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Abstract

Theoretical studies and robotic experiments have shown that asymptotically stable periodic walking may emerge from
nonlinear limit-cycle oscillators in the neuro-mechanical periphery. We recently reported entrainment of human gait to
periodic mechanical perturbations with two essential features: 1) entrainment occurred only when the perturbation period
was close to the original (preferred) walking period, and 2) entrainment was always accompanied by phase locking so that
the perturbation occurred at the end of the double-stance phase. In this study, we show that a highly-simplified state-
determined walking model can reproduce several salient nonlinear limit-cycle behaviors of human walking: 1) periodic gait
that is 2) asymptotically stable; 3) entrainment to periodic mechanical perturbations only when the perturbation period is
close to the model’s unperturbed period; and 4) phase-locking to locate the perturbation at the end of double stance.
Importantly, this model requires neither supra-spinal control nor an intrinsic self-sustaining neural oscillator such as a
rhythmic central pattern generator. Our results suggest that several prominent limit-cycle features of human walking may
stem from simple afferent feedback processes without significant involvement of supra-spinal control or a self-sustaining
oscillatory neural network.
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Introduction

Understanding the essential processes underlying human

locomotion remains a central problem of motor control neurosci-

ence and biomimetic robotics. The importance of this question

goes beyond its scientific interest: a more profound understanding

of human locomotor control will facilitate refinement and

optimization of exoskeletal assistive devices to augment human

walking or robotic therapy to aid locomotor recovery after injury.

One puzzling aspect of human locomotor control is the co-

existing evidence pointing to different control architectures.

Walking in unimpaired adults exhibits a repeatable spatial

trajectory of the foot [1]. Presented with surface irregularity,

subjects adjusted their minimum toe clearance by subtle modifi-

cation of lower-limb kinematics [2]. Patients with spinal cord

injury (SCI) who recovered following body-weight-supported

treadmill training showed a foot trajectory that was close to the

normal pattern, although they used obviously different joint

coordination patterns [3]. These studies suggest that supra-spinal

processes are predominant, adjusting peripheral muscle activation

and joint recruitment to control the kinematics of the foot.

In contrast, robotic experiments and theoretical studies have

provided compelling evidence that nonlinear limit-cycle oscillators

without a vestige of central kinematic planning or control are

competent to exhibit stable bipedal walking. With no sensing,

actuation or control, the so-called passive dynamic walkers can

provide a startlingly humanlike mimicry of bipedal walking;

interaction between the inertial and gravitational mechanics of

their limbs and intermittent impacts with the ground produce

remarkably coordinated walking on a gentle slope [4,5]. Of course,

biological locomotion also involves neural processes but not

necessarily kinematic planning and control. Unequivocal evidence

of a rhythmic central pattern generator (CPG) underlying

locomotion has been found in various vertebrates [6,7,8,9,10].

Stable rhythm generation requires a nonlinear limit-cycle oscilla-

tor and theoretical studies have demonstrated that CPG-driven

bipedal walking is stable and hence a plausible mechanism of

human locomotion [11,12].

However, the contribution of a CPG to human locomotion is

still unclear. Human infants show a primitive rhythmic stepping

reflex, but the reflex typically disappears at about 6 weeks after

birth [13]. When toddlers acquire independent walking at about a

year old, they are not initially able to generate the rhythmic

pattern of mature walking and this cannot be ascribed to

immature postural control [14]. Rhythmic activation of peripheral

musculature was evoked by non-rhythmic electrical stimulation of

the lumbar spinal cord in patients with chronic spinal cord injury,

but the relevance of that study to unimpaired human locomotion is

unclear because altered descending neural excitation of the spinal

cord almost certainly changes its excitability and may exaggerate

the role of spinal circuits [15]. For unimpaired humans,

continuous (non-rhythmic) leg muscle vibration produced loco-

motor-like stepping movements, and non-rhythmic spinal electro-

magnetic stimulation applied to unimpaired human vertebrae
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induced involuntary locomotor-like movements [16,17]. However,

subjects in those studies were suspended in a gravity-neutral

position, unlike normal walking, making it difficult to generalize

the results to upright walking. To the best of our knowledge, it is

entirely possible that any evidence of a CPG underlying human

walking may be residual, a legacy of phylogenetically earlier

mechanisms of locomotion, since superseded, that are unimpor-

tant in the control of locomotion in modern humans.

