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Abstract

Genomic selection (GS) procedures have proven useful in estimating breeding value and predicting phenotype with
genome-wide molecular marker information. However, issues of high dimensionality, multicollinearity, and the inability to
deal effectively with epistasis can jeopardize accuracy and predictive ability. We, therefore, propose a new nonparametric
method, pRKHS, which combines the features of supervised principal component analysis (SPCA) and reproducing kernel
Hilbert spaces (RKHS) regression, with versions for traits with no/low epistasis, pRKHS-NE, to high epistasis, pRKHS-E. Instead
of assigning a specific relationship to represent the underlying epistasis, the method maps genotype to phenotype in a
nonparametric way, thus requiring fewer genetic assumptions. SPCA decreases the number of markers needed for
prediction by filtering out low-signal markers with the optimal marker set determined by cross-validation. Principal
components are computed from reduced marker matrix (called supervised principal components, SPC) and included in the
smoothing spline ANOVA model as independent variables to fit the data. The new method was evaluated in comparison
with current popular methods for practicing GS, specifically RR-BLUP, BayesA, BayesB, as well as a newer method by Crossa
et al., RKHS-M, using both simulated and real data. Results demonstrate that pRKHS generally delivers greater predictive
ability, particularly when epistasis impacts trait expression. Beyond prediction, the new method also facilitates inferences
about the extent to which epistasis influences trait expression.
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Introduction

The estimation of breeding values to facilitate choice of parents

is a central problem in plant breeding. Furthermore, in terms of

evaluating and identifying outstanding progeny, modern genotyp-

ing technologies make it possible to predict performance of new

lines based on molecular marker or DNA sequence profile.

Fernando and Grossman [1] first demonstrated the utility of

molecular marker data to estimate breeding values in livestock

species. These were data involving very few markers. Due to

increasingly developed genotyping and sequencing technologies,

densely spaced genome-wide SNP (single nucleotide polymor-

phism) data, involving tens or hundreds of thousands of markers,

are now available for a number of crops. The genome-wide

markers can be used as ‘predictors’ to achieve high accuracy in

estimating breeding values. However, problems like high dimen-

sionality and multicollinearity emerge when the number of

predictors is very large and exceeds the number of records.

Therefore, statistical methods to effectively address those issues are

urgently needed.

Meuwissen et al. [2] proposed a procedure called Genomic

Selection (GS), which uses genome-wide markers to estimate

breeding values. Through linear regression of phenotypes on

genome-wide markers, this method can model high-dimensional

predictors. Then, a shrinkage method can be applied to effectively

‘shrink’ the effect of multicollinearity and to provide stable

parameter estimates [3]. Utilizing these techniques, this approach

can generate information about genomic regions that may affect

the trait of interest. More recently, other shrinkage methods have

been developed to estimate breeding values [4,5]. These methods

are primarily based on linear models, which are easy to interpret

and able to fit to the data without overfitting. However, the

relationship between breeding value and genetic markers is likely

to be more complex than a simple linear relationship, particularly

when large numbers of SNPs are fitted simultaneously in the

model. While epistasis is recognized as an important source of
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genetic variation [6], strong genetic assumptions are needed to

statistically decompose epistatic variance in those linear models

[7], e.g. additive by additive epistasis. Furthermore, the fact that

biological basis of epistasis is not well understood makes

accommodation for it in the genetic model even more difficult.

To address these issues, model-free or so-called nonparametric

methods which side-step linearity and require fewer genetic

assumptions have gained more and more attention [8–10].

Gianola et al. [10] and Gianola and van Kaam [8] first proposed

reproducing kernel Hilbert spaces (RKHS) regression for estimat-

ing breeding values with genomic data and capturing epistatic

interactions. The fundamental idea of the RKHS methods is to

replace the original marker values with nonlinear transformed

markers through so-called ‘basis functions’. After transformation, a

new space of predictors is formed and can be used in regression. In

reproducing kernel Hilbert spaces, the basis functions are

reproducing kernels, which vary according to different inner

products defined in the RKHS. Gianola and van Kaam [8]

proposed using a multivariate Gaussian kernel suggested by

Mallick et al. [11] as a reproducing kernel. However, the

multivariate Gaussian kernel assigns equal weights to all predic-

tors. Consequently, one cannot determine which predictors are

important and which not by using RKHS regression. Thus, model

selection and model building by eliminating unimportant predic-

tors are impossible in this simple framework. Intrinsically, the

method becomes a mere function approximation method rather

than a statistical modeling method. Besides RKHS methods,

Bennewitz et al. [12] also explored the use of a kernel method

which originated from Nadaraya-Watson kernel regression [13,14]

to estimate breeding values. However, the kernel methods incur

substantial bias when applied to high dimensional regression with

interactions [15].

To overcome the shortcomings of the aforementioned ap-

proaches, in this paper, we introduce a smoothing spline ANOVA

method in RKHS [16–18]. The distinguished feature of the

method is decomposition of the multivariate nonparametric

function into main effects and interactions, analogous to classic

ANOVA in linear models. This gives rise to straightforward

interpretation of each component, which distinguishes it from

function approximation in Gianola and van Kaam [8]. Assigning

different weights to main effects and interactions by some data-

driven approach, one can easily conduct model diagnostics, model

selection, and model building, However, with tens of thousands of

markers in the model, the fitting of RKHS models is computa-

tionally expensive, even infeasible [17]. The resulting algorithm is

unstable and error-prone. One solution would be to bring down

the dimensionality of predictors through usage of a dimension

reduction method such as principal component analysis [19].

Alternatively, prediction accuracy may be increased by filtering

out ‘noisy’ markers, an approach supported by results from

Meuwissen et al. [2] demonstrating that GS method BayesB which

allows certain markers to have no associations with phenotypes

had high predictive ability. For the latter, Macciotta et al. [20] and

Schulz-Streeck et al. [21] assigned a p-value to each marker

through univariate linear regression and used an empirical

threshold to remove markers without strong signal. And Long

et al. [22] used two steps called ‘‘filter’’ and ‘‘wrapper’’ to select

SNPs. Supervised principal component analysis (SPCA) [23] offers

both dimension reduction and background noise reduction and

serves to supplement RKHS regression.

In this study, we devise and evaluate a two-step method

(pRKHS), combining SPCA and RKHS regression, to estimate

breeding values and predict phenotypic performance of lines with

or without pedigree relationships. In step one, we preselect

genetic markers highly correlated with phenotype, and perform

principal component analysis on the reduced marker subset. In

step two, we use significant principal components as predictors in

a smoothing spline ANOVA model to conduct the RKHS

regression. The model is fitted using a penalized least squares

method, where goodness-of-fit is measured by the least squares

and model complexity is dictated by a penalty. The trade-off

between goodness-of-fit and model complexity is controlled by

smoothing parameters, which are selected by data-driven

generalized cross-validation (GCV). The pRKHS method is

developed in two versions: pRKHS-NE, which accounts for only

additive effects, and pRKHS-E, which includes additive-by-

additive interaction effects as well as additive effects in the model.

