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Abstract

More than 400 cancer genes have been identified in the human genome. The list is not yet complete. Statistical models
predicting cancer genes may help with identification of novel cancer gene candidates. We used known prostate cancer
(PCa) genes (identified through KnowledgeNet) as a training set to build a binary logistic regression model identifying PCa
genes. Internal and external validation of the model was conducted using a validation set (also from KnowledgeNet),
permutations, and external data on genes with recurrent prostate tumor mutations. We evaluated a set of 33 gene
characteristics as predictors. Sixteen of the original 33 predictors were significant in the model. We found that a typical PCa
gene is a prostate-specific transcription factor, kinase, or phosphatase with high interindividual variance of the expression
level in adjacent normal prostate tissue and differential expression between normal prostate tissue and primary tumor. PCa
genes are likely to have an antiapoptotic effect and to play a role in cell proliferation, angiogenesis, and cell adhesion. Their
proteins are likely to be ubiquitinated or sumoylated but not acetylated. A number of novel PCa candidates have been
proposed. Functional annotations of novel candidates identified antiapoptosis, regulation of cell proliferation, positive
regulation of kinase activity, positive regulation of transferase activity, angiogenesis, positive regulation of cell division, and
cell adhesion as top functions. We provide the list of the top 200 predicted PCa genes, which can be used as candidates for
experimental validation. The model may be modified to predict genes for other cancer sites.
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Introduction

A census of human cancer genes conducted by Futreal et al. [1]

and updated by Santarious et al. [2] to identify 400 cancer-related

genes. It is obvious that this list of cancer-related genes is not

complete: a PubMed search of the literature conducted in June

2011 using the term ‘‘novel cancer gene’’ in the title identified

more than 100 papers published in 2011 (data not shown).

Development of a predictive model for cancer genes could

accelerate their identification. In this study, we developed

a statistical model for the prediction of prostate cancer (PCa)

genes. Our study was motivated by the following: i) a number of

PCa-related genes with strong experimental evidence have been

identified, ii) many genes in the human genome are extensively

annotated, and iii) genome-wide profiling of gene-expression data

is available [3,4]. In this study, we identified traits that are

characteristic of known PCa genes and used them to predict novel

PCa genes.

Materials and Methods

Known PCa Genes
We used the KnowledgeNet (KN; a literature-mining algorithm)

approach to identify PCa genes [5]. The KN algorithm searches

for an association between the gene and both primary and

secondary (i.e., related) terms. As a result, each gene receives

a confidence score (CS): the higher the CS, the stronger the

association of the gene with a specified phenotype; in our case,

PCa. We identified a total of 707 genes with CSs ranging from

2.663 to 0.001 (Table S1) and used the top 100 genes as ‘‘known

PCa genes.’’ The other 607 genes from the list were considered

‘‘putative PCa genes.’’ The remaining 14,641 genes with

a CS,0.001 were considered ‘‘non-PCa genes.’’ We excluded

the 607 putative PCa genes to create a well-defined binary

outcome for our analysis.

Because our initial search term to identify PCa genes was

‘‘prostate cancer,’’ the algorithm searches the genes associated

with any aspects of prostate carcinogenesis, including initiation,

progression, recurrence, and survival. In other words, we used

a broad definition of PCa genes. Of course, a search can be more

specific, e.g., ‘‘prostate cancer recurrence,’’ and this is expected to

produce a training set that will be different from the list we used.

Model and Variables
A binary logistic regression (BLR) model was used to

discriminate between the ‘‘known PCa’’ and the ‘‘non-PCa’’

genes. Each gene was described by 33 variables (Table 1). The

variables were selected on the basis of evidence published by us

and others that the individual variables are associated with PCa

[6–11]. A detailed description of the variables can be found in the
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Information S1. We subclassified the variables into two categories:

prostate-tissue specific and nonspecific. Tissue-specific variables

included gene expression data in normal and tumorous prostate

tissues. Non–tissue-specific variables were those that can be

applied to any type of tissue, e.g., ‘‘growth factor,’’ ‘‘phosphory-

lated’’ variables.

