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Abstract

Home is a special location for many animals, offering shelter from the elements, protection from predation, and a common
place for gathering of the same species. Not surprisingly, many species have evolved efficient, robust homing strategies,
which are used as part of each and every foraging journey. A basic strategy used by most animals is to take the shortest
possible route home by accruing the net distances and directions travelled during foraging, a strategy well known as path
integration. This strategy is part of the navigation toolbox of ants occupying different landscapes. However, when there is a
visual discrepancy between test and training conditions, the distance travelled by animals relying on the path integrator
varies dramatically between species: from 90% of the home vector to an absolute distance of only 50 cm. We here ask what
the theoretically optimal balance between PI-driven and landmark-driven navigation should be. In combination with well-
established results from optimal search theory, we show analytically that this fractional use of the home vector is an optimal
homing strategy under a variety of circumstances. Assuming there is a familiar route that an ant recognizes, theoretically
optimal search should always begin at some fraction of the home vector, depending on the region of familiarity. These
results are shown to be largely independent of the search algorithm used. Ant species from different habitats appear to
have optimized their navigation strategy based on the availability and nature of navigational information content in their
environment.
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Introduction

Path integration (PI) is a strategy used by many animals to

return home by the shortest possible route. In path integration,

animals compute a home vector (HV) by integrating the angles

steered and distances travelled on the outward journey [1,2,3,4].

The most conclusive evidence of an animal’s ability to path-

integrate comes from experiments where individual animals

returning home are displaced to a distant location where familiar

visual landmark information is absent. If an animal continues to

travel in the direction where the nest would have been it can be

concluded that it has a path integrator. The path integrator

accumulates both systematic and random errors and hence often

leads animals to the vicinity of the home, rather than the home

itself [5,6,7,8]. It is perhaps to overcome such errors in the path

integrator, animals rely on visual landmarks [9,10] and use distinct

search strategies [11,12,13,14,15,16,17,18] to locate home.

Desert ants and most likely other ants too possess a path

integration system. In landmark-poor habitats ants return home by

taking the shortest possible route, thus relying on path integration

(e.g., [5]). In landmark-rich habitats ants return home by

establishing idiosyncratic paths using visual landmark information

(for Cataglyphis fortis see [9], for Melophorus bagoti see [19]). Typically

for a homing ant, both the path integrator and visual landmarks

provide the same directional information. But when the two

strategies are put in conflict, then either the path integration

information is fully suppressed (e.g., [20,21]), or ants follow a

direction intermediate to that indicated by the path integrator and

the visual landmarks (e.g., [21,22,23]). In principle, ants could find

their way to the nest or back to the familiar route by moving to

match the current view on their retina to a previously stored image

either from a location along the route or from the nest (e.g., [24]).

Such views can guide individual ants to return to the nest from

long distances [25,26]. When ants are displaced to distant

locations where familiar visual landmarks are absent, their initial

path is guided solely by the path integrator. During such distant

displacements, the distance an ant travels following the home

vector varies with the complexity of the landscape. For instance, in

landmark-dense habitats of French Guiana ants travel only about

50 cm before beginning a search [27,28], in semi-arid Central

Australian deserts ants travel about 40% of their HV (Figure 1,

[29]) and in landmark-poor habitats of North Africa ants travel

nearly 90% of their HV [6]. The distance travelled by individual

ants (Melophorus bagoti) relying on their HV differs even within the

same species: fractional use of the HV increases from 40% in

landmark-rich habitats to 70% in landmark-poor habitats [30].

Furthermore, when the outward and return journeys are restricted

to homogeneous linear channels ants travel the entire distance of

outbound path prior to initiating search [28], demonstrating the

availability of a full HV.

Given these differences in the distance travelled relying on the

HV, we here ask what the theoretically optimal balance between

PI-driven and landmark-driven navigation should be. In the

presence of a familiar route, we investigate the possibility that

PLOS ONE | www.plosone.org 1 November 2012 | Volume 7 | Issue 11 | e50451



Fractional Use of Home Vectors by Ants

PLOS ONE | www.plosone.org 2 November 2012 | Volume 7 | Issue 11 | e50451



initiating search prior to running off the entire HV may be a

robust solution to minimize the expected cost and maximize the

probability of success in finding the familiar route.