The pRKHS versions are evaluated for predictive ability in

simulated genetic scenarios and confirmed in real life scenarios

for utility using actual data from corn and barley. The pRKHS

versions are also compared in performance with popular

shrinkage methods, specifically RR-BLUP, BayesA, BayesB [2]

and the nonparametric method RKHS-M used by Crossa et al.

[24].

Materials and Methods

Simulation
Mating scheme. The breeding scheme for maize line

development outlined by Bernardo and Yu [25] was used in the

simulation of a number of plant breeding scenarios. Specifically,

two unrelated inbreds were crossed to produce an F1 population,

from which N doubled haploid (DH) lines (Cycle 0) were

generated and crossed to a common tester. Testcross performance

data and genotypes of Cycle 0 lines were used to train the model.

Based on Cycle 0 testcross phenotypes, Nsel lines were selected to

randomly mate for two generations to produce N Cycle 1 lines.

Genotypes of Cycle 1 lines were used to predict testcross

phenotypes using fitted model. The marker data were coded as

zij = 1, if jth marker locus in ith individual was homozygous for

marker allele from parental Inbred 1, zij = -1 if homozygous for

marker allele from parental Inbred 2 and 0 if heterozygous. N and

Nsel values were set as 144 and 8, respectively, according to

Bernardo and Yu [25].

Genome model
The genome model for simulation was constructed according to

the published maize ISU–IBM genetic map, with a total of

1788 cM [26], with recombination computed using the Kosambi

map function [27]. Markers were evenly spaced on the chromo-

some at 1 cM intervals. And 100 QTLs were randomly positioned

across the genome. Both markers and QTLs were assumed to be

bi-allelic. The genotypic value for ith individual was calculated

according to [7]

Gi ~
XL

k~1

akuik z
X
k=l

bkluiluik:

Design element uk is defined according to the general two-allele

model (G2A, [28] as.

uk~

2(1{pk) kth QTL genotype is QQ

1{2pk kth QTL genotype is Qq

{2pk kth QTL genotype is qq

8><
>: ,
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where pk is the allele frequency of Q in kth QTL. Parameter ak is

kth QTL’s additive effect and bkl is the epistatic interaction effect

between kth and lth QTL. In this case, bkl indicates additive by

additive interaction. Furthermore, akwas sampled from geometric

series L{1
Lz1

� �k

[25,29], where L equals the total number of QTL

positioned throughout the genome. The direction of effect was

randomly assigned to each QTL, leading to random coupling and

repulsion linkages. Epistatic effect bkl was sampled from gamma

distribution

bkl * Gamma 0:2,10ð ÞdxƒP and d~
1 xƒP

0 xwP

�
,

where d is the indicator function which compares the random

variable x generated from uniform distribution [0,1] with P. The

extent of epistasis was specified by assigning the proportion (P) of

total epistatic interactions with nonzero effect. Three levels of

epistasis were considered: P = 0, 0.1 and 0.5, representing no, low,

and high epistasis, respectively. The G2A model [28] was chosen

to model QTL due to its orthogonal property, which links the

genetic variance partition directly to the genetic effect partition.

The genetic variance was therefore calculated from the sample

variance of genotypic values. Random nongenetic effects were

added to the genotypic values to generate phenotypic values in

proportion to the heritability (i.e. four heritability levels were

considered: 0.1, 0.2, 0.4 and 0.8).

Real Data
To evaluate the predictive ability under real life scenarios, data

reported by Crossa et al. [24] on 284 maize lines genotyped with

1148 and 1135 SNPs and phenotyped for anthesis-silking interval

(ASI) and grain yield (GY), respectively, were utilized. In addition,

three barley datasets generated from North Dakota State

University two-rowed (N2) breeding program, with trial name of

‘Expt41_2007_Langdon’, ‘Expt41_2008_Langdon’ and ‘Ex-

p41_2009_Langdon’ from The Hordeum Toolbox (http://

wheat.pw.usda.gov/tht/) were utilized. Only entries with pheno-

typic observations for both grain yield (GYD) and plant height

(PHT) from the same location were used to avoid confounding

genotype with environment. Trials of year 2007 and 2008

contained different sets of 96 lines while 2009 trial had 57 lines,

for a total of 249 unique lines across the three years. Lines of one

year were independent from those of others. There were 2161

SNPs for the 2007 dataset, 2029 SNPs for the 2008 dataset, and

1842 SNPs for the 2009 dataset, among which 1641 markers were

shared among three years. After filtering out markers with minor

allele frequency (i.e. smaller than 0.05), 1511 SNPs were retained

for barley data.

SNPs were bi-allelic and the dummy variable for marker data is

defined as zij = 1 for A1A1, zij = 0 for A1A2 and zij = 21 for A2A2.

For SNP data from BarleyCAP, genotypes ‘1:1’, ‘2:2’, and ‘1:2’

were considered as A1A1, A2A2, and A1A2, respectively. Although

the type of marker data is discrete, it is treated as continuous

vector of covariates. Missing markers were imputed by averaging

marker scores across all lines of that marker. Two missing

phenotypes from 2007 and 2008 data were imputed using k-

nearest-neighbor (KNN) algorithm [30].

Statistical Methods
pRKHS-E & pRKHS-NE. Features from SPCA and RKHS

regression were combined to develop the new method, pRHKS.

First, SPCA was applied to reduce the high dimensionality

represented by the markers and to decrease ‘noise’. Steps to apply

SPCA included:

a) Computing the regression coefficient for each marker on a

single marker basis,

b) Ranking markers by the absolute value of their regression

coefficients and selecting a defined number of the top ranked

markers to form a marker subset (MS) with which to

construct the reduced data matrix,

c) Performing principal component analysis using the reduced

data matrix to generate resulting PCs, referred to as

supervised principal components (SPCs).

A series of SPCs i.e. explaining 55%,60%, 65%,70%, 75%,80%,

and 85% of the data matrix variance were then considered as

independent variables to fit a smoothing spline ANOVA model in

reproducing kernel Hilbert spaces [17]. Results led to a

determination that ,70% (610%) was an optimal threshold of

PC variation explained by the model to achieve high prediction

accuracy.

Two versions of the new method (pRKHS-NE and pRKHS-E)

were proposed to account for various levels of epistasis.

1) pRKHS-NE: All selected SPCs were included in the model as

main effects. No interactions were included.

2) pRKHS-E: Main effects and two-way, additive-by-additive

interactions were included in the model, specifying the level

of epistasis. For example, when epistasis was specified as 0.1,

then 10% of the epistasis interaction effects were considered

to be nonzero. To prevent high dimensionality, each variable

and their pair-wise interactions were tested for significance

and selected using non-parametric model diagnostics tools, i.e.

cosine value (CoV) [17], which corresponds roughly to F-

statistics in a parametric regression model. Main effects with

CoV larger than 0.05 were retained in the model. To

determine the tolerance for various different levels of epistatic

interactions, a series of CoV i.e. 0.3, 0.25 and 0.2 were

considered.

The nonparametric model pRKHS is written as.

