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Abstract

Pipelines for the analysis of Next-Generation Sequencing (NGS) data are generally composed of a set of different publicly
available software, configured together in order to map short reads of a genome and call variants. The fidelity of pipelines is
variable. We have developed ArtificialFastqGenerator, which takes a reference genome sequence as input and outputs
artificial paired-end FASTQ files containing Phred quality scores. Since these artificial FASTQs are derived from the reference
genome, it provides a gold-standard for read-alignment and variant-calling, thereby enabling the performance of any NGS
pipeline to be evaluated. The user can customise DNA template/read length, the modelling of coverage based on GC
content, whether to use real Phred base quality scores taken from existing FASTQ files, and whether to simulate sequencing
errors. Detailed coverage and error summary statistics are outputted. Here we describe ArtificialFastqGenerator and illustrate
its implementation in evaluating a typical bespoke NGS analysis pipeline under different experimental conditions.
ArtificialFastqGenerator was released in January 2012. Source code, example files and binaries are freely available under the
terms of the GNU General Public License v3.0. from https://sourceforge.net/projects/artfastqgen/.
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Introduction

Completion of the human genome project (HGP) coupled with

developments in sequencing technologies has allowed rapid

sequencing of complete human genomes. Most next-generation

sequencing (NGS) systems are broadly based on fragmentation of

genomic DNA with the oversampling of reads providing the

necessary linking information for whole-genome assembly algo-

rithms.

One source of error in variant-calling is inherent sequencing

error in NGS technology (i.e. incorrect base calls in the reads).

These errors are more likely towards the ends of reads, and in the

context of certain sequence motifs [1]. Read alignment and

subsequent variant-calling is performed by a NGS analysis

pipeline, typically composed of a set of publicly-available software

configured together. The performance of pipelines is variable,

hence it is highly desirable to evaluate the proficiency of any

pipeline under different conditions (e.g. low versus high sequenc-

ing error rate, low versus high coverage), and to identify regions of

the genome which are likely to be problematic or refractory to

sequencing. To facilitate benchmarking of NGS pipelines we have

developed ArtificialFastqGenerator software.

NGS instruments such as the Illumina Genome Analyzer output

reads of nucleotide sequences and corresponding base quality

scores, the FASTQ format being the standard text-based

representation for these data (see Text S1). ArtificialFastqGenerator

takes a reference genome as input and outputs artificial FASTQ

files. The user can customise DNA template/read length, gap size

between paired-end reads, the modelling of coverage based on GC

content, whether to use Phred base quality scores taken from

existing FASTQ files, and whether to simulate sequencing errors.

Since these artificial FASTQs are derived from the reference

genome, the reference genome provides a gold-standard for the

variant-calling, enabling evaluation of any pipeline.

ArtificialFastqGenerator offers advantages over other bioinformatic

software tools which generate artificial Illumina reads such as ART

[2], WgSim from the Samtools package [3], Mason [4], SimSeq [5]

and pIRS [6]. Firstly, ArtificialFastqGenerator provides greater

flexibility with respect to modelling coverage based on GC

content, because the user can assign relevant parameters, rather

than them being learned from resequencing data and hence fixed.

Secondly, the software produces detailed coverage and error

summary statistics (both regional and overall for coverage).

Another distinctive feature is the ability to use real Phred scores

taken from existing FASTQ files. By contrast pIRS uses an

empirical model which predicts the base-call and Phred score

based on read cycle, reference base and quality of the previous

cycle.

Here, we describe ArtificialFastqGenerator and an evaluation of

a typical bespoke NGS analysis pipeline. We investigate how

variant-calling results are affected by Phred quality scores and

simulated sequencing error in the FASTQs, the presence/absence

of different stages in the pipeline, and variant-caller choice.

Artificial Fastq Generator

ArtificialFastqGenerator is platform-independent software written

in Java SE 6, and is available as open-source from the

SourceForge website: https://sourceforge.net/projects/artfastqgen/

. The program takes a reference genome sequence in FASTA
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format as input and outputs artificial paired-end FASTQ files

[7] which contain Phred base quality scores encoded in the

Sanger format (see Text S1 for more description of the FASTQ

format).