Methods

Two models are used to determine the theoretically optimal

point, according to the path integrator, at which to begin

searching for home. In both models, it is assumed that.

i) the navigating agent is familiar with an entire foraging

route, i.e., if it is somewhere along a familiar route, it is able

to find its way directly to its nest;

ii) the familiar route is approximately a straight line extending

from its nest to some distance xL;

iii) at some point prior to the homeward journey, the

navigating agent is displaced from its familiar route

(otherwise it would not need to search according to

assumption (i));

iv) at the beginning of the homeward journey, the expected

displacement is zero, i.e., over a large number of trials, the

centre of the displacement distribution is unbiased.

The cause of displacement is not important to the theoretical

modelling in this work but two scenarios are presented to motivate

the need for an effective coupling between search and PI strategies

for animal homing (Figure 2). There are at least two major types of

mechanisms by which a navigating animal may be displaced from

its familiar route. Firstly, the animal may have wandered away

from the familiar route and can only maintain an erroneous

estimate of its current position relative to its home (Figure 2A).

Since it is now in an unfamiliar area, the animal’s navigation

system accumulates uncertainty in position so that its best estimate

of the HV is erroneous. Secondly, an animal could be displaced

suddenly either by natural forces such as a wind gust, or by an

experimentalist (Figure 2B). Assuming the PI system is unable to

track the displacement, the best estimate of current position is the

last known position, plus some unknown error. Both types of

mechanisms result in a discrepancy between the true position of

the animal, and its best estimate of current position. Since the

animal’s navigation system only has access to the erroneous

estimate of current position, the actual homing trajectory is

displaced by the same discrepancy (or error) relative to the ideal

homing trajectory.

Two models are used to determine the ideal HV distance to

follow before initiating search, given that the true homing

trajectory is displaced according to some error distribution

(Figure 2, grey regions), which is unknown to the navigation

system. The motivations and assumptions of the individual models

are described below.

1. Cost Minimization Model
The first model finds the fraction of the HV which minimizes

the expected cost of finding the familiar route. We obtain abstract

expressions of the cost independently of search strategy, and find

the start of search which minimizes the cost.

To an animal, the costs of searching are complex and include

intrinsic and extrinsic factors such as time wasted, energy lost,

predation risk, and exposure to the elements. Here we abstract the

cost of searching to be any monotonically increasing function of

Figure 1. Distance travelled using the path integrator by M. bagoti ants. Homing trajectories of ants caught at feeder placed 6 m, 12 m,
20 m and 35 m from the nest. End point of the trajectories indicates the start of search. Fictive nest position (N*) and release point (R) is indicated.
Inset: means6se of distance travelled before the start of search for each of the four distances from the nest to feeder. Dashed line indicates predicted
path integration if animals had travelled the entire HV. Modified from Narendra 2007a [29].
doi:10.1371/journal.pone.0050451.g001

Figure 2. Positional uncertainty at the start of homing. A. Positional uncertainty due to errors accumulated during outbound foraging beyond
the familiar route. B. Positional uncertainty due to sudden displacement from the end of the familiar route.
doi:10.1371/journal.pone.0050451.g002

Fractional Use of Home Vectors by Ants

PLOS ONE | www.plosone.org 3 November 2012 | Volume 7 | Issue 11 | e50451



the distance to a point to be found. Hence the further a point, the

more costly the search for that point.

When a navigating agent searches for any point along a route,

the overall cost must account for the cost of searching all possible

points, weighted in some way. At the start of search, the agent does

not know precisely where the familiar route is relative to itself.

Hence whatever search strategy is used, it has no way to guarantee

that it will find one particular part of the familiar route first. It

could not, for example, decide to find the nearest point first, since

it does not know where that point is relative to itself, nor can it

maintain a noise-free course towards such a point even if it guessed

correctly. It may even fail to recognize that point on the first

encounter (for exponential detection law, see [31]). Thus, it is

reasonable to suppose that there is some probability that any part

of the familiar route may be found and recognized first over a

large number of trials and random displacements. It is important

to note that while the navigating agent may be searching for all

points simultaneously with the goal of detecting any of them, on

any particular trial, it is assumed that there is a single point which

is detected first, after which it finds its way home.

