demographics for all-comers and by HIV status.

Patient characteristics All HIV Positive HIV Negative p value

N 550 467 83

Mean age 6SD 35.7610.8 34.268.8 43.7616.1 ,0.001

Age .50 years 53 (9.6%) 25 (5.4%) 28 (33.7%) ,0.001

Female sex 283 (51.5%) 256 (54.8%) 27 (32.5%) ,0.001

Current smoker 29 (5.3%) 23 (4.9%) 6 (7.2%) 0.42

Ever smoker 162 (29.5%) 133 (28.5%) 29 (34.9%) 0.23

Median pack years smoking (IQR) (N = 161) 3.0 (0.8–10.0) 3.0 (0.6–9.8) 9.0 (2.0–20.0) 0.002

Currently use wood/charcoal stove 399 (72.6%) 345 (73.9%) 54 (65.1%) 0.10

Mean cooking smoke-years 6SD (N = 388) 60.7645.2 57.7643.1 79.6653.2 0.01

Specimen collected during the rainy season 363 (66.0%) 304 (65.1%) 59 (71.1%) 0.29

Final diagnosis:

Pulmonary tuberculosis 303 (55.1%) 267 (57.2%) 36 (43.4%) Referent

Pneumocystis pneumonia 6 (1.1%) 6 (1.3%) 0 (0%) 0.56*

Other 102 (18.6%) 72 (15.4%) 30 (36.1%) 0.02

Unknown 139 (25.3%) 122 (26.1%) 17 (20.5%) 0.75

Death in hospital 63 (11.5%) 56 (12.0%) 7 (8.4%) 0.35

Characteristics associated with HIV

Newly diagnosed HIV infection 140 (30.0%)

ARV at enrollment 71 (15.2%)

On PCP prophylaxis (N = 466) 256 (54.9%)

Median CD4 count (IQR) (N = 463) 50 (12–160)

CD4 count ,200 (N = 463) 371 (80.1%)

CD4 count ,50 (N = 463) 231 (49.9%)

SD indicates standard deviation; IQR, interquartile range; ARV, antiretroviral therapy; PCP, Pneumocystis pneumonia.
*A value of 0.5 was substituted for the zero cell.
doi:10.1371/journal.pone.0051545.t001
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with IgG responses to any of the Msg fragments (data not shown).

The other predictors that we evaluated (age, sex, ARV use, cook

smoke exposure, and rainy season) were not associated with

antibody responses to Msg in either unadjusted or adjusted

analyses.

Predictors of mortality. Of all the fragments tested, only

IgM antibody levels to MsgC3 and MsgC8 were associated with

in-hospital mortality (Table 5). For every 5 unit increase in IgM

levels to MsgC3 and MsgC8, HIV-positive participants had odds

of 0.60 and 0.63 for in-hospital mortality (OR 0.60, 95%CI 0.39–

0.93 and OR 0.63, 95%CI 0.43–0.94) respectively. These

Table 2. Estimated geometric mean IgM and IgG antibody levels to Msg fragments by HIV status.

HIV-Positive HIV-Negative

EGM Antibody level, (95%CI) EGM Antibody level, (95%CI) Unadjusted Beta (SE), p value Adjusted* Beta (SE), p value

