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Abstract

Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian
nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary
condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid
in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions
are first converted into dimensionless form and then using linear group of transformations, the similarity governing
equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth
order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl
number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat
transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume
fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found
that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and
temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat
transfer rate is compared for convective heating boundary condition and found an excellent agreement.
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Introduction

Conventional heat transfer fluids, for example oil, water, and

ethylene glycol mixtures, are poor heat transfer fluids because of

their poor thermal conductivity. Application of these fluids as a

cooling tool enhances manufacturing and operating costs. Many

attempts have been taken by many researchers to enhance the

thermal conductivity of these fluids by suspending nano/micro

particles in liquids ([1–2]). Nanofluids are made of ultrafine

nanoparticles (,100 nm) suspended in a base fluid, which can be

water or an organic solvent ([3]). Nanofluids are found to exhibit

higher conductive, minimum clogging, boiling, and convective

heat transfer performances compared to conventional fluids

([4–6]). By combining nanofluid with biotechnological compo-

nents, nanotechnology can have numerous potential applications

across a wide range of practical applications such as agriculture,

pharmaceuticals and biological sensors. The potential forms of

nanomaterials available for use in biotechnological applications

includes a growing list of nanoparticles, nanowires, nanofibers,

nanostructures and nanomachines ([7]). The commercialization of

nanobiotechnological products seems to have a potential future

and within next a few years many new products of this nature are

likely to be used. Nano and micro-fluidics is a new area with

potential for engineering applications, especially for the develop-

ment of new biomedical devices and procedures ([8–9]). Napoli

et al. [10] reviewed applications of nanofluidic phenomena to

various nanofabricated devices related to biomolecule transport.

The industrial applications of nanofluid include electronics,

automotive and nuclear applications. Nanobiotechnology is also

a fast developing field in many domains such as in medicine,

pharmacy and agro-industry ([11]). Despite significant progress on

nanofluids, variability and controversies in the heat transfer

characteristics still exist ([12–13]). In 2010 Nasir [14], pointed out

several controversial medical applications of nanofluids.

MHD flow past a flat surface has many important technological

and industrial applications such as micro MHD pumps, micro-

mixing of physiological samples, biological transportation and

drug delivery ([15–16]). The application of the magnetic field

produces Lorentz forces which are able to transport liquids in the

mixing processes as an active micromixing technology method.

Hence, transportation of conductive biological fluids in micro

systems may greatly benefit from theoretical research in this area

([17]). Studies on MHD free convective boundary-layer flow of

nanofluids are very limited. Recently, Chamkha and Aly [18] dealt

with MHD free convective boundary-layer flow of a nanofluid

along a permeable isothermal vertical plate in the presence of heat

source or sink. They presented non-similar solutions. Nourazar

et al. [19] examined MHD forced-convective flow of nanofluid

over a horizontal stretching flat plate with variable magnetic field

including the viscous dissipation. Very, recently Zeeshan et al.
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[20] investigate the MHD flow of third grade nanofluid between

coaxial porous cylinders. MHD mixed convective flow of

nanofluid over a stretching sheet was very recently investigated

by Matin et al. [21]. As has been pointed out by others, magentic

nanofluid has many applications: magnetofluidic leakage-free

rotating seals, magnetogravimetric separations, acceleration/incli-

nations sensors, aerodynamic sensors (differential pressure,

volumic flow), nano/micro-structured magnetorheological fluids

for semiactive vibration dampers, biomedical applications in plant

genetics and veterinary medicine.

The natural convective flow of a nanofluid past a vertical plate

under different boundary condition has been investigated by

several researchers ([22–29]. Ho et al. [30] studied natural

convective flow of a nanofluid under various flow configurations.