For a set of points such as a familiar route, the expected cost

function is modelled in two ways. Firstly, all points along the

familiar route are assumed to contribute equally to the expected

cost of search (Model 1a). In this way, the expected cost is found

over all points along the familiar route. Secondly, the expected

cost is found over the angular extent of the familiar route,

subtended at the point of (ideal) start of search (Model 1b). In

effect, the latter analysis provides a reweighting of points along the

familiar route, reducing the contribution of points which are far

away at the start of search.

The major advantage of these two ways of modelling the

expected cost function is that they do not require a particular

search strategy or distribution to be assumed. A disadvantage is

that neither explicitly account for the probability distribution of

points along the familiar route being found. The latter requires

specification, at the very least, of a search distribution (see later).

2. Optimal Search Distribution Model
The second model finds the fraction of the HV corresponding to

the maximum likelihood of finding any point along the familiar

route. This is based on finding the prior distribution of the target,

the familiar route. This is done by combining three results.

Firstly, from the well known optimal search theory of Koopman

[32], the optimal search distribution for any target is the logarithm

of its prior distribution. This assumes an exponential detection

law. Secondly, cumulative PI random errors tend to Gaussian in

the limit (e.g., [7,8]) so that it is reasonable to approximate the

uncertainty in searcher position as Gaussian. Thirdly, it is logically

valid to consider searcher position uncertainty as equivalent to

target position uncertainty, for the purpose of finding the optimal

search distribution.

These three results are combined to give the optimal search

distribution, given a familiar route, and therefore the position

where maximum search effort should be placed. This position is

compared with the optimal position(s) under the minimum

expected cost models.

Results

1. Cost Minimization Model
A geometric construction illustrating the following analysis is

shown in Figure 3. The distance r between the start of search,

mX ,mYð Þ, and the position of a familiar location x,0ð Þ is

r x; mX ,mYð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x{mXð Þ2zmY

2

q
ð1Þ

It is assumed that the cost of searching, g rð Þ, is some

monotonically increasing function of r. This assumption implies

that the further a familiar location, the greater the cost to the ant

of finding it. The quantitative contribution of each point along a

familiar route to the overall cost of search depends on the relative

proportion of time which is spent searching for that particular

point, which depends both on the search strategy and distribution

of target points.

From the midpoint i.e., mX ~xL=2 , the expected (average) cost

of searching for all points along the familiar route is

SgTxL=2~
1

xL

ðxL{Dx

0

g r x;
xL

2
,mY

� �� �
dx

2
64

z

ðxL

xL{Dx

g r x;
xL

2
,mY

� �� �
dx

3
75

ð2Þ

Shifted by some distance i.e., mX ~xL=2 zDx : 0vDxƒxL=2,

the expected cost of searching for all points along the familiar

route is

SgTxL=2zDx~
1

xL

ðxL

Dx

g r x;
xL

2
zDx,mY

� �� �
dx

2
4

z

ðDx

0

g r x;
xL

2
zDx,mY

� �� �
dx

3
5

ð3Þ

Figure 3. Geometric construction showing the distance (r)
distribution between two possible locations to begin search,
and the points along a familiar route (L) between the nest at
0,0ð Þ and the feeder at xL,0ð Þ. The two locations being compared are

denoted mX ~xL=2, mYð Þ and mX ~xL=2 zDx,mYð Þ. These represent
two possible locations to begin searching for the familiar route, one
exactly midway along a line parallel to the familiar route, and one
slightly displaced from the midpoint. It is assumed the searcher has
been displaced by some distance mY perpendicularly to the familiar
route (NB: if mY ~0, the searcher has found the familiar route).
Congruent triangles (dashed lines) show equivalent distributions of
distances to points along the familiar route, while the shaded areas
show unequal distributions of distances (see text for details).
doi:10.1371/journal.pone.0050451.g003
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It can be seen that

ðxL{Dx

0

g r x;
xL

2
,mY

� �� �
dx~

ðxL

Dx

g r x;
xL

2
zDx,mY

� �� �
dx ð4Þ

because there is no change in the relative position between the

search start and familiar route segment of interest (both shifted by

Dx). However,

ðDx

0

g r x;
xL

2
zDx,mY

� �� �
dxw

ðxL

xL{Dx

g r x;
xL

2
,mY

� �� �
dx ð5Þ

since

r1[ r x;
xL

2
zDx,mY

� �
: 0ƒxvDx

n o
wr2[ r x;

xL

2
,mY

� �
: xL{DxvxƒxL

n o ð6Þ

This means VDx : 0vDxƒxL=2,

SgTxL=2zDxwSgTxL=2 ð7Þ

By symmetry of construction, equivalent arguments apply

VDx : 0wDx§{xL=2. Therefore, the expected cost of search,

SgT, is minimized if and only if

mX ~
xL
2

ð8Þ

It is important to note that this result is independent of the

search distribution or search algorithm.