Because our regression model was naturally unbalanced, with

too many ‘‘non-PCa’’ genes and too few PCa genes, we could not

use a 0.5 threshold to decide whether the gene was a PCa or ‘‘non-

PCa’’ gene. The classification threshold (0.05) was chosen to

ensure that at least 95% of non-PCa genes were predicted

correctly, and because it reflects the proportion of genes that were

identified as prostate cancer (707) related to the total number of

genes studied in the training phase (14,641). This relatively high

rate of correct classification of ‘‘non-PCa’’ genes was selected to

reduce the risk of experimental follow-up of false positives, which

can be costly.

In total, we used 15,348 genes. Gene expression data were

a limiting factor of inclusion of each gene in the analysis. We used

the publicly available datasets GSE6919 [12,13] and GSE21034

[13] from the Gene Expression Omnibus (GEO) [3,4] and used

AmiGO2 [14] to identify the genes associated with specific biologic

function, cellular location, and posttranslational modifications.

The number of human orthologs reported in the HomoloGene

database (http://www.ncbi.nlm.nih.gov/HomoloGene) was used

as the evolutionary conservation index [15,16].

Validation of the Model
To validate the model, we first randomly subclassified the 200

genes with the highest CS into discovery and validation sets. Next

we built the BLR model by using only the discovery set and used it

Table 1. Variables used to build a binary logistic model to discriminate known PCa genes.

Type of variable Variable Source of the data

Specific Three-level meta-analysis Ref. [10]

Nonspecific Acetylated GO*

Nonspecific Angiogenesis GO

Nonspecific Antiapoptotic GO

Nonspecific Cell adhesion GO

Nonspecific Cell proliferation GO

Nonspecific Chromatin remodeling GO

Specific Difference in expression –LOG(P) Refs. [12,13]

Nonspecific DNA repair GO

Nonspecific DNA replication GO

Nonspecific Evolutionary conservation index HomoloGene{

Nonspecific Expression level in normal prostate Ref. [25]

Nonspecific Extracellular space GO

Nonspecific Growth factors GO

Nonspecific Housekeeping gene Ref. [26]

Nonspecific Kinases GO

Specific Mean expression in adjacent tissue Refs. [12,13]

Specific Mean expression in tumor tissue Refs. [12,13]

Specific Meta-analysis of the gene expression Ref. [8]

Nonspecific Methylated GO

Nonspecific Phosphatases GO

Nonspecific Phosphorylated GO

Nonspecific Plasma membrane GO

Specific Prostate-specific expression (enrichment score) Ref. [25]

Nonspecific Secreted GO

Nonspecific Signal transduction GO

Nonspecific Sumoylated GO

Nonspecific Transcription GO

Nonspecific Transcription factors GO

Nonspecific Translation GO

Nonspecific Ubiquitinated GO

Specific Variance in adjacent tissue Refs. [12,13]

Specific Variance in tumor tissue Refs. [12,13]

*GO, Gene Ontology database [27,28].
{HomoloGene Database: http://www.ncbi.nlm.nih.gov/homologene.
doi:10.1371/journal.pone.0049175.t001
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to predict PCa genes in the validation set. For additional internal

validation, we built the BLR model by using the top 100 genes,

excluding the putative PCa genes, and then applied the model to

compute the probability for the putative PCa genes. We expected

that the probability of being classified as a PCa gene would be

higher for the putative genes than it would be for the non-PCa

genes. Further, we performed permutation testing by randomly

assigning PCa gene status. We built a BLR model for those

‘‘mock’’ PCa genes by using the same set of variables we used for

the ‘‘real’’ PCa genes (i.e., those identified with KN). We

performed this procedure 100 times and estimated the percentage

of the correctly predicted PCa genes.