Niu et al. [31] studied slip-flow and heat transfer of a non-

Newtonian nanofluid in a microtube. Kuznetsov and Nield [23]

presented a similarity solution of natural convective of a nanofluid

past a vertical plate. Khan and Pop [24] used the Buongiorno [32]

model to study the boundary layer flow of a nanofluid past a

stretching sheet. Khan and Aziz [25] also used the same model to

investigate the boundary layer flow of a nanofluid past a vertical

surface with a constant heat flux. Gorla and Chamkha [33] studied

natural convection flow past a horizontal plate in a porous

medium filled. Very recently, Aziz and Khan [34] studied natural

convective flow of a nanofluid over a convectively heated vertical

plate. They used the Buongiorno [32] model.

Group analysis provides a powerful, sophisticated and system-

atic tool for generating the invariant solutions of the system of

nonlinear partial differential equations (PDEs) with relevant initial

or boundary conditions. It reduces number of independent

variables by one and consequently the governing PDEs are

transformed into ordinary differential equations with the associ-

ated boundary conditions. Hence, it has attracted the attention of

many investigators to analyze various convective phenomena

subject to various flow configurations arising in fluid mechanics,

aerodynamics, plasma physics, meteorology and some branches of

engineering ([35]). This method has been applied by many authors

in many physical problems. For example, the symmetrical

properties of the turbulent boundary-layer flows were investigated

by Avramenko et al. [36]. Kuznetsov et al. [37] investigated a

falling bioconvection plume in a deep chamber filled with a fluid

saturated porous medium theoretically. The effect of thermal

radiation and convective surface boundary condition on the

boundary layer flow was investigated by Hamad et al. [38]. Aziz

et al. [39] studied MHD flow over an inclined radiating plate with

temperature dependent thermal conductivity, variable reactive

index and heat generation. Reviews for the fundamental theory of

group theory to differential equations can be found in standard

texts by Na [40], Ames [41], Seshadri and Na [42], Shang [43].

All of the above cited investigators applied the commonly used

boundary conditions either a prescribed surface temperature (PST)

or a prescribed surface heat flux (PHF), or temperature jump (TJ)

or thermal convective heating (CH) (generalization of PST and

TJ). There is however another class of convective flow, heat mass

transfer problems where the surface heat transfer depends on the

surface temperature ([44]). The situation where the heat be

transported to the convective fluid via a bounding surface having

finite heat capacity is known as Newtonian heating (or conjugate

convective flows). Newtonian heating arise in several important

engineering devices, namely in heat exchanger where the

conduction in the solid tube wall is influenced by the convection

in the fluid past it [45]. Other examples include conjugate heat

transfer around fins where the conduction within the fin and the

convection surrounding the fluid must be analyzed simultaneously

to obtain important design information and convection flows setup

when the bounding surfaces absorbs heat by solar radiation

[44,46]. A careful examination of literature reveals that the flow of

nanofluids over a flat surface has recently received the attention of

investigators because of their interesting physical characters and

increasing technological and industrial applications including

medical and biomedical applications.

The aim of this paper is to extend a very recent paper of Aziz

and Khan [34] who studied natural convection flow due to a

convectively heated vertical plate. In this paper we study magneto

hydrodynamic free convection of a nanofluid over a vertical flat

plate taking into account Newtonian heating boundary condition.

Instead of using the existing similarity transformations in the

literature, we develop similarity transformations using sophisticat-

ed group transformations method. To our best of knowledge, the

present paper is the first to consider this problem so that the results

are new and original. The present study find applications in

cooling problems in the industry, to control the boundary layer

separations and to reduce the drag etc.

Basic Equations

Consider a two dimensional steady laminar free convective

boundary layer flow of a nanofluid over a permeable flat vertical

plate as shown in Fig. 1 (i, ii, iii represent momentum, thermal

and nanoparticle volume fraction boundary layers). The nano-

particle volume fraction at the wall is Cw. The ambient values of

the temperature and nanoparticle volume fraction are denoted by

T? and C? respectively. It is assumed that the surface of the plate

is subject to Newtonian heating boundary condition (NH). A

transverse magnetic field with variable strength B(�xx) is applied

parallel to the �yy axis. It is assumed that the magnetic Reynolds

number is small and hence the induced magnetic field can be

neglected. The tangential and normal velocities of the fluid are

respectively taken as �uu and �vv. The fluid temperature and

concentration are respectively denoted by T and C . The

Oberbeck–Boussinesq approximation is used. With these assump-

tions and the standard boundary layer assumptions, the governing

equations can be written as ([34]).