A similar argument applies in considering the maximum cost of

search rather than the expected cost of search. The monotonicity

of g :ð Þ implies that

max gð Þ~g max rð Þð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xL=2zDxð Þ2zmY

2

q
ð9Þ

so that

arg min
Dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xL=2zDxð Þ2zmY

2

q
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xL=2ð Þ2zmY

2

q
ð10Þ

if and only if Dx~0 (mX ~xL=2 ). Hence the maximum cost of

search is also minimized when search begins after homing for half

the distance of the familiar route.

However, the minimum cost g min rð Þð Þ~mY

VDx : xL=2 §Dx§{xL=2, and is independent of mX over the

length of the familiar route. Hence the fraction of the HV used

prior to searching does not affect the minimum cost of search.

Nonetheless, there is no contradiction with the position minimiz-

ing the maximum or expected cost.

It can also be shown that the expected cost of search with

respect to the angular extent of the familiar route is also minimized

when mX ~xL=2 (Model 1b, Text S1, see also Figure S2). The

consistency between Models 1a and 1b is not surprising because

the underlying assumption in both models is that the cost of search

increases with distance. Since the distance to the furthest end of

the familiar route increases with Dx, points of the familiar route

contributing to the most costly search are minimized by setting

Dx~0. These results support the hypothesis that the search

initiation point which minimizes search cost is relatively insensitive

to the search distribution, and should be midway along the

familiar route according to PI.

The validity of the above theoretical assumptions is illustrated

using three simple search algorithms, in simulation (Figures S3, S4,

S5, S6, Table S1, S2). Firstly, the random displacement

immediately prior to homing (red dashed lines in Figures S3A,

S4A and S5A) combined with sensorimotor noise in the execution

of any search strategy result in a distribution of first detections over

the entire familiar route (Figures S3B, S4B and S5B). This is true

even if the familiar route is detected on every encounter (perfect

detection). Secondly, expressed as the average number of steps

needed to detect the familiar route, the average cost of search

increased monotonically with the distance to a point along the

familiar route (Figures S6A, S6C and S6E). Most importantly, the

average cost of search was minimized when mX ~xL=2, irrespec-

tive of whether the ‘cost’ was the mean number of steps until first

detection of the familiar route, or the ‘cost’ was the probability of

failure of detecting the familiar route within a predefined number

of search steps (Figures S6B, S6D and S6F, including insets).

2. Optimal Search Distribution Model
The previous analysis did not define a particular search

distribution to most efficiently find the familiar route. The

problem modelled next is an extension of [32] and similar

assumptions are made (see also [18]). Some key results from

Koopman [32] relevant to the current work are outlined below.

Assuming an exponential detection law, the optimal search

distribution for a point target was proven to be the natural

logarithm of the prior distribution of the target [31]. For a

Gaussian prior distribution, the optimal search density function is

therefore an inverted parabola. The exponential detection law was

derived assuming that target recognition is imperfect, so that for

some small search effort, Dw, allocated to the vicinity of the target,

there is some probability, Dp, of detecting the target, and that Dp

is constant for each equivalent search effort applied to the vicinity

of the target, independent of previous allocations of search effort at

that location. In the limit, p~1{Exp {wð Þ. See Koopman

[31,33] for more detailed analytic treatment of the target detection

process, and underlying assumptions and limitations of this model.

The original optimal search problem was defined for a point

target, and where the searcher’s position is known at all times. This

concept can be extended to a target which is an entire route in 2D

space, and where the searcher’s position is uncertain. The route

itself may be considered as a set of points, each of which is

detectable by the searcher according to the same detection

function.

Consider firstly the simplified problem of searching for either of

two point targets in 1D, denoted T1 and T2, separated by a fixed

distance r. The search succeeds if either target is found. This is

equivalent to two small targets which are fixed in allocentric space,

but due to the searcher’s uncertainty about its own position, the

position of either target relative to the searcher is uncertain, but

the uncertainty distributions are perfectly correlated (since T1 and

T2 are fixed in their relative positions).