This section mentions user parameters for controlling DNA

template/read length, target coverage, whether to take the base

quality scores from existing FASTQ files, and whether to simulate

sequencing errors based on these scores. Text S2 describes how to

set these parameters and run a test case. In addition to FASTQ

files, ArtificialFastqGenerator produces a log file of summary statistics

for coverage and error generation, and a file documenting start

and end indexes in the reference genome of all generated reads.

Read Generation
We can consider the reference as a sequence of nucleobases

stretching from left to right. In order to maintain a small memory

footprint, ArtificialFastqGenerator generates reads for reference

nucleobases which are within a sliding window. The ‘‘nucleoba-

seBufferSize’’ parameter determines the window’s size, and hence

also how far right it moves on each occasion.

ArtificialFastqGenerator passes through the region inside the

window repeatedly, considering pairs of nucleobase sequences

for the generation of paired-end reads. Nucleobase target coverage

constraints dictate that eventually, the program will complete

a pass through the region without being able to generate any novel

reads, and at this point, the window slides right. A nucleobase’s

coverage is the number of reads in which it appears, so its target

coverage is the upper limit on how many reads it can appear in.

ArtificialFastqGenerator can only generate right-end reads for the

nucleobases at the right end of the window. Hence when the

window slides right, it reaches a point at which these nucleobases

are at the left end of the window. This then allows left-end reads

including these nucleobases to be generated.

Read length and Gap Size between Paired-end Reads
In paired-end sequencing both ends of a DNA template are

sequenced. If read lengths are constant, which is generally the

case, then the distance between the two reads is determined by the

template length. ArtificialFastqGenerator samples template lengths

from a normal distribution. The user can specify the mean and

standard deviation of this distribution, and the read length.

Specifying a Nucleobase’s Target Coverage
To set a nucleobase’s target coverage, ArtificialFastqGenerator

calculates the region’s GC content, and then defines and samples

from a normal distribution of coverage levels for regions with this

GC content. The software calculates the distribution’s mean using

a Gaussian function of the GC content. The user can customise

the function by setting the coverage mean peak (the height of the

bell’s peak), the GC content at which this peak occurs (the position

of the centre of the peak), and how quickly mean coverage decays

(the width of the bell). The user can also specify the standard

deviation as a multiple of the mean, and the size of the region for

which GC content is calculated.

The default values of these parameters are based on the results

of a capture probe experiment in which 4 samples were sequenced

by an Illumina Genome Analyzer [8]. Figure 1 shows the expected

profile for GC content versus mean target coverage when using

these default settings. If a different profile better suits the user’s

needs, then they can change the settings accordingly. There is also

a user parameter for switching off the biasing of coverage based on

GC content.

Phred Quality Score and Error Generation
As the default, ArtificialFastqGenerator assigns every base in every

read a high Phred quality score of 40, Sanger-encoding

‘‘I’’.Alternatively the program can use quality scores from pre-

existing FASTQ files. If a generated read is a different length to

the one whose quality scores are being used, then the sequence of

quality scores is lengthened/shortened accordingly by either

duplicating or removing the first base quality score(s). By only

altering the beginning of the sequence, the trend for quality scores

to deteriorate at the end of reads is preserved.

The error simulator decodes the base’s Sanger format encoded

Phred quality score (QPHRED), calculating the estimated probabil-

ity of error (Perr) from

Perr~10
QPHRED

{10 ð1Þ

In the current incarnation of ArtificialFastqGenerator the quality

score is the sole parameter used for error generation in the

program.

Unknown bases (Ns) cannot be subjected to error simulation,

and are always assigned a very low Phred quality score of 2. There

is a user parameter for filtering out reads which contain Ns.

Summary Coverage and Error Statistics
ArtificialFastqGenerator logs regional and overall summary cover-

age statistics, and overall error statistics. The overall error statistics

include the total number of reads and nucleobase calls, and the

number of these nucleobase calls for which an error was simulated.

Speed
ArtificialFastqGenerator has a low memory footprint dependent on

the user-specified ‘‘nucleobaseBufferSize’’ parameter. On an Intel

Xeon X5650 processor (12 M cache, 2.66 GHz, 6.40 gigatransfers

per second Intel QuickPath Interconnect), when using real quality

scores and simulating sequencing errors, and with the other

parameters set to their defaults, it takes around 6 hrs 20 mins to

process 1 giga base.