A further source of confusion is the variety of mechanisms that

may generate limit-cycle behavior in human walking. The success

of passive dynamic walkers shows that mechanical interaction

between the periphery and the environment is sufficient to

demonstrate stable periodic gaits on a slope, but active control is

necessary to yield periodic gaits on level ground or up a slope.

Input from a rhythmic pattern generator may enable stable

bipedal walking, but stable periodic gaits on level ground are also

achievable with minimal feedback control by simple state-

determined actuation as in the Cornell biped [11,12,18,19]. Even

for vertebrates with clear evidence of spinal pattern generators,

afferent sensory input is critical for locomotion [20,21]. Generat-

ing the human locomotor pattern depends on load-related input,

hip afferent input and location-specific information from the skin

of the foot [22,23].

Recently we reported behavioral evidence that some form of

nonlinear limit-cycle oscillator plays a measurable role in

unimpaired human walking [24]; we applied periodic torque

pulses to the ankle of walking subjects at periods different from

their preferred cadence, and the gait period of 18 out of 19

subjects entrained to this mechanical perturbation, converging to

match that of the perturbation. Significantly, entrainment

occurred only if the perturbation period was close to subjects’

preferred walking cadence: it exhibited a narrow basin of entrainment.

Further, regardless of the phase within the walking cycle at which

perturbation was initiated, subjects’ gait synchronized or phase-

locked with the mechanical perturbation at the end of double stance

where ankle actuation occurs.

In the study reported here we develop a minimal mathematical

model that is competent to quantify the observed limit-cycle

behaviors of unimpaired human locomotion—stable periodic

motion, entrainment to periodic perturbations, and phase-locking.

Because the kinematics and dynamics of the human neuro-

mechanical system are inordinately complex, our goal was to avoid

clutter and its attendant confusion and focus only on essential

features that might give rise to observed behavior. To maximize

simplicity the entire human musculo-skeletal system was modeled

as a point mass with massless legs as in the spring loaded inverted

pendulum (SLIP) models [25,26]. However, our model is

fundamentally different from energy conservative SLIP models;

in our model, foot-ground interaction dissipates the energy of the

system as in human walking, which leads to critical differences in

the model’s competence. Our model is also distinct from the

classical compass gait bipeds [27,28,29] in that our model has a

double stance phase as in human walking, whereas the compass-

gait bipeds do not. In addition, analytical solution is intractable for

the compass-gait biped due to its complexity, whereas the

simplicity of our model enabled analytic expressions for several

key model behaviors. In the following we show that a simple model

with 1) one degree of freedom, 2) without supra-spinal control and

3) without a self-sustaining oscillator like a spinal pattern generator

can successfully reproduce observed behaviors. This suggests that a

simple state-dependent controller using afferent feedback may

serve as a minimal component model of human walking dynamics.

Model

General Description
A schematic of the model defining its variables and parameters

is shown in Fig. 1. A point mass moves in a vertical plane under

the influence of gravity, restrained by rigid massless legs. The

swing leg can be moved instantaneously in front of the mass.

Scuffing (contact of the swing leg with the ground) is ignored. Each

leg has two joints—a hip and an ankle. Ankle actuation provides

propulsion whereas the hip joint is assumed to be a frictionless

pivot, which cannot apply any torque. However, we assume that

the angle between the legs is always reset as 2a at the beginning of

a step. Due to the assumption of massless legs, resetting the angle

between the legs does not consume any energy.

Sequential configurations of the model during one step cycle are

depicted in Fig. 2. At the collision of the leading foot with the

ground, the velocity of the point mass changes instantaneously.