L �uu

L�xx
z

L�vv

L�yy
~0, ð1Þ

Lp

L�xx
~m

L2�uu

L�yy2
{rf �uu

L�uu

L�xx
z�vv

L�uu

L�yy

� �

z 1{C?ð Þrf? b g b T{T?ð Þ{ rp{rf?

� �
g C{C?ð Þ

� �
{s0 B2(�xx) �uu2

ð2Þ

�uu
LT

L�xx
z�vv

LT

L�yy
~a

L2T

L�yy2
zt DB

LC

L�yy

LT

L�yy
z

DT

T?

LT

L�yy

� �2
" #

, ð3Þ

�uu
LC

L�xx
z�vv

LC

L�yy
~DB

L2C

L�yy2
z

DT

T?

L2T

L�yy2
: ð4Þ

subject to the boundary conditions ([47])
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�uu~0, {
LT

L�yy
~hs(�xx) T , C~Cw at �yy~0,

�uu?0, T?T?, C?C? as �yy??:

ð5Þ

where t~
(r c)p

(r c)f

is the ratio of nanoparticle heat capacity and the

base fluid heat capacity, a~
k

(r c)f

is the thermal diffusivity of the

fluid, rf is the density of the base fluid, m,k and b are viscosity,

thermal conductivity and volumetric thermal expansion coefficient

of the base fluid and rp is the density of the particles, g is the

acceleration due to gravity, s~s0 �uu is the variable electric

conductivity, s0 is the constant electric conductivity, B(�xx)~
B2

0

�xx1=2

is the variable magnetic field, B0 is the constant magnetic field.

Here DB stand for the Brownian diffusion coefficient and DT

stands for the thermophoretic diffusion coefficient hs(�xx) is the heat

transfer coefficient. In order to compare, we shall also consider the

case of convectively heated (CH) plate for which {k
LT

L�yy
~hf (�xx)(Tf {Tw) at the boundary, Tf (�xx) is the temperature of

the hot fluid, hf (�xx) is the heat transfer coefficient.

2.1 Nondimensionalization
We introduce the following boundary layer variables to express

Eqs. (1–5) into dimensionless form.

x~
�xx

L
, y~

�yy Ra1=4

L
, u~

�uuL

a Ra1=2
,v~

�vv L

a Ra1=4
,

w~
C {C?

Cw{C?
, h~

T {T?

T?
(NH), h~

T{T?

Tf {T?
(CH)

ð6Þ

where Ra~
1{C?ð Þgbrf?T?L3

an (NH), Ra~
1{C?ð Þgbrf? Tf {T?

� �
L3

an

(CH) is the Rayleigh number based on the characteristic length L.

We introduce the stream function y defined as u~
Ly

Ly
,v~{

Ly

Lx
into Eqs. (2)–(5) to reduce the number of equations and number of

dependent variables. This leaves us with the following three

dimensionless equations.

Ly

Ly

L2y

Lx Ly
{

Ly

Lx

L2y

Ly2
{ Pr

L3 y

Ly3
{ Pr h{Nr w½ �z M

x

Ly

Ly

� �2

~0, ð7Þ

Figure 2. Effects of several parameters on dimensionless velocity profiles.
doi:10.1371/journal.pone.0049499.g002

Figure 1. Flow configuration and coordinate system.
doi:10.1371/journal.pone.0049499.g001
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Ly

Ly

Lh

Lx
{

Ly

Lx

Lh

Ly
{

L2h

Ly2
{Nb

Lh

Ly

L w

Ly
{Nt

Lh

Ly

� �2

~0, ð8Þ

Ly

Ly

Lw

Lx
{

Ly

Lx

Lw

Ly
{

1

Le

L2 w

L y2
{

Nt

Nb

1

Le

L2 h

Ly2
~0 : ð9Þ

Here Pr ~n=a is the Prandtl number, Nt~tDT=a is the

thermophoresis parameter, Nb~tDB (Cw{C?)=a is the Brow-

nian motion parameter, Le~a=DB is the Lewis number,

Nr~ rp{rf ?