Analysis

To illustrate the use of ArtificialFastqGenerator FASTQ files to

benchmark the performance of a typical NGS pipeline we

subjected to scrutiny our current in-house bioinformatic pipeline

which is based on the following components:

1. Quality control of raw sequences (FASTQ file reads) using

FastQC [9], which reports overall GC content, mean base

quality score for each position in the reads, distribution of the

reads’ mean base quality score, and frequency of bases in each

read position which are A/C/G/T/N (unknown).

2. Alignment of reads using Stampy [10] which outputs files in the

Sequence Alignment/Map (SAM) format [3].

3. Local realignment of reads using the Genome Analysis Toolkit

(GATK) [11,12]. Local realignment serves to transform regions

with misalignments due to InDels, generating a ‘‘realigned’’

BAM file.

4. Marking/removal of Polymerase Chain Reaction (PCR)

duplicates using Picard [13].

5. Recalibration of base quality scores using GATK.

6. Variant-calling using GATK or alternatively Platypus [14].

Each variant is reported in a Variant Call Format (VCF) file along

Artificial FASTQs for NGS Pipeline Evaluation
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with features which are indicative of its fidelity e.g. mapping

quality of the reads, and whether the variation is seen in only

one strand. Filtering based on these features can reduce the

number of false-positives (FPs).

To evaluate this NGS pipeline we investigated how variant-

calling is influenced by: Phred quality scores; Simulated sequenc-

ing errors; Local realignment and recalibration; Variant-caller

software (GATK vs. Platypus); Coverage and sequence unique-

ness.

Methodology
Using ArtificialFastqGenerator and the human reference genome

(build 37 in FASTA format), we generated two pairs of whole

genome FASTQs with different Phred quality score/simulated

sequencing error (PE) characteristics: high Phred quality scores

(40) with no simulated sequencing errors (PE= 00); Phred quality

scores from pre-existing FASTQ files with simulated sequencing

errors (PE= 11). All other parameters in ArtificialFastqGenerator were

set to their default values (see Text S2). FASTQ files which were

used to supply real Phred quality scores were derived from exomes

sequenced using an Illumina HiSeq 2000 system.

To speed up the analysis we generated individual chromosome

FASTQs in parallel and then merged them. For each FASTQ file,

the number of reads was approximately 562,570,000 and GC

content 41%–42%, while for each pair, the average coverage per

nucleobase was 29.90 to 2 d.p.s (range 0 to 40). Note that this

average is for nucleobases marked as A/C/G/T in the reference

genome, not N (unknown). Using the Phred quality scores from

the Illumina HiSeq FASTQ data resulted in a simulated

sequencing error for approximately 4.5% of all nucleobase calls.

To investigate the effect of Phred quality scores and simulated

sequencing errors on variant calling, we analyzed each pair of

whole genome FASTQs using our NGS pipeline. To investigate

the effect of local realignment and recalibration, we conducted

variant-calling immediately after the alignment stage, and to

investigate the effect of variant-caller choice, we used Platypus

rather than GATK. We did not implement Syzygy [15] as this

software is primarily designed for targeted resequencing projects.

Note that our variant calling results were filtered. For GATK

results, we applied VCF filters as recommended on the Broad

Institute wiki: for SNPs, QualByDepth , 2.0, RMS MappingQuality ,

40.0, FisherStrand . 60.0, HaplotypeScore . 13.0, MappingQualityR-

ankSumTest , 212.5, ReadPosRankSumTest , 28.0; for InDels,

QualByDepth , 2.0, ReadPosRankSumTest , 220.0, FisherStrand .

200.0. Platyus automatically applies a filter for each variant call

and records whether it passes in the VCF.

To examine the basis of genomic regions consistently

associated with FP variant calls we investigated the effect of

coverage and the level of uniqueness of their composite

sequences. Our basic hypothesis was that such regions have

reduced coverage and/or reduced sequence uniqueness. To

Figure 1. The profile for regional GC content versus mean target coverage, produced by using the default settings for the relevant
ArtificialFastqGenerator user parameters.
doi:10.1371/journal.pone.0049110.g001
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study the effect of coverage, we made use of coverage statistics

for every 10000 nucleobases in the reference genome outputted

by ArtificialFastqGenerator, and to study sequence uniqueness, we

used the Broad alignability track [16].