Yi~g(xi)zei,

where Yi is the phenotype of ith individual, xi~ x
(1)
i , x

(2)
i :::, x

(K)
i

� �
is the vector of k SPCs x

(1)
i , x

(2)
i :::, x

(K)
i of ith individual, g is some

unknown K-variate function relating SPCs and phenotype, and

ei ~N 0, s2
� �

is error term for ith individual. We estimate g(x) in a

functional space H using a penalized least squares,

1

n

Xn

i~1

Yi{g(xi)ð Þ2zlDDg(x)DD2H,

where the first term measures the goodness of fit, and DDg(x)DD2H
quantifies the smoothness of g, and l is a smoothing parameter

balancing the trade-off between the two conflicting goals. Full

details of the derived model are described in Appendix S1.

Comparison methods. pRKHS-E and pRKHS-NE were

compared to three shrinkage methods: RR-BLUP, BayesA and

BayesB [2]. The general model was written as y~lmzXbze,

where l is a vector filled with ones, X is marker data matrix, m is

Nonparametric Method for Genomics-Based Prediction
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the fixed grand mean, b is the vector of marker effects, and e is the

vector of random residuals. A Gaussian prior was assigned to b

and e, with b ~N 0, Is2
b

� �
and e ~N 0, Is2

e

� �
. RR-BLUP was

implemented in a Bayesian framework; it assigns a common

variance to all marker effects, whereas BayesA and BayesB assigns

different variances to different markers. BayesB was modified in

this study to include p, the proportion of markers having no

genetic variances, as another parameter in the model and assigned

it a uniform [0,1] prior instead of arbitrary setting [31]. Variances

s2
e and s2

b were assigned a scaled inverse chi-square distribution

with scaleS2and degree of freedom v.

Besides shrinkage methods, pRKHS was also compared to the

RKHS-M model mentioned in work by Crossa et al. [24]. The

model was y~1mzfze, where f ~N 0, Ks2
f

� �
. K was the kernel

matrix whose i,jð Þth entry equaled exp {w � dij

� �
, where

dij~ xi{xj

� �T
xi{xj

� �
measured similarity between ith and jth

individuals, where xi is a vector of marker scores of ith individual

and bandwidth parameter w was chosen as 2q{1
0:5 , where q0:5 was

the sample median of dij . And s2
f was also assigned a scaled inverse

chi-square distribution with scale Sf
2 and degree of freedom vf .

Data Analysis
The smoothing spline ANOVA model in pRKHS-E and

pRKHS-NE was fitted using the ssanova function in ‘‘gss’’ package

available in R [32]. Default arguments of ssanova function were

used, i.e. argument ‘‘method’’ was set to ‘‘v’’ to let smoothness

parameter l be selected by GCV and ‘‘type’’ was set to ‘‘cubic’’ to

use a cubic smoothing spline. RR-BLUP, BayesA, and BayesB

were coded using C++, among which S2
b = 4.23, vb = 0.05 and

S2
e = 1, ve = 1. The RKHS method was implemented using the

program provided by Crossa et al. [24], with S2
f = 4 and vf = 1.

Gibbs sampler was implemented with 3 chains and 10,000

iterations for each chain to update conditional posterior distribu-

tions. The first 1,000 samples of each chain were discarded as

burn-in and later thinned by 10. Convergence was checked by

inspection of trace plots and Gelman-Rubin plots of error variance

using ‘‘coda’’ package in R [33]. Samples from three chains were

combined to estimate posterior means. All analyses were run on an

Ubuntu Server with 2.8 GHz CPU and 16 GB memory.

In simulation scenarios, ten-fold CV in Cycle 0 (C0) was used to

determine the best MS and CoV for pRKHS-E(NE). Pearson

correlation coefficients between estimated breeding value (EBV)

and true breeding value (TBV) (rEBV:TBV), and between EBV and

phenotype (PHE) (rEBV:PHE) were calculated and averaged across

thirty replicated simulations.

Since TBV will never be observed in real cases, the criterion to

select MS and CoV was based on rEBV:PHE rather than rEBV:TBV.

Given the highest rEBV:PHE in C0, optimum MS and CoV were

determined and used to estimate breeding values and phenotypes

in Cycle 1 (C1). Across a series of MS (i.e. from 500 to all markers),

percent of variation and number of influential markers whose

loadings .0.8*the maximum loading were extracted from top

three SPCs, and number of SPC interactions with CoV being 0.2,

0.25 and 0.3 were also recorded.

In real data applications, predicted maize ASI and GY values

were based on five-fold CV since only one set of data was

available. With barley, rEBV:PHE was computed to measure

predictive ability. Expt41_2007_Langdon barley data were used

for ten-fold CV to select the optimum MS and CoV for pRKHS-

E(NE), which were further used to predict phenotypes of trial

Expt41_2008_Langdon and Expt41_2009_Langdon. Model fit-

ting for all real data was repeated five times and results were

reported as a mean of five. The R code for computing pRKHS

EBVs and correlations with phenotype using the three barley

datasets generated by North Dakota State barley breeding

program (Expt41_2007_Langdon, Expt41_2008_Langdon and

Expt41_2009_Langdon accessed through The Hordeum Toolbox

http://wheat.pw.usda.gov/tht/) is provided in the supplemental

materials (R Code S1).

Results

Simulation Results
Twelve different scenarios were considered in this study to

facilitate comparison of methods given various levels of heritability

and epistasis (Tables 1, 2, and 3). Pearson correlation coefficients

for EBV: TBV (rEBV:TBV) and for EBV: PHE (rEBV:PHE) were

calculated (Tables 1, 2 and 3). Both ten-fold CV in C0 and

prediction in C1 were used to assess the predictability of the

statistical methods.

For scenarios with no epistasis, BayesB generally outperformed

other methods in predictive ability (Table 1). BayesB provided the

highest correlation between EBV and TBV in five out of eight

cases, except in three cases at low heritability levels (h2 = 0.1 and

0.2), where pRKHS-NE outperformed or at least had comparable

results with BayesB. The values of rEBV:TBV for pRKHS-NE were

consistently higher than those for pRKHS-E across both C0 and

C1, in keeping with the scenario of no epistasis. In three cases

where pRKHS-NE outperformed BayesB for rEBV:TBV, it also

provided higher correlations between EBV and PHE than BayesB.

In no instances did RR-BLUP, BayesA, or RKHS-M provide the

highest correlations for TBV or PHE.

For scenarios with epistasis at a low level, the pRKHS method

outperformed other methods in predictive ability; particularly in

predicting PHE, the pRKHS method provided the highest

correlation in all eight cases of C0 and C1 (Table 2). The values

of pRKHS-E for rEBV:TBV were marginally higher than those for

pRKHS-NE in five out of eight cases of C0 and C1. The pRKHS

method provided highest values for rEBV:TBV in seven out of eight

cases of C0 and C1, with BayesB providing the highest values in

C1 case at h2 = 0.2. For the correlation with PHE, pRKHS-E

exceeded pRKHS-NE in three out of four heritability scenarios

(h2 = 0.1, 0.2, and 0.4) and performed below pRKHS-NE at

h2 = 0.8. In no instances did RR-BLUP, BayesA, or RKHS-M

provide the highest correlations for either TBV or PHE.