� 	
(Cw{C?)=rf?bT? (1{C?) is the buoyancy

ratio parameter, M~
s0 B2

0

rf

is the magnetic field parameter.

The boundary conditions become.

L y

Ly
~0,

Ly

Lx
~0,

Lh

Ly
~{

L hs(x)

Ra1=4
(1zh) (NH), w~1 at y~0 ,

L y

Ly
?0, h?0, w?0 as y??:

ð10Þ

Figure 4. Effects of several parameters on dimensionless concentration profiles.
doi:10.1371/journal.pone.0049499.g004

Figure 3. Effects of several parameters on dimensionless temperature profiles.
doi:10.1371/journal.pone.0049499.g003
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along with
Lh

Ly
~{

Lhs(x)

kRa1=4
(1{h) (CH).

2.2 Application of Linear Group Analysis and Similarity
Equations

The transported equations (7)–(10) form a highly coupled

nonlinear boundary value problem. Numerical solutions of these

equations are complicated and computationally expensive. Sim-

ilarity solutions proved to be an efficient tool to solve various

transport problems. In this section we shall show how linear group

of transformations combines the two independent variables (x,y)
into a single independent variable g (similarity variable) and

reduce Eqs. (7)–(10) into ordinary differential equations with the

corresponding boundary conditions. For this purpose we scale all

independent and dependent variables as.

x�~x Aa1 , y�~y Aa2 , y�~y Aa3 ,

h�~h Aa4 , w�~w Aa5 , h�s ~ hs Aa6
ð11Þ

where A,ai (i~1,2,:::,6) are constant ([39,40,43]). We seek the

values of ai such that the form of the Eqs. (7)–(10) are invariant

under the transformations. Substituting new variables in Eq. (11)

into Eqs. (7)–(10), equating powers of A (to confirm the invariance

of the Eqs. (7)–(10) under this group of transformations), we have,

a1~4a2, a3~3a2, a4 ~ a5~ 0, a6~{a2 : ð12Þ

Next, we seek ‘‘absolute invariants’’ under this group of

transformations. Absolute invariants are functions having the

same form before and after the transformation.

It is clear from Eqs. (11) and (12) that.

y

x1=4
~

y�

x�1=4
: ð13Þ

This combination of variables is therefore invariant under this

group of transformations and consequently, is an absolute

invariant. We denote this functional form by.

g~
yffiffiffi
x4
p , g ð14Þ

is the similarity independent variable.

By the same argument, other absolute invariants are

y~ x3=4f gð Þ, h~ h gð Þ, w~ w gð Þ, hs~x{1=4 hsð Þ0, ð15Þ

where g is the similarity independent variable, f (g),h(g) and w(g)
are the dimensionless velocity function, dimensionless temperature

and dimensionless nanoparticle volume fraction functions respec-

tively and hsð Þ0 is the constant heat transfer coefficient.

Substituting Eqs. (14) and (15) into Eqs. (7)–(9), we obtain the

following ordinary differential equations.

f ’’’z
1

4 Pr
3f f ’’{2f ’2{4M f ’2
� �

zh{Nr w ~0, ð16Þ

h’’z
3

4
f h’zNb h’ w’zNt h’2~0, ð17Þ

w’’z
3

4
Le f w’z

Nt

Nb
h’’~0, ð18Þ

subject to the boundary conditions

f (0)~0, f ’(0)~0, h’(0) ~{c 1zh(0)½ � (NH),w(0)~1,

f ’(?)~h(?)~w(?)~0:
ð19Þ

along with h’(0)~{Bi 1{h(0)½ � (CH)

where primes denote differentiation with respect to g. Here

c~ hsð Þ0 L=Ra1=4 is the conjugate heat transfer parameter and

Bi~ hf

� �
0
L=Ra1=4 k is the Biot number.