N 467 83

IgM

MsgA 17.9 (15.6–20.4) 33.3 (23.8–46.6) –0.62 (0.18), ,0.001 –0.36 (0.19), 0.05

MsgB 3.8 (3.0–4.6) 7.3 (4.3–12.6) –0.72 (0.27), 0.01 –0.38 (0.29), 0.19

MsgC1 4.0 (3.1–5.0) 19.7 (12.5–31.2) –1.57 (0.29), ,0.001 –1.16 (0.31), ,0.001

MsgC3 1.1 (0.9–1.5) 10.5 (6.5–16.8) –2.17 (0.30), ,0.001 –1.91 (0.31), ,0.001

MsgC8 1.5 (1.2–2.0) 9.7 (6.1–15.4) –1.79 (0.29), ,0.001 –1.46 (0.31), ,0.001

MsgC9 3.0 (2.5–3.6) 13.1 (8.6–19.8) –1.46 (0.23), ,0.001 –1.35 (0.25), ,0.001

IgG

MsgA 1.1 (0.7–1.6) 7.4 (4.2–13.2) –1.62 (0.43), ,0.001 –1.18 (0.45), 0.01

MsgB 0.12 (0.07–0.23) 0.21 (0.06–0.78) –0.58 (0.52), 0.26 –0.58 (0.52), 0.26

MsgC1 5.5 (4.4–7.0) 9.8 (6.0–15.9) –0.52 (0.29), 0.08 –0.25 (0.31), 0.43

MsgC3 62.6 (55.6–70.4) 81.0 (64.1–102) –0.26 (0.15), 0.09 –0.18 (0.16), 0.26

MsgC8 45.6 (40.7–50.9) 52.1 (41.8–64.8) –0.13 (0.14), 0.36 –0.07 (0.15), 0.65

MsgC9 24.7 (21.3–28.6) 38.6 (28.9–51.5) –0.44 (0.19), 0.02 –0.29 (0.20), 0.16

EGM indicates estimated geometric mean; CI, confidence interval; SE, standard error; Msg, Pneumocystis jirovecii major surface glycoprotein.
*Adjusted for any characteristics (age .50, sex, cigarette pack years smoked, years of wood/charcoal cooking smoke exposure, and specimen collection during the rainy
season) that were associated (p,0.2) with Msg antibody levels in unadjusted analysis.
doi:10.1371/journal.pone.0051545.t002

Table 3. Mean Msg antibody levels by CD4 count in HIV-positive patients.

CD4 count ,200 CD4 count $200

EGM Antibody level, (95%CI) EGM Antibody level, (95%CI) Unadjusted Beta (SE), p value Adjusted* Beta (SE), p value

N 371 92

IgM

MsgA 16.8 (14.5–19.5) 23.3 (17.2–31.5) –0.33 (0.17), 0.06 –0.26 (0.17), 0.13

MsgB 3.4 (2.7–4.3) 5.8 (3.7–9.2) –0.53 (0.26), 0.04 –0.47 (0.26), 0.07

MsgC1 3.6 (2.8–4.6) 6.6 (3.5–12.4) –0.74 (0.29), 0.01 –0.65 (0.29), 0.02

MsgC3 1.0 (0.8–1.4) 2.1 (1.1–3.7) –0.78 (0.30), 0.01 –0.63 (0.30), 0.03

MsgC8 1.3 (1.0–1.7) 3.3 (2.0–5.4) –0.87 (0.29), 0.003 –0.80 (0.29), 0.01

MsgC9 2.7 (2.2–3.3) 5.2 (3.5–7.8) –0.67 (0.23), 0.003 –0.56 (0.23), 0.01

IgG

MsgA 1.0 (0.6–1.6) 1.3 (0.5–3.4) –0.33 (0.47), 0.48 –0.22 (0.47), 0.64

MsgB 0.11 (0.05–0.22) 0.25 (0.09–0.72) –0.30 (0.51), 0.56 –0.30 (0.51), 0.56

MsgC1 6.2 (4.8–8.0) 3.2 (1.7–6.0) 0.53 (0.30), 0.08 0.59 (0.30), 0.047

MsgC3 65.2 (57.3–74.1) 54.9 (41.0–73.3) 0.17 (0.15), 0.27 0.22 (0.15), 0.14

MsgC8 47.0 (41.5–53.3) 40.2 (31.1–51.9) 0.16 (0.14), 0.27 0.19 (0.14), 0.18

MsgC9 25.4 (21.4–30.0) 22.5 (16.3–31.2) 0.12 (0.19), 0.53 0.17 (0.19), 0.37

EGM indicates estimated geometric mean; CI, confidence interval; SE, standard error; Msg, Pneumocystis jirovecii major surface glycoprotein.
*Adjusted for any characteristics (age .50, sex, on ARV at admission, received PCP prophylaxis, diagnosed with PCP, cigarette pack-years smoked, years of wood/
charcoal cooking smoke exposure, and specimen collection during the rainy season) that were associated (p,0.2) with Msg antibody levels in unadjusted analysis.
doi:10.1371/journal.pone.0051545.t003
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associations remained statistically significant when adjusting for

potential confounders (age, CD4 cell count, ARV use, PCP

prophylaxis and PCP diagnosis). Age, CD4 cell count, ARV use,

PCP prophylaxis and PCP diagnosis were evaluated as indepen-

dent predictors of mortality (Table 5). Both CD4 count and PCP

diagnosis were found to be predictive of mortality in multivariate

analysis. For every 50 cell/ml increase in CD4 cell count, HIV-

positive participants had 0.79 times the odds of in-hospital

mortality (OR 0.79, 95%CI 0.67–0.94). HIV-positive participants

with the diagnosis of PCP had 5.74 times the odds of in-hospital

mortality (OR 5.74, 95%CI 1.09–30.1), compared to those not

diagnosed with PCP.