For external validation, we checked to see whether the model-

derived probability of a gene’s being PCa related was higher for

genes for which recurrent somatic mutations in prostate tumor

samples are reported in the Catalogue of Somatic Mutations in

Cancer (COSMIC) database [17,18]. We also used the genes

identified as having recurrent somatic mutations in the recently

published study results of whole-exome sequencing of prostate

tumor samples [19]. Note, however, that we did not use somatic

mutation data to build our model.

Is the Predicting Model Prostate Specific?
To answer this question, we identified the top 100 breast and

top 100 lung cancer genes (Table S2) by using the same KN

algorithm we used to identify the PCa genes. Then we compared

the percentages of correctly predicted breast and lung cancer

genes with the percentage of correctly predicted PCa genes.

We built BLR models on the basis of only specific (‘‘specific

model’’) and nonspecific (‘‘nonspecific model’’) predictors. Then

we estimated the percentages of correctly predicted non-PCa and

PCa genes for each model. Statistical analysis was conducted using

SPSS version 15.0.

Results

Predicted PCa Genes
Among the 33 variables, 22 were significant in the univariable

analysis (Table S3), whereas in the multivariable stepwise-forward

(likelihood ratio) BLR model, 16 variables were significant

(Table 2). The model correctly predicted 96% of the non-PCa

genes and 55% of the PCa genes and was more accurate than the

model built on the data that included the putative PCa genes as

non-PCa genes, in which 96% of non-PCa genes and 46% of PCa

genes were predicted correctly.

Table S4 lists the top 200 predicted PCa genes and indicates

whether they were known, putative, or novel predicted genes.

Ranking the genes according to the model-derived probabilities

reshaped the original CS-based list: AR (androgen receptor) was

ranked seventh, not first, as on the original list, and KLK3

(prostate-specific antigen [PSA]) was fourth, although it was

second on the original list. Overall, the correlation between the CS

and the model-derived probability of being PCa related was 0.32,

df = 200; p=2610–6. Table S5 shows individual variables

contributing to the probability that the gene is associated with

PCa.

Putative PCa Genes have a Higher Probability of being
Classified as PCa Related
Putative PCa genes are expected to have a higher probability of

being PCa related than non-PCa genes have. We used our model

based on the data without the putative genes to estimate the

probability that a putative gene is PCa related, comparing the

proportions of the genes predicted to be PCa related between the

known, putative, and non-PCa genes. The proportions of the

genes predicted to be PCa related were 0.05260.002 for the non-

PCa genes, 0.22460.017 for the putative PCa genes, and

0.54760.049 for the known PCa genes. As noted earlier, we also

built a model that included the putative PCa genes as non-PCa

genes. Overall, the prediction accuracy was lower with this model,

with the proportions of the genes predicted to be PCa associated

being 0.03760.002 for the non-PCa genes, 0.21760.016 for the

putative PCa genes, and 0.45560.049 for the known PCa genes.

Is the Prediction PCa Specific?
To find out whether our predictive model is PCa specific, we

identified the top 100 breast and lung cancer genes using the KN-

based approach (Table S2). Overall, the proportion of the

correctly predicted cancer genes was higher for prostate

(0.5560.03) than for breast (0.3760.02) and lung cancers

(0.3160.02). For the model built based on nonspecific predictors

only, accuracy was better for the PCa genes (0.5560.02) than it

was for the breast (0.2460.02) and lung cancer (0.2160.02) genes.

And for the model based on specific predictors, the predicting

efficiency also was higher for prostate (0.3060.02) than it was for

breast (0.0860.01) and lung cancer (0.0860.01) genes.

Discovery and Validation Sets
For internal validation, we randomly assigned the top 200 PCa-

related genes to discovery and validation sets so there were 100

genes in each group. We then built the BLR model on the basis of

the discovery set and used it to predict PCa genes from the

validation set. The discovery model correctly predicted 95% of the

non-PCa genes and 4365% of the PCa genes; it predicted similar

proportions in the validation set: 96% of the non-PCa genes and

3865% of the PCa genes. We performed this procedure 100

times.