The quantities of interest, in this study, are the local Nusselt

number Nu�xx and the local Sherwood number Sh�xx can be found

from the following definition (see [48–50]).

Nu�xx~
�xx qw

k Tw{T?ð Þ , Sh�xx~
�xx qm

DB Cw{C?ð Þ ð20Þ

where qw, qm are the wall heat and the wall mass fluxes,

respectively, and are defined as

qw~{ k
L T

L �yy

� �
�yy~0

, qm~{ DB

L C

L �yy

� �
�yy~0

: ð21Þ

Using Eqs. (6), (14), (15), we have from Eq. (20).

Ra
{ 1=2
�xx Nu�xx~{

h 0(0)

h(0)
, Ra

{ 1=2
�xx Sh�xx~{ w 0(0), ð22Þ

where Ra�xx~
1{C?ð Þgbrf?T?�xx3

an
is the local Rayleigh number.

In the present context, ( Ra
{ 1=2
�xx Nu�xx ) and ( Ra

{1=2
�xx Sh�xx ) are

referred to as the reduced Nusselt number and reduced Sherwood

number (Nur and Shr), which are represented by {
h 0(0)

h(0)
,and

{ w 0(0) respectively.

Results and Discussion

A linear group of transformations is used to reduce the two

independent variables into one and hence to reduce the governing

equations into a system of non-linear ordinary differential

equations with associated boundary conditions. Equations (16) to

(18) with boundary conditions (19) were solved numerically using

the Runge-Kutta-Fehlberg fourth-fifth order method with shoot-

ing technique. The effects of different parameters on the

dimensionless flow and heat and mass transfer rates are

investigated and presented graphically and compared for different

thermal boundary conditions in tabular form.

3.1 Dimensionless Velocity Profiles
Figures 2 exhibit the dimensionless velocity profiles for various

Prandtl numbers, magnetic field, buoyancy ratio and Newtonian
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heating parameters. Figure 2 (a) displays the effects of Prandtl

numbers and magnetic field parameter on the dimensionless

velocity. It is found that the dimensionless velocity increases with

Prandtl number both for purely hydrodynamic and magneto

hydrodynamic flow. It is also noticed that magnetic field reduces

the dimensionless velocity for both cases. This is because

application of a transverse magnetic field to an electrically

conducting fluid results in a resistive-type force which tends to

slow down the motion of the fluid in the boundary layer and

increase the temperature and concentration within the respective

boundary layers. Therefore, magnetic field is used to control

boundary layer separation. Figure 2 (b) displays the effects of the

buoyancy ratio and Newtonian heating parameters on the

dimensionless velocity in the presence of magnetic field and

nanofluid parameters. It is apparent that the dimensionless

velocity rises in the boundary layer with rising of the Newtonian

heating parameter both in the presence and absence of buoyancy

ratio. The Newtonian heating decreases the density of nanofluid

and as a result, the dimensionless velocity increases within the

boundary layer. As order of buoyancy ratio increases, the velocity

in the boundary layer is found to be increased.

3.2 Dimensionless Temperature Profiles
Figure 3(a) displays influences of Prandtl number and Newto-

nian heating parameter whereas Fig. 3(b) shows the effects of

Figure 5. Effects of several parameters on dimensionless heat transfer rate.
doi:10.1371/journal.pone.0049499.g005

Figure 6. Effects of several parameters on dimensionless mass transfer rate.
doi:10.1371/journal.pone.0049499.g006
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thermophoresis and Brownian motion parameters on the dimen-

sionless temperature in the presence of magnetic field. The

increase in Prandtl number decreases the thermal boundary layer

thickness and as a result, the dimensionless temperature decreases

whereas Newtonian heating increases the surface temperature of

the plate. It is also evident from Fig.3 (b) that both nanofluid

parameters help in increasing the surface temperature. This

conclusion is in agreement with Khan and Pop [24] and Aziz and

Khan [34].