For scenarios with high epistasis, the pRKHS method,

particularly pRKHS-E, outperformed other methods in predictive

ability (Table 3). In all cases of C0 and C1 across all heritabilities,

pRKHS-E provided the highest correlations for both TBV and

PHE. Among four C0 cases, the magnitude of the values of

rEBV:TBV of BayesB and pRKHS-NE had decreased the most from

the corresponding value in low epistasis scenario at heritability of

0.1 and 0.2, respectively. And RKHS-M experienced the most loss

of accuracy at heritability of 0.4 and 0.8. In contrast, pRKHS-E

showed the least amount of loss in accuracy based on change of

rEBV:TBV in all four C0 cases.

The advantage of marker-based selection (MBS) over pheno-

typic selection (PS) can be quantified by comparing rEBV:TBV in C1

cases to accuracy of PS, defined as the correlation between mid-

parent and offspring and measured by taking square root of half of

the narrow-sense heritability [34]. For heritabilities of 0.1, 0.2, 0.4

and 0.8, the accuracy of PS was estimated as 0.224, 0.316, 0.447,

and 0.632, respectively. For the scenarios with no and low epistasis

(Tables 1 and 2), all methods outperformed PS at all four

heritabilities, particularly at low heritability (h2 = 0.1 and 0.2). For

Nonparametric Method for Genomics-Based Prediction
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the scenarios with high epistasis (Table 3), pRKHS-E and BayesB

outperformed PS in all cases, whereas pRKHS-NE and RR-BLUP

outperformed PS only at low to moderate heritabilities (h2 = 0.1,

0.2 and 0.4). RKHS-M did not outperform PS at any of the

heritability levels.

Table 4 exhibits the range of values for the percentage of

variation explained by the first three SPCs, the number of markers

included in each of these SPCs, and the number of SPC

interactions observed when the cosine threshold for selecting

SPC interactions was .0.2, .0.25, and .0.3, respectively, given

the series of marker subsets (from as low as 500 markers to all, i.e.

1798 markers) used across 12 simulation scenarios. With low

marker density, i.e. 500 markers, the first, second and third SPCs

explained up to 18.7%, 11.8% and 9.9%, respectively, of the

marker variation. Utilizing the full marker data set, the top three

SPCs only explained as low as 9.2%, 5.5% and 5.1% of the

variation (Table 4). Averaging across all scenarios, the first three

SPC accounted for 25.4% of the marker variation and 18 SPCs

were needed to explain 70% of the marker variation (Figure 1).

The number of influential markers included in the first three

SPCs, namely MP1, MP2 and MP3, varied according to the number

of markers used in the model. Using all 1798 markers in

simulations, the 1st, 2nd and 3rd SPCs included a maximum of

137, 111, and 103 influential markers, respectively; using the

smallest subset of markers i.e. 500 markers, the 1st, 2nd, and 3rd

SPCs included as few as 61, 52, and 37 influential markers,

respectively (Table 4). The number of SPC interactions was

determined by the MS and CoV. High MS or low CoV generate a

relatively large number of SPC interactions.

Results with Field Performance Data
In addition to the simulations, the predictive ability of each

method was evaluated using maize and barley data reported by

CIMMYT [24] and BarleyCAP, respectively. With the maize

dataset, five-fold CV was implemented with the traits ASI and GY

to evaluate predictive ability and compare methods. For maize

ASI, the RKHS-M method produced the highest correlation of

0.554, followed closely by pRKHS-NE and pRKHS-E (Table 5).

For maize GY, the RHKS-M method produced the highest

correlation of 0.447, followed closely by pRHKS-NE, RR-BLUP,

pRHKS-E, and BayesB. The pRKHS method outperformed RR-

BLUP, BayesA, and BayesB with ASI and had comparable

performance in GY with RR-BLUP and BayesB, with pRKHS-E

and pRKHS-NE performing nearly identically. With regard to

pRKHS-E and pRKHS-NE, the optimal numbers of markers

contributing to phenotypic variation were 700 and 600, and SPCs

explaining 70% and 65% of data matrix variance, respectively,

were included in the model in order to achieve high prediction

accuracy for ASI trait. More markers were involved in GY, i.e.

1000 and 900 markers for pRKHS-E and pRKHS-NE, respec-

tively, suggesting that more genes and perhaps more epistasis was

Table 1. For scenarios with no epistasis, Pearson correlation
coefficients between estimated breeding value and true
breeding value (rEBV:TBV) or phenotype (rEBV:PHE) obtained
through ten-fold cross-validation with Cycle 0 (C0) and
prediction of Cycle 1(C1), implemented for simulated traits
with heritability of 0.1, 0.2, 0.4, 0.8, via the various statistical
methods.

Heritability C0/C1 Methods rEBV:TBV ± SE rEBV:PHE ± SE

h2 = 0.1 C0 RR-BLUP 0.47460.015 0.17460.019

C0 BayesA 0.45160.016 0.17060.023

C0 BayesB 0.47560.015 0.18060.020

C0 RKHS-M 0.35060.021 0.10360.018

C0 pRKHS-E 0.42260.019 0.18960.005

C0 pRKHS-NE 0.48060.016 0.19260.013

C1 RR-BLUP 0.32960.017 0.12760.018

C1 BayesA 0.30760.020 0.12460.017

C1 BayesB 0.33860.017 0.13460.018

C1 RKHS-M 0.25260.014 0.06660.016

C1 pRKHS-E 0.34260.023 0.12160.026

C1 pRKHS-NE 0.38260.016 0.15560.019

h2 = 0.2 C0 RR-BLUP 0.57260.019 0.23560.018

C0 BayesA 0.56860.015 0.23060.014

C0 BayesB 0.58260.018 0.24460.010

C0 RKHS-M 0.44260.012 0.17960.018

C0 pRKHS-E 0.49460.011 0.24860.013

C0 pRKHS-NE 0.59960.018 0.25460.010

C1 RR-BLUP 0.47060.019 0.28960.015

C1 BayesA 0.43160.010 0.26560.011

C1 BayesB 0.47960.020 0.29860.013

C1 RKHS-M 0.36360.018 0.23560.019

C1 pRKHS-E 0.34160.018 0.18060.011

C1 pRKHS-NE 0.45060.019 0.25760.015

h2 = 0.4 C0 RR-BLUP 0.78560.014 0.42160.018

C0 BayesA 0.69760.017 0.35460.016

C0 BayesB 0.79960.016 0.42760.015

C0 RKHS-M 0.61460.017 0.35260.012

C0 pRKHS-E 0.75660.017 0.39560.011

C0 pRKHS-NE 0.78960.020 0.38860.014

C1 RR-BLUP 0.61460.013 0.42560.011

C1 BayesA 0.52960.013 0.36160.015

C1 BayesB 0.62260.013 0.43360.020

C1 RKHS-M 0.53560.022 0.38460.023

C1 pRKHS-E 0.51360.016 0.38160.016

C1 pRKHS-NE 0.57460.018 0.40260.017

h2 = 0.8 C0 RR-BLUP 0.82760.009 0.72960.006

C0 BayesA 0.76360.012 0.67360.004

C0 BayesB 0.83160.009 0.73560.008

C0 RKHS-M 0.76860.011 0.69860.009

C0 pRKHS-E 0.67860.016 0.68660.012

C0 pRKHS-NE 0.81560.014 0.67560.012

C1 RR-BLUP 0.74460.012 0.67460.014

C1 BayesA 0.66460.021 0.60160.022

C1 BayesB 0.75260.011 0.68260.013

Table 1. Cont.