Suppose the prior distribution of the targets, i.e., f0 xð Þ and

f0 x{rð Þ are known to the searcher. The optimal search problem

becomes one of finding the search density function which

maximizes the probability of detecting either T1 or T2 for any

Fractional Use of Home Vectors by Ants
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planned search horizon (predetermined total search effort W -

illustrated in Figure 4, see also [32]).

From the searcher’s perspective, the above problem is similar to

the original problem of finding a single target whose position is

uncertain. Firstly, for the purpose of target search, the relative

uncertainty between searcher and target can be considered to be

independent of whether positional uncertainty is associated with

the searcher or the target. That means the uncertainty in

allocentric position of the searcher (due to cumulative PI errors)

can be considered to be equivalent to the uncertainty in position of

the target relative to the searcher. Secondly, it is assumed here that

search success does not depend on which target is found, only that a

target is found (which is true if the aim of search is to find any

point along a familiar route).

The probability of T1 being at x is f0 xð Þdx, while the

probability of T2 being at x is f0 x{rð Þdx. Note that T1 and T2

can never be at x simultaneously as they are always separated by r.

The two-target problem differs from the one-target problem in the

following way. Suppose a search distribution is fully executed even

if a target is found early. For one target, the probability of

detecting that target is equivalent to the expected number of

targets detected per search, always between zero and one. For two

targets, the expected number of targets detected per search may

exceed one, under the assumption that pre-allocated search is

executed fully. In other words, in some searches, both targets are

detected within the pre-allocated search effort. In practice, the

searcher may abandon search once the familiar route is found.

Strictly, maximizing the expected number of targets detected in

the two-target problem is not mathematically equivalent to

optimizing the probability of detecting either target. For example,

if the probability of detecting both targets is increased without

affecting the probability of detecting individual targets, the

expected number of targets detected is increased, without

increasing the probability of detecting either target. However, by

Figure 4. Optimal search distributions for a familiar route. A. Probability density heat map for a familiar route (straight line segment) between
0,0ð Þ and 10,0ð Þ, with Gaussian uncertainty whose standard deviations sX ~sY ~1. B. The marginal optimal search density for a total search effort, W,

of 1, 2 or 4 arbitrary units. Note that the integral under each search density function equals the total search effort [32]. C and D as per A and B,
respectively, with sX ~sY ~2 (twice the width of the uncertainty distribution as A).
doi:10.1371/journal.pone.0050451.g004

Fractional Use of Home Vectors by Ants

PLOS ONE | www.plosone.org 6 November 2012 | Volume 7 | Issue 11 | e50451



maximizing the expected number of targets detected, it is likely

that a realization of the search distribution will detect a target

early, providing benefit to the searcher. Furthermore, this

formulation of the problem provides a simple mathematical

solution for the optimal search effort distribution which can be

found directly following Koopman [32].

From the earlier example, the combined density function is,

fX xð Þ~ f0 xð Þzf0 x{rð Þ
2

ð11Þ

which is the probability density of either T1 or T2 being at x. Note

the normalization factor is required to preserve the property thatÐ
x

fX xð Þdx~1. Normalization to preserve the properties of a

probability density function is convenient when this result is

generalized as a convolution (see later). However, an alternative

formulation without normalization can also be used, i.e.,

f C
X xð Þ~f0 xð Þzf0 x{rð Þ. Intuitively, f C

X xð Þdx may be considered

as the frequency of targets at (or close to) x. Hence the total

frequency of two targets over all space x is two, i.e.,
Ð
x

f C
X xð Þdx~2.

An analogous fX can be found for any number of points Tn.

Next consider that a line segment (representing a familiar route) is

a continuum of points. For a familiar 1D route along segment

0,xL½ �, the density function is simply the convolution of a uniform

distribution of points along the line segment, with the uncertainty

distribution. Simplified, it is

fX xð Þ~ 1

xL

ðx
x{xL

f0 wð Þdw ð12Þ

More generally, the convolution may be written as

fX xð Þ~f0 � fFR xð Þ ð13Þ

where fFR is the distribution of points along the familiar route.