Immediately after the collision, the model is in double stance and

the trailing leg ankle is actuated. During double stance the model

behaves as an actuated four-bar linkage. The ankle of the leading

leg acts as a hinged joint during double stance and the following

single stance phase. We assume that trailing-leg ankle torque

during double stance is determined by a linear torsional spring as

T~k(m{y) (
p

2
{aƒyƒm), ð1Þ

where T is plantar ankle torque at the trailing ankle, k is stiffness, a

constant, y is ankle angle that is positive towards plantar flexion as

depicted in Fig. 1, and m is maximal plantar flexion angle. The

torque becomes zero when y reaches m. By virtue of the zero mass

of the feet, the trailing foot pushes on the ground only as long as

the actuation torque is positive; double stance ends at the moment

when the ankle torque becomes zero, or equivalently when y
reaches m. During the following single stance, there is no actuation

torque, and the dynamics of the swing leg is irrelevant because it

has no mass; the model acts like an inverted pendulum hinged at

the ankle of the stance leg. A step cycle ends when the hip angle h
reaches 2a, its value at the foot-ground collision.

The Equations of Motion
A free body diagram during double stance is shown in Fig. 3. To

simplify the analysis, the ground reaction forces are assumed to be

Figure 1. A schematic of the walking model. A point mass is
restrained by rigid massless legs. The trailing ankle is actuated as a
cocked (pre-loaded) spring released at the beginning of double stance.
The hip joint and the leading ankle do not exert any torque.
doi:10.1371/journal.pone.0047963.g001
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concentrated on the trailing toe (point A) and the leading heel

(point B). Due to zero mass of the legs, the ground reaction force

applied at each leg directly points the point mass (point C). The

ground reaction forces at A and B are denoted as FA and FB,

respectively. The angle between the horizontal line and the line

AC is defined as Q.

Describing the motion of the point mass with respect to the

leading heel, B,

~rrBC~{L sin hizL cos hj,

~vvBC~
d

dt
~rrBC~{L _hh cos hi{L _hh sin hj,

and

~aaBC~
d

dt
~vvCM~({L€hh cos hzL _hh2 sin h)iz

({L€hh sin h{L _hh2 cos h)j:

Using the linear momentum principle in both horizontal and

vertical directions,

FA cos Q{FB sin h~m({L€hh cos hzL _hh
2

sin h), ð2Þ

and

FA sin QzFB cos h{mg~m({L€hh sin h{L _hh
2

cos h), ð3Þ

yielding

mL€hh~mg sin h{FA(sin h sin Qzcos h cos Q): ð4Þ

Considering zero mass of the trailing foot (segment AD in Fig. 3),

plantar ankle torque should be balanced with the torque due to the

ground reaction force, FA.

T~k(m{y)~
Ll sin yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2zl2{2Ll cos y
p FA: ð5Þ

From Eq. 4 and Eq 5, the equation of motion becomes

mL€hh~mg sin h{k(m{y)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2zl2{2Ll cos y

p
Ll sin y

(sin h sin Qzcos h cos Q),

ð6Þ

where the angles, y and Q are functions of h as

y~cos{1 {4L2 sin2az4Ll sin az2L(2L sin a{l) sin (h)

2Ll

� �
,

and

Q~tan{1 L cos h

2L sin a{l{L sin h

� �
:

Eq 6 is the equation of motion of the model during double stance.

During single stance, the equation of motion is the same as that of

an inverted pendulum, which is

€hh~
g

L
sin h:

Ground Reaction Forces
To simulate physically feasible walking, it is important to

evaluate the ground reaction forces and investigate whether they

remain positive.

Figure 2. One step cycle of the walking model. The end and beginning of a step is the moment when the leading foot collides with ground.
During double stance the model moves as four linked bars. During single stance the model moves as an inverted pendulum.
doi:10.1371/journal.pone.0047963.g002

Figure 3. A free body diagram of the model during double
stance. Points A, B, C, and D denote the toe of the trailing leg, the heel
of the leading leg, the point mass, and the trailing ankle respectively.
The angle between the horizontal line and the line AC is defined as Q.
doi:10.1371/journal.pone.0047963.g003
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Ground Reaction Forces during Double Stance. As shown

in Eq 3, FA is positive as long as the ankle torque is applied the in

plantar direction. Therefore, FA is positive throughout double

stance. However, FB can be negative if 1) FA is so excessive that the

mass m is lifted regardless of gravity, or 2) the velocity is so

excessive that the mass m is lifted due to centrifugal force.