Discussion

In this prospective study, we evaluated the association between

HIV status, CD4 cell count and a number of other clinical

predictors on IgM and IgG antibody responses to P. jirovecii Msg

fragments in a Ugandan cohort of HIV-positive and HIV-negative

participants with cough $2 weeks. We found that those who were

HIV-positive and those with HIV and a CD4 cell count

,200 cells/ml had significantly decreased IgM responses to

Pneumocystis Msg fragments, and that other clinical predictors such

as PCP prophylaxis and smoking were also associated with

antibody responses to Msg. Additionally, we found that low IgM

responses to certain Msg fragments were associated with increased

in-hospital mortality.

In our study, HIV status and CD4 cell count were both

associated with IgM antibody responses to P. jirovecii Msg. It is

unclear why IgM serologic responses were diminished in those

with HIV and with more severe immunodeficiency, while IgG

serologic responses were not diminished. There have been few

studies evaluating IgM serologic responses to P. jirovecii in HIV-

positive compared to HIV-negative individuals. Of these, the

majority have found low or absent IgM responses to Pneumocystis

antigen in HIV-positive individuals [7,8,34,35], consistent with

our results. The diminished IgM responses seen in those with HIV

and more severe immunosuppression could very well reflect typical

immunoglobulin class switching from IgM predominant B cell

responses to IgG predominant responses. Those with HIV and

greater immunosuppression could have increased P. jirovecii

exposure and organism burden resulting in heightened stimulation

of the humoral immune system and more advanced IgM to IgG

class switching compared with HIV-negative participants and

those with less severe immunosuppression. Alternatively, the

decreased humoral responses seen could be related to HIV

immunosuppression itself. In addition to its detrimental impact on

CD4 cell count, HIV infection plays a significant role in humoral

immune dysfunction. Although polyclonal B cell activation and

hypergammaglobulinemia are often seen in HIV-infected persons,

[36–42] the humoral responses to many specific antigens have

been found to be decreased. HIV-positive individuals have

decreased specific antibody responses to a wide host of pathogens

such as malaria parasites [43,44], measles virus [37,45] Campylo-

bacter jejuni [46], Giardia lamblia [47], Salmonella spp., Streptococcus

pneumoniae [45,48–51] and Haemophilus influenzae. [52] This

explanation does not take into account, however, the selective

decrease in IgM responses and not IgG responses. Moir et al. have

described several mechanisms of B-cell dysfunction in HIV-

infected persons [53] that could contribute to our findings,

including expansion of dysfunctional B cell subpopulations such as

exhausted B cells, [54] increased immune-cell turnover with net

loss of B cells, [55] and decreased memory B cell responses [37]

with the specific loss of IgM memory B cells. [56] Although the

prevalence of PCP and P. jirovecii colonization was low in this

Ugandan cohort, antibody responses were quite common. This

has also been seen in HIV-positive patients and healthy controls

without PCP in prior studies evaluating serologic responses to

Msg.[1–3,20,21,23,25,26,57] The prevalence of IgG seropositivity

is likely due to significant exposure to Pneumocystis jirovecii in the

Table 4. Mean Msg antibody levels by PCP prophylaxis in the HIV-positive patients.

PCP prophylaxis No prophylaxis

EGM Antibody level, (95%CI) EGM Antibody level, (95%CI) Unadjusted Beta (SE), p value Adjusted* Beta (SE), p value