Results

Note that FP variant calls are made when PE= 00 and PE=11.

We refer to genomic regions containing FP variant calls as FP

variant regions.

Rate of False-positive Variant Call Under different
Conditions
Figures S1 and S2 show the number of FP variant calls for each

chromosome after filtering under different experimental condi-

tions. A number of trends are apparent, including a positive

correlation between the number of FP SNPs and InDels, and

Platypus making more FP variant calls than GATK. For example,

when PE= 11 and after RDMR, Platypus calls 10390 SNPs and

2381 InDels genome-wide, while GATK calls 2604 and 1244.

Imposing real Phred quality scores and simulating sequencing

errors is associated with a reduction in FP variant calls. For

example, when PE= 00 (and after RDMR), GATK calls

4306 SNPs and 2100 InDels genome-wide, but when PE= 11, it

calls 2604 and 1244. While simulating sequencing errors may

cause more misaligned reads, fewer are aligned with high

confidence, resulting in fewer FP variant calls.

We are most interested in the importance of Realignment,

Duplicate Marking and Recalibration (RDMR) when PE= 11,

because this is the much more realistic case. As hoped, RDMR

reduces the number of FP SNPs (GATK calls fewer in 23

chromosomes, 2604 versus 2691 genome-wide), but it increases FP

InDels (GATK calls more in 23 chromosomes, 1244 versus 953

genome-wide).

Regions Associated with False-positive Variant Calls
Under Different Conditions
While different experimental conditions are associated with an

increased/decreased number of FP variant calls, the location of FP

variant regions seems to remain the same. This point is illustrated by

Figures S3, S4, S5, S6, S7, S8, S9, and S10–histograms which

show the distribution (after filtering) of GATK’s chromosome 1 FP

variant calls under different experimental conditions. In general,

the peaks keep occurring in the same regions. This same

observation was made for the other chromosomes.

Analysis of Regions Containing False-positive Variant
Calls
Table S1 shows coverage statistics for a sample of regions

(10000 nucleobases long) on chromosome 1 which produced

a relatively high number of FP variant calls (§8). All nucleobases
are A/C/G/T (none are N), and PE= 00. A region’s average

nucleobase coverage ranges from 29.94 to 32.78 (to 2 d.p.s), which

is actually higher than genome-wide (29.90 for As/Cs/Gs/Ts),

and minimum coverage for a nucleobase is not very low (9–20).

This suggests that it is not possible to predict the presence/number

of FP SNPs based on coverage alone.

The region in Table S1 with the highest number of FP SNPs is

154420001–154430000. On closer inspection, its FP SNPs seemed

to be in 2 clusters–the first, a cluster of 12 in 154421756–

154421820 inclusive, and the second, a cluster of 5 in 154428273–

154428328. We measured the uniqueness in these FP SNP cluster

regions with the Broad alignability track, and then also in expanded

regions of length 500 and 1000 bases (centered on the original FP

cluster region).

Table S2 shows the level of uniqueness statistics in these regions,

and also across the whole chromosome. While the first FP SNP

cluster region has a low-level of uniqueness, the second does not.

Hence, as for coverage, it will not always be possible to predict the

presence/number of FP variant calls in a genomic region based

only on its level of sequence uniqueness.

Discussion

Here we have demonstrated that FASTQs generated by

ArtificialFastqGenerator can be used to evaluate the performance of

an NGS analysis pipeline under different conditions and identify

which components of a system may be suboptimal. Furthermore,

the strategy provides a means of identifying regions of the genome

which may be problematic for any pipeline.

Using our own NGS analysis pipeline we investigated how

variant-calling is affected by Phred quality scores, sequencing

errors, coverage, local realignment and recalibration, and variant-

caller algorithm. We found that the number of false-positive

variant calls was higher using Platypus rather than GATK for

variant-calling, and lower when we used real Phred quality scores

and simulated sequencing error. The number of false-positive SNP

calls was also lower after local realignment, duplicate marking and

recalibration, but unfortunately, the number of false-positive

InDels was higher.

Although the number of false-positive variant calls varied under

different conditions the regions these were associated with were

generally the same. We also established that there is no simple

straightforward relationship between the presence or absence of

false-positive variant calls, and coverage or sequence uniqueness.