For instance, if f0 is Gaussian, and fFR xð Þ~1=xL along the

familiar route as above,

fX xð Þ~
erf x

sX
ffiffi
2
p

� �
{erf

x{xL
sX

ffiffi
2
p

� �
2xL

ð14Þ

Similarly if f0 is Gaussian in 2D, and assuming a familiar route

along the straight line segment between 0,0ð Þ and xL,0ð Þ,

fXY x,yð Þ~ e

{
y2

2sY
2

sY
ffiffiffiffi
2p
p

erf x
sX

ffiffi
2
p

� �
{erf

x{xL
sX

ffiffi
2
p

� �
2xL

2
664

3
775 ð15Þ

Figure 4 shows two examples of the optimal search distribution

for different uncertainty standard deviations.

The bivariate Gaussian is a good approximation of the

positional uncertainty distribution of a PI system which has a

compass [7,8]. However, the precise distribution of the positional

uncertainty is not critical for the model results to hold. From Eq

12, as long as uncertainty and search properties are such that the

optimal search distribution f0 is symmetric and unimodal for any

point target, fX is also unimodal with global maximum at

mX ~xL=2 .

Following Koopman [32], the optimal search distribution is:

wopt xð Þ~ ln
fX xð Þ

l

� �
f wl

0 otherwise

(
ð16Þ

where
Ð
x

w xð Þdx~W is the total search effort. Graphically, the

value of the Lagrange multiplier l may be found by sliding a

horizontal line up or down until the area between the logarithm of

f and the logarithm of l is exactly W. For a Gaussian f , the

optimal distribution of search effort, wopt
is therefore an inverted

parabola. Note that wopt
is independent of constant scaling of f , so

that using fX or f C
X yields the same result for wopt

. For further

details see Koopman [32,33].

Two important consequences of Eq 16 are as follows. Firstly, if f
has a global maximum at mX ~xL=2 then so does the optimal

search distribution wopt
. Secondly, total search effort W may be

increased at any time, without affecting the optimality of the

search up to that point in time. This is because the effect of

increasing W is equivalent to lowering l, which means all previous

search effort is still included in the new optimal search distribution.

However, if the total search effort is not pre-allocated, there is only

one location which is guaranteed to be part of any optimal search

distribution, which is the global maximum of f , i.e. mX ~xL=2.

Therefore, this is an optimal position to begin search, irrespective

of the total search effort which will eventually be exerted.

It is worth noting that the arguments presented above may be

generalized to alternative target detection models. For instance,

Wehner & Srinivasan [15] assumed that the ideal search density

function should match the prior uncertainty distribution rather

than its logarithm. Under this assumption, the search effort

distribution should also be maximal when fX is maximal, which

occurs when mX ~xL=2, under the assumptions stated earlier.

Discussion

The distance individual ants travel relying on their path

integrator in an unfamiliar terrain decreases from landmark-poor

saltpans, to landmark-rich desert scrub and to landmark-dense

rainforest. The fractional read-out of HV information shown by

ants occupying landmark rich and dense habitats may be related to

the range over which these ants know the visual scene around their

nests. Here, we used two theoretical analyses to find the optimal

start of search, given an accurate HV obtained through PI, and a

familiar route. The first analysis assumed that the cost of search is

monotonically dependent on the distance to the search target. For

a homogeneous set of points along the familiar route, the optimal

position was shown to be the midpoint of the familiar route

according to the PI system. The second analysis assumed that the

start of optimal search should begin at the mode of the optimal

search density function. For any symmetrical unimodal positional

uncertainty distribution, the modal position is the midpoint of the

familiar route according to the PI system. The start of search

according to both the cost minimization and optimal search

distribution models is in agreement, and corresponds to the

midpoint of the familiar region according to the PI system.

As a first approximation, the familiar region was assumed to be

a thin, linear region extending from the nest. This scenario is a

geometric approximation of the experimental conditions where

Melophorus bagoti trained to a feeder 20 m away from the nest
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returned home in a narrow 0.5 m wide corridor of landmarks (see

Fig. 3 in [19], Fig. 2b in [21] for landmark corridors encountered

during natural foraging). Much like observations in M. bagoti [29],

the optimal ant should run off about half of its HV prior to

initiating search (Figure S1B).