Table 2. Variables significant in the multivariable binary
logistic regression model with putative PCa genes excluded.

Variable B* SE x2 df p Value

Prostate-specific expression
(enrichment score)

0.313 0.039 66.116 1 ,0.001

Kinases 1.929 0.333 33.647 1 ,0.001

Variance in adjacent tissue 0.68 0.131 27.097 1 ,0.001

Phosphatases 2.486 0.483 26.469 1 ,0.001

Growth factors 1.818 0.453 16.132 1 ,0.001

Meta-analysis of the
gene expression

0.143 0.037 15.226 1 ,0.001

Transcription factors 1.201 0.326 13.562 1 ,0.001

Antiapoptotic 1.497 0.415 13.043 1 ,0.001

Extracellular space 0.91 0.303 9.05 1 0.003

Signal transduction 0.781 0.272 8.269 1 0.004

Cell proliferation 1.131 0.396 8.154 1 0.004

Ubiquitinated 0.574 0.244 5.542 1 0.019

Angiogenesis 1.062 0.461 5.32 1 0.021

Acetylated 20.577 0.251 5.276 1 0.022

Cell adhesion 0.804 0.386 4.342 1 0.037

Sumoylated 0.937 0.466 4.043 1 0.044

*B, regression coefficient; SE, standard error.
doi:10.1371/journal.pone.0049175.t002
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Permutations
We randomly assigned PCa status to 100 genes from the 15,348

genes in the original table and built a prediction model for those

‘‘mock’’ genes using the same 33 variables (Table 1). The

procedure was performed 100 times. There were an average of

0–2 significant variables in the mock gene model, and those

variables varied from model to model. On average, 0.760.2%

mock PCa genes were predicted correctly, which is significantly

(p,,10–6) lower than the percentage of the correctly predicted

‘‘true’’ PCa genes (5565%).

External Validation
For external validation, we used the results of the recently

published report on recurrent somatic mutations in prostate

tumors [19]. That study identified 20 genes–BDH1, DKK1, DLK2,

FSIP2, GLI1, IKZF4, KDM4B, MGAT4B, NMI, NRCAM,

PCDH11X, PDZRN3, PLA2G16, RAB32, SDF4, SF3A1, TBX20,

TFG, TP53, and ZNF473–that have recurrent somatic mutations.

Seventeen of those genes (all except BDH1, FSIP2, and PLAG16)

were on our original list of 15,348 genes. We found that the

model-generated probability of being a PCa gene was more than

ten times greater for the genes with recurrent somatic mutations

than it was for all the other genes: 0.08260.041 vs. 0.00760.001;

df = 15,348, t=5.4, p,10–6 (Figure 1). The other significant

predictors were transcription factors, the CS used to rank the PCa

genes from literature mining, cell proliferation, phosphatases,

growth factors, and angiogenesis. We obtained similar results for

the genes with the reported PCa somatic mutations from the

COSMIC database [18]. The model-derived probability of being

a PCa gene was the most significant predictor of genes with

recurrent somatic mutations in prostate tumors. Other significant

predictors included CS, kinases, antiapoptotic, cell proliferation,

acetylated, plasma membrane, and angiogenesis.

Specific vs. Nonspecific Predictors
We constructed a model based on only specific (eight variables)

and only nonspecific (25 variables) predictors. In the nonspecific

model, 11 variables were significant (in decreasing order of

statistical significance): kinases, phosphatases, extracellular space,

transcription factors, antiapoptotic, signal transduction, growth

factors, cell proliferation, sumoylated, cell adhesion, and angio-

genesis. The nonspecific model correctly predicted 95% of non-

PCa and 40% of PCa genes; that based on specific variables

correctly predicted 95.5% of non-PCa and 30.2% of PCa genes.

There were four significant predictors in that model (in decreasing

order of statistical significance): prostate-specific expression

(enrichment score), variance in adjacent tissue, meta-analysis of

the gene expression, and three-level meta-analysis.