Therefore, it is necessary to investigate the explicit form of FB.

Subtracting Eq 3 multiplied by cosh from Eq 2 multiplied by sinh,

(FA cos Q{FB sin h) sin h{FA sin Q cos h{

FB cos2hzmg cos h~mL _hh2,

or

FB~FA(cos Q sin h{sin Q cos h)zmg cos h{mL _hh
2
:

Using Eq 5, FA can be expressed as a function of y, yielding

FB~k(m{y)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2zl2{2Ll cos y

p
Ll sin y

(cos Q(h) sin h{sin Q(h) cos h)zmg cos h{mL _hh2:

The time course of this reaction force can be numerically

evaluated.

Ground Reaction Forces during Single Stance. The single

stance phase is simply a motion of an inverted pendulum, and the

condition that keeps the model from flying off is to keep

mg cos h{m
v2

L
~f (h) above zero. The function f(h), which equals

to the magnitude of the ground reaction force, has the minimum

at the end of the single stance phase because cosh has the

minimum at h = 2a with the given range of motion, and v2 has the

maximum at the same moment of h = 2a during the single stance

phase. Therefore, the sign of f(2a) concludes whether the model

flies off or not.

Rewriting the condition, to prevent the model from flying off

the ground,

mg cos h{m
v2

C

L
w0,

where vC is the speed of the point mass just before a collision.

Parameter Values
Parameter values are summarized in Table 1. Leg length, foot

length, maximal plantar extension angle, hip angle at foot-ground

contact and mass were chosen to approximate morphological data

of human adults. The value of ankle actuation stiffness was chosen

to match the maximal ankle torque of the model with that of

normal human walking. Experimental data shows that peak

plantar-flexion torque in normal gait is approximately 17% of

body weight6leg length [30]. For the model, this value

corresponds to 133.4 (N-m) and to match peak ankle torque at

the beginning of a double stance with this value, k was determined

to be 87.3 (N-m/rad).

Analysis Method
In this study, we investigated whether the model was able to

reproduce salient features observed in normal human walking: 1)

existence of a period-one gait; 2) stability of this period-one gait; 3)

entrainment of this period-one gait to periodic mechanical

perturbations with a finite basin of entrainment; and 4) phase

locking so that the perturbation occurred at the end of double

stance. Because of the extreme simplicity of the model, most of

these questions could be addressed by a straightforward applica-

tion of calculus and algebra. Additional results were obtained by

numerical simulation implemented in Matlab using the Simulink

toolbox (Mathworks Inc.). Numerical integration by the Runge-

Kutta method was performed with a fixed step size of 1024 and

absolute and relative error tolerances of 1026. The validity of the

numerical simulation was checked using either available analytical

solutions or by repeating simulations with a tenfold smaller

tolerance. The method used was precise enough to deal with the

discontinuities in the model; the Floquet multiplier (explained in

Results) evaluated from numerical simulation was 0.25000

whereas the analytical solution yields cos22a, which is 0.25 with

the given parameters.

Results

Step-to-Step Function
To analyze existence and stability of a periodic gait, we used the

concept of a step-to-step function used by Bauby and Kuo [31]

whose input and output are state variables at the beginning of one

step and at the beginning of the next step respectively. In the

language of dynamical systems, a step-to-step function is a discrete

Poincaré map, and a period-one gait is a fixed point of the

Poincaré map. With the simplification of perfect symmetry, we

allowed one step to represent one cycle. In real bipedal locomotion

which may include asymmetry, one period of human locomotion

corresponds to one stride, which consists of two steps. As the

model has only one degree of freedom (h), and the dynamics of the

model can be fully described with a 2nd order ordinary differential

equation, evolution of the system can be described in two

dimensional state space (h, _hh). If the beginning of one cycle is

defined as the moment of a foot-ground collision, or equivalently

as the moment when h reaches 2a, the step-to-step function is

defined as f : _hhi Dh~a? _hhiz1Dh~a. The existence of a period-one gait

requires that _hhi Dh~a satisfies f( _hhi Dh~a)~ _hhi Dh~a, and the local

asymptotic stability of this period-one gait is established if the

derivative of the step-to-step function evaluated at the period-one

gait satisfies D
Lf( _hhi Dh~a)

L _hhi Dh~a

Dv1. Note that for this model, because the

step-to-step function is defined in one dimensional space, the

derivative of the step-to-step function is not a matrix but a scalar,

which is equivalent to a Floquet multiplier.