In the current guise ArtificialFastqGenerator offers the user control

over DNA template/read length, target coverage, whether to use

real Phred base quality scores taken from existing FASTQ files,

and whether to simulate sequencing errors. Possible future

extensions of the software are to offer the user greater choice

over quality score generation, and if possible, to improve the

accuracy of sequencing error by basing it on more than just the

quality scores.

Supporting Information

Figure S1 Number of false-positive (FP) variant calls
after filtering for chromosomes 1–12; S=SNP; I = InDel;
PE=00 means all Phred scores high (40) & no simulated
sequencing errors; PE=11 means Phred scores from
real FASTQ files & simulated sequencing errors;
RDMR= local realignment, duplicate marking and re-
calibration; G=GATK; P=Platypus.
(TIFF)

Figure S2 Number of false-positive (FP) variant calls
after filtering for chromosomes 13–22, X and Y; S=SNP;
I = InDel; PE=00 means all Phred scores high (40) & no
simulated sequencing errors; PE=11 means Phred
scores from real FASTQ files & simulated sequencing
errors; RDMR= local realignment, duplicate marking
and recalibration; G=GATK; P=Platypus.
(TIFF)

Figure S3 GATK chromosome 1 SNP calls for different
Phred quality score and sequencing error simulation
settings; local realignment, duplicate marking and
recalibration (RDMR) are applied, as well as variant-
call filtering. PE=00 means all Phred scores high (40) &
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no simulated sequencing errors; PE=11 means Phred
scores from real FASTQ files & simulated sequencing
errors.

(TIFF)

Figure S4 GATK chromosome 1 InDel calls for different
Phred quality score and sequencing error simulation
settings; local realignment, duplicate marking and
recalibration (RDMR) are applied, as well as variant-
call filtering; PE=00 means all Phred scores high (40) &
no simulated sequencing errors; PE=11 means Phred
scores from real FASTQ files & simulated sequencing
errors.

(TIFF)

Figure S5 GATK chromosome 1 SNP calls for different
Phred quality scores and sequencing error simulation
settings; local realignment, duplicate marking and
recalibration (RDMR) are applied but no variant-call
filtering. PE=00 means all Phred scores high (40) & no
simulated sequencing errors; PE=11 means Phred
scores from real FASTQ files & simulated sequencing
errors.

(TIFF)

Figure S6 GATK chromosome 1 InDel calls for different
Phred quality score and sequencing error simulation
settings; local realignment, duplicate marking and
recalibration (RDMR) are applied, but no variant-call
filtering. PE=00 means all Phred scores high (40) & no
simulated sequencing errors; PE=11 means Phred
scores from real FASTQ files & simulated sequencing
errors.

(TIFF)

Figure S7 GATK chromosome 1 SNP and InDel calls
when all Phred quality scores high (40) & no simulated
sequencing error (PE=00); local realignment, duplicate
marking and recalibration (RDMR) are applied, and
also variant-call filtering.

(TIFF)

Figure S8 GATK chromosome 1 SNP and InDel calls
when using real Phred quality scores and simulated
sequencing errors (PE=11); local realignment, dupli-
cate marking and recalibration (RDMR) are applied,
and also variant-call filtering.
(TIFF)

Figure S9 GATK chromosome 1 SNP calls after apply-
ing local realignment, duplicate marking and recalibra-
tion (RDMR) versus not; real Phred quality scores and
simulated sequencing errors are used (PE=11), and
variant-call filtering is applied.
(TIFF)

Figure S10 GATK versus Platypus chromosome 1 SNP
calls when using real Phred quality scores and simulat-
ed sequencing errors (PE=11); local realignment,
duplicate marking and recalibration (RDMR) are ap-
plied, as well as variant-call filtering.
(TIFF)

Table S1 Coverage statistics for a sample of regions
from chromosome 1 of length 10000 bases which
produced a relatively high number of FP variant calls
(§8); FP= false-positive; PE=00.
(PDF)

Table S2 Broad alignability track results for 2 regions
containing a cluster of FP SNPs on chromosome 1, and
for chromosome 1 as a whole.
(PDF)

Text S1 Short description of the FASTQ format.
(PDF)

Text S2 Description of ArtificialFastqGenerator’s user
parameters, and how to run a test case.
(PDF)
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