3.3 Dimensionless Nanoparticle Volume Fraction Profiles
Figures 4 (a) and (b) illustrate the effects of the flow controlling

parameters, buoyancy ratio, Brownian motion, Prandtl and Lewis

numbers on the dimensionless nanoparticle volume fraction within

the nanoparticle volume fraction boundary layer in the presence of

magnetic field. The other parameters are kept constant. The

nanoparticle volume fraction is found to reduce both with

buoyancy ratio and Brownian motion parameter (Fig. 4a). A

similar trend of the nanoparticle volume fraction is noticed for

Prandtl and Lewis numbers as shown in Fig. 4b.

3.4 Dimensionless Heat Transfer Rates
In Figs. 5 (a) and (b) we present the impact of various

parameters on the dimensionless local heat transfer rates. The

influence of nanofluid and buoyancy ratio parameters is illustrated

in Fig. 5 (a). In the presence of Newtonian heating and magnetic

field, the dimensionless local heat transfer rates decrease with the

Brownian motion and thermophoresis parameters, whereas they

increase with an increase in buoyancy ratio parameter. Newtonian

heating and Prandtl number increase the local dimensionless heat

transfer rates whilst the influence of magnetic field reduces the

local dimensionless heat transfer rate, as illustrated in Fig. 5 (b).

3.5 Dimensionless Mass Transfer Rates
The influence of the various governing parameters on the local

dimensionless mass transfer rates is exhibited in Figs. 6 (a) and (b).

It is clear from Fig. 6 (a) that local dimensionless mass transfer

rates increase with an increase in values of the Lewis number,

buoyancy ratio and Brownian motion parameters, whereas

magnetic field reduces the local dimensionless mass transfer rates,

as shown in Fig. 6 (b). It is also evident that an increase in the

Prandtl number and Newtonian heating parameter increases the

local dimensionless mass transfer rates. Finally, the reduced

Nusselt numbers are compared for convective and Newtonian

heating boundary conditions in Table 1 in the absence of magnetic

field corresponding to different parameters. It is found that the

reduced Nusselt number decreases with the buoyancy ratio and

Brownian motion parameters whereas it is increased with Prandtl

number. It is important to note that the reduced Nusselt numbers

are higher for Newtonian heating boundary conditions than for

convective boundary conditions. This conclusion is important in

microelectronics industry to cool the electronic equipments.

Conclusions
A two dimensional steady free convective MHD laminar

incompressible boundary layer flow of an electrically conducting

nanofluid past a vertical plate taking into account Newtonian

heating boundary condition is studied numerically. The governing

boundary layer equations are converted into highly nonlinear

coupled similarity equations using linear group of transformation

before being solved numerically. Based on the results, the

following conclusions may be drawn:

N Increasing magnetic field strength leads to decrease the rate of

heat and mass transfer rates from the vertical plate with

Newtonian heating. Magnetic field significantly controls the

flow, heat, and mass transfer characteristics.

N Increasing Newtonian heating parameter leads to increase the

rates of heat and mass transfer.

N The velocity and the temperature distributions increase by

increasing Newtonian heating parameter.

N Physical significance and application of Newtonian heating

with respect to boundary layer flow problems can be found in

several engineering and industrial processes as mentioned in

introduction section.

The study finds application in heat exchanger where the

conduction in the solid tube wall is influenced by the convection in

the fluid past it. In numerous materials processing applications in

mechanical and chemical engineering the fluids may be electrically

conducting and as such will respond to an applied magnetic field.

Such a mechanism is often used to control the heat transfer rates

on various gemeotries, for example, to fine-tune the final materials

to industrial specifications.
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