Heritability C0/C1 Methods rEBV:TBV ± SE rEBV:PHE ± SE

C1 RKHS-M 0.67560.010 0.62060.010

C1 pRKHS-E 0.63360.008 0.57160.011

C1 pRKHS-NE 0.73460.010 0.61360.009

Average correlations 6 SE were obtained from thirty replications of each
simulation.
doi:10.1371/journal.pone.0050604.t001
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involved in trait expression (Table 4). Furthermore, the optimum

CoV for pRKHS-E was 0.3 for both ASI and GY.

A three-year set of experimental data from BarleyCAP was used

to measure the predictive ability given an independent set of

breeding lines (Table 6). Phenotypes (i.e. grain yield (GYD) and

plant height (PHT)) and genotypes from Year 2007 were used to fit

models and evaluate ten-fold CV performance. The fitted models

were then used to predict the phenotype of a different set of 96

lines in Year 2008 and 57 lines in Year 2009. For GYD, the

pRKHS method substantially outperformed other methods for

predicting 2008 and 2009 phenotypes, with pRKHS-E performing

better with 2008 predictions and pRKHS-NE performing better

with 2009 predictions. The optimal numbers of markers contrib-

uting to phenotypic variation were 1500 and 800 and SPCs

explaining 70% and 75% of marker variation were included in the

model in order to attain high correlation for pRKHS-E and

pRKHS-NE, respectively. For PHT, the optimal number of

markers was 1000 and SPCs explaining 75% of the variation were

included in both pRKHS-E and pRKHS-NE methods. pRKHS-

NE generated the highest correlation in 2007 and 2009 data sets

whereas pRKHS-E had the highest correlation of EBV and 2008

PHE. Optimal CoV for pRKHS-E was found at 0.3 in both traits.

Discussion

This study demonstrates the advantages of using nonparametric

methods to estimate breeding value and to predict phenotypic

performance, especially for traits involving epistatic gene action.

The new method is novel because it features a new combination of

supervised principal component analysis and reproducing kernel

Hilbert spaces, both established statistical methods. The introduc-

tion of SPCA complements RKHS by reducing dimensionality

and background noise. Two versions of the method were devised

to span the range of epistasis involved in trait expression, with

pRKHS-E designed to account for low/moderate to high epistasis

and pRKHS-NE accommodating circumstances in which no/

minimal epistasis exists in the target trait. To evaluate the

performance of the pRKHS method, three other shrinkage

methods and another nonparametric method RKHS-M were

compared. The results obtained from simulation confirmed that in

the absence of epistasis, pRKHS-NE performs comparably with

BayesB and better than pRKHS-E (Table 1). When epistasis is

present, pRKHS-E shows better predictive ability among all other

methods (Tables 2, 3). In addition, results with actual data show

that the pRKHS method consistently outperforms shrinkage

methods and performed comparably to RKHS-M, further

confirming the predictive ability of the pRKHS method in real

application.

Table 2. For scenarios with a low level of epistasis (10% of
the epistasis interaction effects are nonzero), Pearson
correlation coefficients between estimated breeding value
and true breeding value (rEBV:TBV) or phenotype (rEBV:PHE)
obtained through ten-fold cross-validation with Cycle 0 (C0)
and prediction of Cycle 1 (C1), implemented for simulated
traits with heritability of 0.1, 0.2, 0.4, 0.8, via the various
statistical methods.

Heritability C0/C1 Methods rEBV:TBV ± SE rEBV:PHE ± SE

h2 = 0.1 C0 RR-BLUP 0.41860.015 0.14460.009

C0 BayesA 0.40260.015 0.13460.008

C0 BayesB 0.42160.014 0.14360.009

C0 RKHS-M 0.25760.012 0.08960.008

C0 pRKHS-E 0.43360.012 0.16960.018

C0 pRKHS-NE 0.41960.015 0.14260.015

C1 RR-BLUP 0.36960.017 0.16460.010

C1 BayesA 0.34060.019 0.15360.011

C1 BayesB 0.36760.018 0.16360.010

C1 RKHS-M 0.25860.018 0.10060.008

C1 pRKHS-E 0.39460.021 0.16860.005

C1 pRKHS-NE 0.35860.017 0.15960.006

h2 = 0.2 C0 RR-BLUP 0.53560.011 0.22860.019

C0 BayesA 0.51860.008 0.23460.016

C0 BayesB 0.53660.011 0.23560.018

C0 RKHS-M 0.43560.014 0.18660.016

C0 pRKHS-E 0.54260.010 0.23760.015

C0 pRKHS-NE 0.54060.010 0.24560.019

C1 RR-BLUP 0.51260.015 0.31360.016

C1 BayesA 0.47960.014 0.26760.014

C1 BayesB 0.51460.015 0.31560.016

C1 RKHS-M 0.41360.010 0.23460.015

C1 pRKHS-E 0.48460.014 0.33660.006

C1 pRKHS-NE 0.48160.014 0.32660.011

h2 = 0.4 C0 RR-BLUP 0.68860.007 0.44460.008

C0 BayesA 0.63260.009 0.42160.003

C0 BayesB 0.68760.006 0.43860.008

C0 RKHS-M 0.56960.011 0.35860.018

C0 pRKHS-E 0.69660.009 0.44860.008

C0 pRKHS-NE 0.68160.011 0.43460.008

C1 RR-BLUP 0.60660.017 0.37760.015

C1 BayesA 0.53560.008 0.32760.010

C1 BayesB 0.60060.020 0.37260.017

C1 RKHS-M 0.50360.013 0.32060.011

C1 pRKHS-E 0.60560.021 0.37260.020

C1 pRKHS-NE 0.61560.016 0.38460.015

h2 = 0.8 C0 RR-BLUP 0.80260.001 0.69260.002

C0 BayesA 0.73460.003 0.63360.006

C0 BayesB 0.81660.004 0.69960.006

C0 RKHS-M 0.77660.004 0.69860.007

C0 pRKHS-E 0.80960.012 0.69460.012

C0 pRKHS-NE 0.82160.007 0.70160.010

C1 RR-BLUP 0.77060.013 0.69060.012

Table 2. Cont.