Discussion

We have identified a combination of traits that is characteristic

of PCa genes: a typical PCa gene is a prostate-specific

transcription factor, kinase, or phosphatase with high interindi-

vidual variance in adjacent normal prostate tissue and is expressed

differently (upregulated or downregulated) in normal prostate

tissue and primary tumor. PCa genes are likely to have an

antiapoptotic effect and play a role in cell proliferation,

angiogenesis, and cell adhesion. Their products are likely to be

ubiquitinated or sumoylated but not acetylated. They are likely to

be involved in signal transduction and being a component of

extracellular space. Some of the identified characteristics of PCa

genes (e.g., cell proliferation or angiogenesis) are obvious, whereas

others (e.g., tissue specificity, higher variance of the gene expression

in adjacent normal prostate tissue, or ubiquitination) are not that

apparent. Because several different factors are involved in

nominating a gene to be prostate cancer related, different genes

show effects from different predictors. The predictors are indicated

in Table S5.

Our model also allows ranking of the genes that are, according

to the model-generated evidence, PCa related and therefore

predictive of novel PCa genes. A brief description of the top ten

novel predicted PCa genes follows.

UPK3A–uroplakin 3A; a member of the uroplakin family,

a group of transmembrane proteins that form complexes on the

apical surface of the bladder epithelium. Mutations in UPK3A are

associated with renal adysplasia [20].

KITLG–encodes the ligand of the tyrosine-kinase receptor. The

gene is believed to play a role in cell migration [21].

NPY–widely expressed in the central nervous system and

influences many physiologic processes, including cortical excit-

ability, stress response, food intake, circadian rhythms, and

cardiovascular function.

GHR–a member of the type I cytokine receptor family.

SCGB1A–a member of the secretoglobin family of small secreted

proteins. The encoded protein has been implicated in numerous

functions, including anti-inflammation, inhibition of phospholi-

pase A2, and sequestration of hydrophobic ligands.

NR3C1–encodes the glucocorticoid receptor, which can function

as both a transcription factor and a regulator of other transcription

factors.

JUP–encodes a protein that is a structural element of

submembranous plaques of desmosomes. It forms complexes with

cadherins.

NPM1–encodes a phosphoprotein that moves between the

nucleus and the cytoplasm. The gene product is thought to be

involved in several processes, including regulation of the ARF/p53

pathway.

CD177–NB1, a glycosyl-phosphatidylinositol–linked N-glycosy-

lated cell-surface glycoprotein, was first described in a case of

neonatal alloimmune neutropenia [22].

FAM55D–chromosome 11 open reading frame 33. Little is

known about this gene, but it is downregulated in prostate tumor.

We conducted functional annotation of novel PCa genes by

using all 15,348 genes as a background to account for possible

selection bias. For the functional annotation, we used the Database

for Annotation, Visualization, and Integrated Discovery (DAVID)

[23]. The top biologic functions associated with the novel PCa

genes were antiapoptosis, regulation of cell proliferation, positive

regulation of kinase activity, positive regulation of transferase

activity, angiogenesis, positive regulation of cell division, cell

adhesion, MAPKKK cascade, bone development, and regulation

of cellular localization. (More detailed information can be found in

the Supporting Information.) There is considerable overlap

between the description of the known and novel predicted PCa

genes’ functions: antiapoptosis, regulation of cell proliferation,

positive regulation of kinase activity, positive regulation of

transferase activity, and MAPKKK cascade are present on both

lists. The only unique function associated with the predicted novel

PCa genes was bone development in ten genes: GHR, AMELX,

TRAF6, FGF9, SMAD1, CTGF, IGF2, AMBN, FGF18, and PTN.