Conversely, the theoretical results predict that an ant which

runs off most of its HV prior to searching is likely to have a

relatively small familiar range compared with the foraging range

(Figure S1A). This is consistent with observations in Cataglyphis

fortis where its nest is typically a tiny hole in a large, cue-poor and

wide open environment.

Recent evidence from M. bagoti that inhabits landmark-poor

habitats indicates that upon displacement they travel nearly 70%

of their HV [30]. Does this mean that M. bagoti ants dynamically

optimise their homing strategy depending on the available

landmark information? When both the foodward and nestward

routes of M. bagoti ants were restricted to linear tunnels ants were

guided by HV information over nearly the full home distance [29].

This is most likely because the visual context during both the

outward and nestward trips was similar. If the homing mechanism

of M. bagoti is truly dynamically optimized, then it should be

testable in an experiment where ants familiar with a long

landmark corridor (e.g., 20 m) is provided later with a food

source at midway (i.e., 10 m) for a few trials. If these ants are

displaced, a dynamically optimized homing system should begin

search immediately to minimize expected cost and maximize

expected probability of finding the familiar route of 20 m.

Alternatively, if M. bagoti runs off approximately half its HV (i.e.,

about 5 m) prior to searching, this may suggest a strategic

optimization for commonly encountered conditions rather than

dynamic adaptation from one foraging trip to the next (Figure

S1C; see [30]).

In contrast, it is possible that in some landmark-rich environ-

ments the familiar range extends beyond the typical foraging

route. This might explain the observation that tropical rainforest

ants such as Gigantiops destructor travel only about 5–25% of the true

distance towards home before starting their search [27]. If the

familiar range is close to double the distance between nest and

foraging zone, then the foraging zone is close to the midpoint

along the familiar region. Hence the optimal search should begin

almost immediately after release, as observed. It is also possible

that G. destructor begins homing along the theoretical feeder-to-nest

vector for an obligate distance, e.g. 0.5 m [27], rather than as a

fraction of the HV. Such a result would argue against the use of a

fractional HV as a general adaptive mechanism across all ant

species. To test this possibility, it is necessary to collect more

information on the start of search from a wide range of nest-feeder

distances in the natural environment of G. destructor. It will be

equally important to test whether these ants rely on their HV when

their foodward and nestward trips are restricted to linear channels.

Search is a crucial component in the ant’s navigation toolkit

(e.g., [15,34]). One possible trigger for the activation of search may

simply be that some cumulative level of unfamiliarity is reached,

independent of the HV or size of the familiar region. Computa-

tionally, this could be mediated by a familiarity network (e.g., [35])

which has learnt views along the familiar route. When displaced,

an accumulation of novel views could perhaps cross some

threshold for initiating search. Under this hypothesis, ants should

travel different distances along the HV before beginning their

search, depending on visual unfamiliarity. Experimentally, how-

ever, the HV distance in both ‘slightly familiar’ (ants displaced

laterally from the nest-feeder route) and ‘unfamiliar locations’ (ants

displaced to distant locations) have been shown to be similar [21],

arguing against a simple unfamiliarity threshold model. More

work is needed to rigorously quantify the view differences between

the ‘slightly familiar’ and ‘unfamiliar locations’.

Although this work focused on the initiation of search rather

than the search algorithm itself, it is clear that the search strategy

affects the cost and effectiveness of search. Vickerstaff & Merkle

[36] recently showed that a Bayesian model of systematic search

for home is better able to cope with continually accruing positional

uncertainty than other models. It may be possible to extend the

Vickerstaff and Merkle model to incorporate familiar routes, so

that predicted search path characteristics may be tested exper-

imentally.

The home of a central place foraging animal is a special

location, often explored more frequently than other foraging areas.

The ease of detection and/or value of detection may vary

according to the position along a familiar route. If known, these

functions of position may be incorporated explicitly into the

formulation of the optimal effort distribution, using a change of

variable method [32].

Qualitatively, it would be expected that if the value and ease of

finding home is significantly higher than other parts of the familiar

route, search initiation should be biased towards home. On the

other hand, since positional uncertainty increases for the entire

duration away from the familiar route, delaying the initiation of

search may increase the total number of steps needed to find the

familiar route, partially negating the benefit of the former. Finally,

the familiarity of the route, and hence ease of detection of the

route, may vary depending on the orientation of the animal, not

just its position [37]. Combining detailed experimental and

theoretical studies of these factors will be required to determine

how an ant may fine tune its search initiation point.