Heritability C0/C1 Methods rEBV:TBV ± SE rEBV:PHE ± SE

C1 BayesA 0.71060.012 0.63460.011

C1 BayesB 0.78760.013 0.70560.011

C1 RKHS-M 0.75160.014 0.68960.014

C1 pRKHS-E 0.77560.013 0.69360.010

C1 pRKHS-NE 0.79760.014 0.71260.012

Average correlations 6 SE were obtained from thirty replications of each
simulation.
doi:10.1371/journal.pone.0050604.t002

Nonparametric Method for Genomics-Based Prediction

PLOS ONE | www.plosone.org 6 November 2012 | Volume 7 | Issue 11 | e50604



According to selection theory, MBS holds advantage over PS

when the genetic correlation (correlation between estimated

breeding value and true breeding value) is higher than the

correlation of mid-parent and offspring. Given that pRKHS

outperformed PS in most of the cases (Tables 1, 2, 3), its potential

use to facilitate indirect selection based on marker information

alone is highlighted. However, pRKHS-E and pRKHS-NE are

not expected to perform equivalently due to different statistical

models on which they are based. In the absence of epistasis, overall

underperformance of pRKHS-E (Table 1) is mostly attributed to

model overfitting. This may be further supported by the results

that pRKHS-E had high rEBV:PHE but also the lowest rEBV:TBV

among six methods at h2 = 0.8 (Table 1), which suggests estimates

from pRKHS-E have higher variance and are more biased in the

absence of epistasis. As epistasis was increased in simulation

scenarios, rEBV:TBV of pRKHS-E decreased slowly (Table 2,

Table 3), suggesting properly modeling epistasis upholds the

advantages of applying MBS.

Note that correlations with pRKHS-E are not overwhelmingly

higher compared to pRKHS-NE in low epistasis scenarios

(Table 2). The result that pRKHS-E outperforms pRKHS-NE

in only five out of eight cases indicates pRKHS-NE may function

well when a low level of epistasis impacts trait expression. The

above phenomenon may be explained by the fact that the optimal

CoV for pRKHS-E was 0.3 in low epistasis scenario, wherein

about two to three SPC interactions on average were involved in

the model (Table 4). Overall, 18 SPCs were needed to explain

around 70% of the variation and these were included as main

effects in the pRKHS-E and pRKHS-NE models (Figure 1). Since

the principal component score is a linear combination of the

weighted marker score, the linear combination of 18 SPC scores

may account for a few of the SPC interactions. The above

argument is further supported by the observations that fitting

model using CoV of 0.2 (i.e. more SPC interactions) causes

multicollinearity in some cases. Overall, features of principal

component scores may help the additive model pRKHS-NE fit

well in the situation of low epistatic interactions.

Cosine threshold value as mentioned in this study is a

nonparametric model diagnostic and used as a criterion to select

SPC interactions. As the counterpart of F-statistics in a parametric

model [17], CoV could theoretically be transformed to a test

statistic similar to the F-distribution p-values with some modifi-

cation [35]. However, the degrees of freedom for F-distribution

which are estimated from the trace of the smoothing matrix

change every time a new pair of SPC interactions is fitted.

Therefore, the consequential p-value is not monotone with the

cosine value, indicating the same cosine value could be assigned

for different p-values in different model fitting, which is misleading

to SPC interaction selection, causing loss or false inclusion of

interactions. We did some preliminary experimentation by

Table 3. For scenarios with a moderate level of epistasis (50%
of the epistasis interaction effects are nonzero), Pearson
correlation coefficients between estimated breeding value
and true breeding value (rEBV:TBV) or phenotype (rEBV:PHE)
obtained through ten-fold cross-validation with Cycle 0 (C0)
and prediction of Cycle 1 (C1), implemented for simulated
traits with heritability of 0.1, 0.2, 0.4, 0.8, via the various
statistical methods.

Heritability C0/C1 Methods rEBV:TBV ± SE rEBV:PHE ± SE

h2 = 0.1 C0 RR-BLUP 0.37260.021 0.17560.022

C0 BayesA 0.36360.020 0.15860.023

C0 BayesB 0.33660.016 0.14160.015

C0 RKHS-M 0.17360.018 0.11960.013

C0 pRKHS-E 0.38260.020 0.20360.020

C0 pRKHS-NE 0.36360.018 0.17160.021

C1 RR-BLUP 0.30960.013 0.18260.011

C1 BayesA 0.32760.019 0.19260.009

C1 BayesB 0.29860.019 0.18860.010

C1 RKHS-M 0.15760.015 0.13960.008

C1 pRKHS-E 0.32860.013 0.19460.012

C1 pRKHS-NE 0.29860.010 0.17660.011

h2 = 0.2 C0 RR-BLUP 0.48760.022 0.17260.020

C0 BayesA 0.44460.022 0.17560.017

C0 BayesB 0.50760.024 0.18460.025

C0 RKHS-M 0.33160.026 0.19260.024

C0 pRKHS-E 0.51260.030 0.25460.023

C0 pRKHS-NE 0.49260.024 0.23060.021

C1 RR-BLUP 0.41660.020 0.28260.011

C1 BayesA 0.40860.017 0.25660.010

C1 BayesB 0.41660.008 0.29960.011

C1 RKHS-M 0.29560.011 0.21460.005

C1 pRKHS-E 0.44160.018 0.30360.010

C1 pRKHS-NE 0.43560.014 0.28660.008

h2 = 0.4 C0 RR-BLUP 0.52660.016 0.26360.015

C0 BayesA 0.52060.015 0.26160.021

C0 BayesB 0.55760.017 0.30060.019

C0 RKHS-M 0.42760.017 0.30660.021

C0 pRKHS-E 0.60360.016 0.34760.031

C0 pRKHS-NE 0.55160.018 0.33360.023

C1 RR-BLUP 0.50460.022 0.31160.018

C1 BayesA 0.46260.017 0.28560.014

C1 BayesB 0.51160.021 0.31560.017

C1 RKHS-M 0.34760.021 0.26760.014

C1 pRKHS-E 0.52560.016 0.39060.015

C1 pRKHS-NE 0.46360.014 0.34460.014

h2 = 0.8 C0 RR-BLUP 0.68060.009 0.40760.007

C0 BayesA 0.59960.008 0.32460.009

C0 BayesB 0.69760.011 0.42060.008

C0 RKHS-M 0.58460.011 0.56160.012

C0 pRKHS-E 0.70660.008 0.53560.001

C0 pRKHS-NE 0.66060.009 0.48060.010

C1 RR-BLUP 0.61260.013 0.29860.029

Table 3. Cont.

Heritability C0/C1 Methods rEBV:TBV ± SE rEBV:PHE ± SE

C1 BayesA 0.59660.014 0.28360.031

C1 BayesB 0.63760.023 0.32060.028

C1 RKHS-M 0.47560.022 0.30860.053

C1 pRKHS-E 0.63860.017 0.41860.046

C1 pRKHS-NE 0.61860.020 0.28160.036

Average correlations 6 SE were obtained from thirty replications of simulation.
doi:10.1371/journal.pone.0050604.t003
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constructing models using a transformed p-value instead of direct

CoV for SPC interaction selection and found low predictive ability

(data not shown).

In addition to predictive performance, comparisons between

pRKHS and other methods can consider computational load.

Several studies [8,36] have suggested the computational advan-

tages of using nonparametric methods over shrinkage methods.