The results of the internal validation demonstrated that PCa-

related genes are not a random collection of genes but rather share

a combination of several traits. They also demonstrate that we are

unlikely to overfit the model. External validation demonstrated

that the model-generated probability of being a PCa gene is the

most significant predictor of the PCa candidates identified through

the analysis of recurrent somatic mutations. On the other hand,

Statistical Model for Predicting Cancer Genes
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the presence of somatic mutations in tumor samples may be one of

the factors that elevate the CS and consequently contribute to the

higher chance of being classified as a known PCa gene. Indeed, the

CS was the third most significant predictor of the genes with

recurrent somatic mutations. However, it was lower than the t

statistic for the model-generated probability of being a PCa gene:

5.5 vs. 3.4. The proportion of the genes with COSMIC somatic

mutations was higher among the putative PCa genes: x2 = 22.8,

df = 1, p,0.0001. The proportion was borderline higher for the

predicted novel PCa genes: x2 = 3.8, df = 1, p=0.05. We also

found that the average model-derived probability of the published

112 genes with a signature of positive selection [24] was higher

than that of an average gene in the human genome: Student’s t

test = 2.0, df = 30,495, p=0.04. The overlap is modest but

significant, especially if we take into account that the published

list of the cancer genes was generated for any type of cancer, while

in our study we focused on PCa only.

We demonstrated that both specific and nonspecific predictors

are important: models based on only specific or only nonspecific

predictors are less efficient than the model built on combination of

the traits. The specific predictor–based model is more prostate

specific than is the model based on nonspecific predictors.

Obviously the structure of the predicting model depends heavily

on the training set. We used a broad definition of PCa with the

following secondary terms: prostate cancer cells, prostate cancer

risk, Gleason, androgen-independent, prostatic neoplasms, Glea-

son score, prostatectomy, metastatic prostate, human prostate

cancer, radical prostatectomy, androgen-independent prostate,

advanced prostate, prostate-specific antigen, primary prostate,

benign prostate, prostate tumors, prostate-specific, prostate

carcinogenesis, and benign prostatic. Although in its current form

the model is designed to predict broadly defined PCa genes, it can

be adjusted to be more specific; for example, to predict PCa-

progression genes. The crucial element here is to define a reliable

training set for PCa genes associated with cancer progression.

The BLR model is one of many available classification

algorithms. To see whether other classification methods could

produce similar results, we also analyzed our data by using linear

discriminant analysis (LDA) and support vector machines (SVM).

We found that LDA and BLR have rather similar classification

efficacies: 51% and 55% correctly classified PCa genes with 95%

and 96% of the correctly classified non-PCa genes, with essentially

the same set of significant predictors in the model. Validation was

also slightly better for the BLR model, with 18% of putative PCa

genes predicted to be PCa genes, compared with 22% for LDA

model. Compared with the BLR, the SVM was more efficient in

the discovery set, correctly predicting 84% of the known PCa

genes and 95% of the non-PCa genes; however, in the validation,

Figure 1. Variables that discriminate genes with recurrent somatic mutations in prostate tumors from all other genes. Vertical line
represents a threshold for statistical significance.
doi:10.1371/journal.pone.0049175.g001
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it correctly predicted only 34% of PCa genes, whereas the BLR

model correctly predicted 46% of PCa genes in discovery and 44%

in validation set. Because of that better validation efficiency, we

focused on BLR model.

The next logical step would be experimental validation of the

novel PCa candidates identified by the model. We think that one

of the best ways to do that would be with a high-throughput

screening platform. For example, one can use high-throughput

RNAi screening of PCa cell lines. After silencing of a candidate

gene by RNAi, one can estimate the effect of the gene on cell

proliferation, migration, and apoptosis. Genes with a strong effect

on these cancer-associated phenotypes can be further analyzed in

human tissue to confirm their role in prostate tumorigenesis.

In conclusion, we have developed a bioinformatics-based BLR

model for prediction of the genes associated with PCa. The model

allows ranking human genes according to their probability of

being PCa associated. We identified a number of novel PCa

candidates with high probabilities of being PCa related, and those

candidates may merit further experimental validation. The

approach we used can also be applied to other types of genes

and other types of cancer; we are currently working on the model

for prediction of lung cancer genes.
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