N 256 210

IgM

MsgA 14.8 (12.5–17.6) 22.9 (18.8–28.0) –0.44 (0.13), 0.001 –0.26 (0.14), 0.07

MsgB 3.1 (2.3–4.1) 4.8 (3.5–6.5) –0.44 (0.21), 0.03 –0.22 (0.22), 0.33

MsgC1 3.2 (2.4–4.4) 5.2 (3.6–7.5) –0.55 (0.23), 0.02 –0.23 (0.25), 0.36

MsgC3 0.6 (0.4–1.0) 2.1 (1.5–3.0) –1.08 (0.25), ,0.001 –0.82 (0.26), 0.001

MsgC8 1.1 (0.8–1.6) 2.3 (1.6–3.3) –0.74 (0.24), 0.002 –0.44 (0.25), 0.08

MsgC9 2.2 (1.7–2.9) 4.4 (3.4–5.7) –0.68 (0.18), ,0.001 –0.55 (0.20), 0.004

IgG

MsgA 0.7 (0.4–1.3) 1.7 (0.9–3.0) –0.74 (0.38), 0.048 –0.77 (0.38), 0.04

MsgB 0.09 (0.04–0.23) 0.17 (0.07–0.40) –0.58 (0.42), 0.16 –0.52 (0.42), 0.22

MsgC1 4.2 (3.0–6.0) 7.7 (5.6–10.6) –0.52 (0.24), 0.03 –0.55 (0.25), 0.03

MsgC3 53.6 (44.9–64.1) 75.8 (65.5–87.6) –0.34 (0.12), 0.004 –0.26 (0.13), 0.04

MsgC8 40.6 (34.5–47.9) 52.5 (45.3–60.9) –0.25 (0.11), 0.03 –0.25 (0.11), 0.03

MsgC9 21.4 (17.4–26.3) 29.7 (24.1–36.6) –0.32 (0.15), 0.04 –0.29 (0.15), 0.06

EGM indicates estimated geometric mean; CI, confidence interval; SE, standard error; Msg, Pneumocystis jirovecii major surface glycoprotein.
*Adjusted for any characteristics (age .50, sex, on ARV at admission, CD4 count ,200, diagnosed with PCP, cigarette pack-years smoked, years of wood/charcoal
cooking smoke exposure, and specimen collection during the rainy season) that were associated (p,0.2) with Msg antibody levels in unadjusted analysis.
doi:10.1371/journal.pone.0051545.t004
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general population, with infection often first occurring at a young

age. Indeed, 85% of infants in one study were seropositive by the

age of 20 months, many of them converting during respiratory

illnesses thought to be reflective of mild Pneumocystis infections.

[57,58] IgM seropositivity, on the other hand, possibly represents

new exposure to different strains of P. jirovecii. Significant levels of

IgG and IgM responses to Msg fragments despite a low prevalence

of P. jirovecii colonization suggest that exposure to Pneumocystis is

relatively common but that the majority of those exposed do not

become persistently colonized.

Low antibody levels were associated with increased in-hospital

mortality in this study, again seen specifically with IgM and not

with IgG. These findings remained significant even after

controlling for CD4 cell count, suggesting a humoral immune

dysfunction, independent of cellular immunosuppression, impact-

ing mortality. As mentioned above, HIV-positive individuals have

been found to have specific IgM memory B cell dysfunction.

[53,56] These findings should be interpreted with caution,

however, as IgM responses to only two of the MsgC fragments

tested were significantly associated with mortality, increasing the

likelihood that the findings could be due to chance alone, or

influenced by confounding or effect modification from unmea-

sured variables. As expected, both CD4 cell count and PCP

diagnosis were also associated with mortality.

In this and prior studies, results have been most significant for

the MsgC fragments, compared to MsgA and MsgB fragments.

MsgC fragments, for instance, have been particularly useful in

distinguishing individuals with active or past PCP from those with

no history of PCP. [3,20,25,26] In contrast, we have found less

consistent serologic responses to the MsgA and MsgB fragments.

[1,21,26] Multiple genes encode the major surface glycoprotein

giving rise to variability in protein expression. [11,12] This

variability appears to be most pronounced in the amino-terminus

and middle portion of the protein, while the carboxyl-terminus

region, represented by the MsgC fragments in our model, appears

to be the most antigenically conserved region. [22].

This property likely contributes to the immunologic, epidemi-

ologic, and clinical utility of the MsgC fragments.

Our study is limited by the low prevalence of both PCP and P.

jirovecii colonization which has significantly impacted our ability to

detect associations between these important predictors and

serologic responses to Msg fragments in Uganda. These results

are not surprising, as several other studies have also found low

PCP prevalences among those with HIV in East Africa.[59–62]

Despite this limitation, we were able to adequately evaluate several

other predictors of antibody responses to Msg given the large

number of participants in the study.

In conclusion, this is one of the first large studies to evaluate

IgM antibody responses, in addition to IgG, to P. jirovecii

recombinant Msg antigens. We have found that HIV infection

and degree of immunosuppression are associated with reduced

IgM responses to multiple Msg fragments, suggesting increased

immunoglobulin class switching or a specific humoral immuno-

deficiency to P. jirovecii in HIV-positive individuals. Low IgM levels

to MsgC3 and MsgC8 were also associated with increased in-

hospital mortality. Our results add important insight on the

humoral responses to P. jirovecii in those with HIV in Uganda.
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