To further complicate matters, experimental evidence suggests

that the available visual information may directly influence the

search strategy per se. Individual homing ants (M. bagoti) caught

close to the nest (zero-vector ants), when displaced far away from

their familiar region, search more or less symmetrically around the

release location [21,38]. In contrast, zero-vector ants released only

10 m laterally to their familiar route engage in a search which

shows a clear bias towards the nest (Fig 6 in [21]), suggesting that

familiar visual cues influence the search trajectory. Similarly, when

animals with full vector information are displaced 10 m laterally

from their familiar route, they run off nearly half their HV and

then engage in a progressive search with a bias towards the nest

(Fig 5 in [21]). To fully understand the complex interplay between

PI and search, it is therefore critical to characterise the complete

range of search strategies along with the information content of the

environment, together with the state of the PI system.

The experimental and theoretical results described here also

have implications on the nature of the neural networks subserving

path integration. From a computational perspective, there needs to

be an accurate path integration system and, if the familiar route is

to be (approximately) bisected, then there needs to be metric

properties associated with the familiar region. It is unclear at

present whether a decentralized neural architecture such as Cruse

& Wehner [34] suffices, or whether a single coherent represen-

tation of the spatial world is required. Possible neural models of

path integration able to replicate fractional HV use are currently

under investigation.

Supporting Information

Figure S1 The familiar region affects the optimal
homing strategy. A. When the foraging journey (blue) extends

beyond the familiar region (grey), the optimal homing animal

follows the direction of its HV (dotted line) to the middle of the
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familiar range, from where it finds its home directly. A sudden

displacement (red dashed) results in the homing animal unable to

reach the familiar region following running off nearly 100% of its

HV (red solid line), at which point it initiates search. B. As per (A)

but with a typical foraging journey within the familiar range. The

optimal homing animal follows the direction of its HV to the

middle of the familiar range, which now corresponds to just under

halfway along the full HV. C. Proposed experiment to test whether

the fraction of HV used adapts dynamically to the familiar region

or is tightly coupled to the magnitude of the HV at the start of

homing.

(TIFF)

Figure S2 Geometric construction showing angular
extent of different segments of the familiar route OA’,
relative to B and B’. These represent two possible locations to

begin searching for the familiar route, one exactly midway along a

line BC parallel to the familiar route, and one displaced by Dx
from the midpoint respectively. Note that

DOO’D~DAA’D~DBB’D~DDxD. Using the convention of Fig. 3, O is

at 0,0ð Þ, A’ is at xL,0ð Þ, B is at mX ~xL=2 ,mYð Þ, and B’ is at

mX ~xL=2 zDx,mYð Þ.
(TIFF)

Figure S3 Correlated random walk search model. A.

Three random search trajectories (rows) are shown for four

different fractional HVs (columns) used. The home (light red dot),

familiar route (black line), last known location (cyan dot), random

displacement (red dashed line), fractional use of the ideal HV (solid

red line) are superimposed. B. Top left panel shows the frequency

histogram of positions of first detection of the familiar route,

pooled from the frequency distributions at each of eleven ideal

search initiation position mX (other panels). All bin widths were 0.2

linear units.

(TIFF)

Figure S4 Archimedean spiral search model – otherwise
as per Figure S3.
(TIFF)

Figure S5 Modified Cataglyphis search model – other-
wise as per Figure S3.

(TIFF)

Figure S6 Cost of search. Mean 6 s.e.m. of the number of

steps needed to detect the familiar route as a function of the

distance r between the start of search and detection point, pooled

over all trials in bins of 0.2 linear units, are shown for the

correlated random walk search (A), Archimedean spiral search (C)

and modified Cataglyphis search (E). Mean 6 s.e.m. of the number

of steps needed to detect the familiar route as a function of the

ideal search initiation position mX , are shown for the same search

models respectively in B, D, and F. Insets show the probability of

failing to detect the familiar route following 105 search steps. Using

these models it is not possible to assign a probability of failure to a

particular radial distance since no particular point along the

familiar route can be associated with the failure to detect the

familiar route.

(TIFF)

Table S1 Search model descriptions.

(TIFF)

Table S2 Simulation parameters common to all search models.

(TIFF)

Text S1 Model (1b): Cost Minimization.

(DOC)
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