For our models, the cost of the RKHS algorithm is O nq2
� �

, where

n is sample size and q is number of dimensions. With SPCA, q is

usually around 18 to 20 (Figure1), indicating computational time

of pRKHS will be mainly impacted by sample size instead of

marker number. With pRKHS, most of the computational load

involves constructing reproducing kernels and the smoothing

matrix and estimating smoothing parameter l. In contrast, the

computation load with Bayesian shrinkage methods is linearly

related to the number of features since these are Markov Chain

Figure 1. Mean percentage of variation (across the 12 simulation scenarios) explained by the top 18 SPCs with pRHKS, which
together explain 70% of the total variation.
doi:10.1371/journal.pone.0050604.g001

Table 4. For each scenario with pRKHS, the percent of the total variation explained by top three SPCs (%P1, %P2 and %P3), the
number of influential markers (MP1, MP2 and MP3) included in the respective SPCs, and number of SPC interactions at three given
cosine thresholds.

Scenarios %P1 %P2 %P3 MP1 MP2 MP3
# of SPC interactions

.0.2 .0.25 .0.3

h2 = 0.1, E = 0 10.4–15.1 5.8–11.1 5.3–9.0 83–127 61–104 43–86 5–12 1–5 0–3

h2 = 0.2, E = 0 12.2–17.7 5.5–10.8 5.2–8.1 124–136 59–71 56–85 3–11 1–6 0–4

h2 = 0.4, E = 0 9.3–14.9 6.8–11.7 5.9–9.9 67–111 59–90 56–96 4–16 1–6 0–3

h2 = 0.8, E = 0 10.4–15.3 5.8–11.0 5.3–9.1 76–124 53–89 48–87 5–20 1–7 0–1

h2 = 0.1, E = 0.1 11.1–17.7 6.1–9.7 5.4–8.4 105–130 55–98 50–92 4–16 1–5 0–3

h2 = 0.2, E = 0.1 11.9–16.5 5.6–11.8 5.1–8.2 110–125 66–85 43–88 4–12 2–7 1–4

h2 = 0.4, E = 0.1 9.2–13.7 6.0–10.4 5.8–9.4 61–122 62–111 53–102 5–18 1–6 1–5

h2 = 0.8, E = 0.1 11.2–13.0 5.6–10.6 5.1–9.5 69–118 54–77 44–94 6–20 2–8 1–5

h2 = 0.1, E = 0.5 10.5–14.3 5.7–9.8 5.1–7.8 75–120 57–86 48–103 5–18 2–7 1–2

h2 = 0.2, E = 0.5 12.0–18.7 6.4–10.2 5.7–7.0 131–137 54–95 37–71 3–17 2–7 1–4

h2 = 0.4, E = 0.5 12.1–18.5 5.5–11.7 5.0–7.2 122–129 83–99 41–74 5–18 3–7 1–5

h2 = 0.8, E = 0.5 11.2–18.3 5.8–10.5 5.1–8.6 76–126 52–107 45–96 6–21 2–9 2–5

Values reflect the lows and highs obtained using various marker subsets (from 500 markers to all markers). Note that larger cosine values are equivalent to smaller p-
values.
doi:10.1371/journal.pone.0050604.t004
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Monte Carlo (MCMC) based, with computational time increasing

as the number of number of markers increases.

Model performances were influenced by the underlying genetic

architecture of the trait of interest. pRKHS plays an important

role when trait expression is influenced by epistasis, whereas

shrinkage methods may have higher predictive ability when a trait

is controlled by strictly additive gene effects. The genetic

architecture represented by BayesB assumes a trait is controlled

by a few genes with large effects and many genes with small effects.

BayesB further allows some of the markers to have zero effect,

suggesting a nonuniform distribution of genes contributing to

phenotypic variation throughout the genome [2]. Thus, among

the three shrinkage methods in this evaluation, BayesB has the

most in common with pRKHS with respect to the genetic

simulation. Fair approximation of the underlying genome seems to

contribute to the good performance of BayesB and pRKHS.

In general, RKHS methods performed better than shrinkage

methods. Comparing nonparametric methods, pRKHS performs

better than RKHS-M in both simulation and the barley data

scenarios (Tables 1, 2, 3, 6) but lower in maize data scenarios

(Table 5). These differences in performance might be attributed to

two factors: 1) model specifications such as tuning parameter and

reproducing kernel, and 2) differences in genetic architecture. The

smoothing parameters l~(l1,::lK ,l12,:::,l(K{1)K ,:::) place differ-

ent weights to different main effects and interactions, i.e.

downplays the effect of unimportant predictors and provides

better predictions. The smoothing parameters l in pRKHS were

tuned using the data-driven ‘‘GCV’’ score during model training,

while the bandwidth parameter Q in RKHS-M was set to sample

median of the squared Euclidean distance as mentioned by Crossa

et al. [24]. Meanwhile, we used polynomial kernels to construct

kernel matrix while Gaussian kernel was adopted by RKHS-M.

To measure the impact of using only one kernel in RKHS-M,

kernel averaging model, i.e. K2+K7 developed in de los Campos

et al. [36] was also applied on barley data and similar results were

obtained (data not shown). It is worth noting that Gianola and van

Kaam [8] included parametric mixed effects besides nonparamet-

ric function. Such an extension has been also built in the ssanova

Table 5. Applying pRKHS to real life scenarios, Pearson
correlation coefficients between estimated breeding value
(EBV) and phenotype obtained from five-fold cross-validation
(CV) implemented for maize anthesis-silking interval (ASI) and
grain yield (GY) for each of the 6 statistical methods.

Trait CV Methods
Marker
Number %PC Correlation

ASI CV RR-BLUP 0.495

CV BayesA 0.388

CV BayesB 0.495

CV RKHS-M 0.554

CV pRKHS-E 700 70% 0.520

CV pRKHS-NE 600 65% 0.526

GY CV RR-BLUP 0.423

CV BayesA 0.392

CV BayesB 0.421

CV RKHS-M 0.447

CV pRKHS-E 1000 75% 0.422

CV pRKHS-NE 900 65% 0.425

The optimal number of markers contributing to phenotypic variation and
percent of variations explained by the included SPCs were shown for pRKHS
methods; results were averaged across five repeated fittings. Optimal cosine
value was 0.3 for pRKHS-E across all datasets.
doi:10.1371/journal.pone.0050604.t005

Table 6. Applying pRKHS to real life scenarios, Pearson
correlation coefficients between estimated breeding value
(EBV) and phenotype obtained from ten-fold CV using
genotypes and phenotypes of barley lines in year 2007 and
prediction based on genotypes of different lines in year 2008
and 2009 implemented for grain yield (GYD) and plant height
(PHT) for each of the 6 statistical methods.

Traits Year Methods
Marker
Number %PC Correlation

GYD 2007 RR-BLUP 0.449

2007 BayesA 0.448

2007 BayesB 0.510

2007 RKHS-M 0.260

2007 pRKHS-E 1500 70% 0.438

2007 pRKHS-NE 800 75% 0.538

2008 RR-BLUP 0.104

2008 BayesA 0.073

2008 BayesB 0.108

2008 RKHS-M -0.009

2008 pRKHS-E 1500 70% 0.295

2008 pRKHS-NE 800 75% 0.188

2009 RR-BLUP 0.052

2009 BayesA 0.085

2009 BayesB 0.047

2009 RKHS-M 0.130

2009 pRKHS-E 1500 70% -0.081

2009 pRKHS-NE 800 75% 0.148

PHT 2007 RR-BLUP 0.447

2007 BayesA 0.446

2007 BayesB 0.460

2007 RKHS-M 0.514

2007 pRKHS-E 1000 75% 0.465

2007 pRKHS-NE 1000 75% 0.520

2008 RR-BLUP -0.015

2008 BayesA -0.006

2008 BayesB -0.049

2008 RKHS-M -0.083

2008 pRKHS-E 1000 75% 0.084

2008 pRKHS-NE 1000 75% 0.062

2009 RR-BLUP 0.076

2009 BayesA 0.111

2009 BayesB 0.107

2009 RKHS-M 0.191

2009 pRKHS-E 1000 75% 0.203

2009 pRKHS-NE 1000 75% 0.222

The optimal number of markers contributing to phenotypic variation and
percent of variations explained by the included SPCs were shown for pRKHS
methods; results were averaged across five repeated fittings. Optimal cosine
value was 0.3 for pRKHS-E across all datasets.
doi:10.1371/journal.pone.0050604.t006
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function [37]. In short, both RKHS-M and pRKHS have their

own advantages of prediction, i.e. RKHS-M had higher predictive

ability with maize data (Table 5) while pRKHS excel with barley

data (Table 6). A combined usage of RKHS-M and pRKHS may

outperform the usage of a single method.

The low prediction accuracy observed in ‘‘2008’’ and ‘‘2009’’ as

near zero correlation values in Table 6 may be attributed to

several reasons. In particular, the three-year barley data are

pedigree-independent of each other, suggesting the training and

testing datasets are mostly independent. The scenario is different

from cross validation within one year (i.e. ‘‘2007’’ correlation

values in Table 6), in which case the barley lines are pedigree-

related to a certain degree; thus, the training and testing data

within a year have more relationship than those across years,

leading to higher prediction accuracy.

The predictive ability of pRKHS is highly related to the

included SPCs and their interactions (for pRKHS-E). Bair et al.

[23] suggested use of the first several SPCs for prediction and later

Li et al. [38] applied the first three SPCs in genome-wide

association mapping. With our methods, the number of SPCs to

include is flexible and depends on the extent of epistasis; it is

quantified by selecting the proportion of variation instead of

specific numbers. Empirically, we found that with setting a

threshold of around 70% as the amount of the variation explained

by the model and then utilizing only the SPCs associated with that

threshold, an appropriate balance between variance explained and

goodness-of-fit was achieved in most of the cases through

simulation, and this was confirmed with real data applications

(Table 5). However, depending on the crop data and the genetic

architecture, the optimal threshold may actually vary by 610%,

indicating a range of 60% to 80% to achieve best predictability.

Cross-validation could be used to find the best number of SPCs to

include for a specific data.

Optimal marker density for prediction is a topic of great debate.

Some studies advocate use of all markers with dense coverage [2],

while others found little value in dense coverage of the genome

and advocate use of a reduced set of markers for prediction

[22,39,40]. Ways of selecting markers also vary and can be based

on random selection, genetic distance or LD extent, or entropy

reduction, for example. In this study, selection of makers was

based on the magnitude of the regression coefficient, i.e. the size of

the marker effect, and the prediction accuracy is actually increased

by discarding certain markers which contribute little to the target

trait.

The reduced marker approach used with the new pRKHS

method seems to confer some advantages. When no epistasis is

present, Bayesian methods perform well with utilization of the full

marker information. However, the results that pRKHS-NE had

slightly lower prediction accuracy than BayesB (Table 1) suggest a

near-similar level of predictive ability may be enabled even if

partial marker information is used. With pRKHS methods, a

‘preselection’ procedure is applied before doing PCA to filter out

‘‘non-significant’’ markers. This increases the probability that the

subsequent supervised principal components are in good associ-

ation with the trait of interest [23]. More importantly, the

nonlinearity feature of SPCA which is due to initial marker

selection falls into the category of RKHS regression well.

Furthermore, PCA serves not only for dimension reduction but

also clustering. In simulation, influential markers of each SPC

except the first SPC, which contains markers from all ten

chromosomes, usually come from one or two linkage groups

(chromosomes). Therefore, one SPC is considered to be one or two

large haplotypes and the SPC interaction presents the haplotype

interactions instead of single marker interaction. It is tedious to

evaluate the interaction effect between every pair of SNP markers

using a dense marker set; however, pRKHS allows us to narrow

down the potential SNP interaction effects by investigating the

influential markers of two SPCs which have significant interaction

effects with each other. Furthermore, methods using haplotypes

have been proved to show higher predictive ability than those only

using single marker [41,42].

Besides prediction, use of pRKHS facilitates inferences about

the extent of epistasis involved with a trait of interest. For maize

trait ASI with heritability estimated at 0.8 [43], pRKHS-E with

optimal cosine value of 0.3 and pRKHS-NE produced compara-

ble results and outperformed RR-BLUP, BayesA, and BayesB that

only include additive effects (Table 5), indicating that inclusion of a

few pairs of SPC interactions in the model increases prediction.

The above results not only correspond to the case of simulated low

epistasis scenario with h2 = 0.8 (Table 2) but also are consistent

with the conclusions by Buckler et al. [43] who suggested that ASI

may involve some low level of epistasis. For GYD and PHT in

barley, Xu and Jia [44] concluded that epistasis contributes little to

genetic variance for self-pollinated species based on work with a

doubled haploid population derived from cultivated parents,

although Von Korff et al. [45] later found strong epistatic

interactions existed in plant height and yield traits in barley and

attributed the reason to use of exotic parents and different

statistical approaches. As shown in Table 6, our results align with

the low epistasis conclusions from Xu and Jia [44] as pRKHS-E

involving a few interactions (cosine value equals 0.3) and pRKHS-

NE have comparable predictive ability and both methods are

more predictive than others.

Overall, the pRKHS method performs well in estimating

breeding value and predicting performance when epistasis explains

certain proportion of the phenotypic variation. The rate of genetic

gain may be enhanced to a certain degree depending on the

underlying epistatic extent. Furthermore, pRKHS can be adapted

to different types of genetic architectures, i.e. epistatic extent and

linkage disequilibrium, through tuning CoV(representing epistatic

strength) and MS (representing the proportion of markers

contributing to the target trait), respectively. In cases where no

prior knowledge of genetic architecture are known, running

methods pertaining to different genetic architectures, such as RR-

BLUP (infinitesimal model), BayesB (finite loci model) and

pRKHS methods (epistasis model) are recommended. Compared

to other methods, pRKHS is not only for prediction purposes but

also has the capacity to facilitate inferences about the extent of

epistasis involved with a trait of interest, which helps scientists to

unravel mysteries about the genetic architecture of complex traits.

The new nonparametric methods can be readily extended to

account for dominance effects and other semi-parametric methods

of dealing with some covariates, e.g. population structure, typically

managed in a parametric manner.
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