Table 1. Parameter values for the ankle actuated model.

Parameter Meaning Value

m mass 80 kg

L leg length 1 m

l foot length 0.2 m

g gravitational acceleration 9.81 m/s2

a angle of the leg at heel strike p/6 rad

m maximal plantar extension of the ankle 2.576 rad

k ankle actuation constant 87.3 N?m/rad

doi:10.1371/journal.pone.0047963.t001
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Existence of a Period-one Gait
The actuation torque, T is a function of y, which is determined

by h and the geometry of the model. Consequently, the work done

by the ankle torque can be written as W~
Ð hf

h0
T(h)dh, where h0

and hf indicate the value of h at the beginning and the end of a

double stance respectively. The work done per step is a constant

because h0 and hf in each step are constants. Equivalently, the

potential energy initially stored in the ankle spring, which is

released during double stance, is determined by the hip angle a,

the spring stiffness k, and the maximal plantar flexion m, all

constants. On the other hand, a foot-ground collision reduces the

speed of the model by a factor of cos2a, and therefore reduces

kinetic energy by cos22a. (At collision, this model is a special case

of the ‘‘rimless wheel’’ models; a detailed explanation of this speed

reduction due to collision is presented in [32].) Taken together, for

the model to exhibit a period-one gait, the loss of kinetic energy

due to a foot-ground collision must be exactly compensated for by

the work done by the ankle torque. For this, the speed of the point

mass just before a collision, vC, and the corresponding _hh, denoted
_hhC , must satisfy

W~

ðhf

h0

T(h)dh~
1

2
k(azm{

p

2
)2

~
1

2
mv2

C(1{cos22a)~
1

2
mL2 _hh2

C(1{cos22a):

ð7Þ

This expression has two solutions differing only in sign. The

negative solution corresponds to forward progression; _hhC for a

period-one gait is

_hhC~{
1

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k(azm{

p

2
)2

m(1{cos22a)
:

vuut
ð8Þ

For a period-one gait to exist, two additional conditions must be

satisfied: 1) the point mass must have enough kinetic energy at the

beginning of single stance to ‘‘vault over’’ to make the next step,

and 2) the ground reaction forces must not be negative, i.e. the

model must not ‘‘fly off’’ the ground. These two conditions limit

the range of k. Excessively small k cannot supply enough energy to

make the model vault over. Conversely, with overly large k, the

leading foot is lifted during double stance by an excessive ground

reaction force at the trailing foot. A closed-form expression for the

lower limit of k (the ‘‘just-vault-over’’ stiffness) can be obtained

analytically. Let the marginal stiffness be kC. In the case in which

the model just vaults over, the kinetic energy of the model becomes

zero at the apex of h= 0. Using the work-energy principle,

1

2
mv2

C cos22az
1

2
kC(azm{

p

2
)2zLmg cos a~Lmgz0: ð9Þ

From Eq 7 and Eq 9,

kC~
2Lmg(1{cos a)(1{cos22a)

(azm{
p

2
)2

:

With the parameter values given in Table 1, kC became 67.5 (N-

m/rad); k was greater than kC, which satisfied condition 1). To

check that k was less than its upper limit (the ‘‘just-fly-off’’ stiffness),

we evaluated the ground reaction forces numerically with the

selected parameter values. The minimum ground reaction force at

the leading heel occurred at the beginning of double stance, and

was evaluated as 149.5 N; the ground reaction forces did not go

below zero, satisfying condition 2). Thus the existence and

uniqueness of a period-one gait were established. The step period

of this gait, t0, was 0.967 (s) and the average forward speed was

1.03 (m/s), comparable to freely-selected low-speed human

walking (0.694 (s) step period and 0.92 m/s on average) [33].

Asymptotic Stability of the Periodic Gait
Asymptotic stability of the period-one gait can be established

analytically. Let a collision occur at t = 0, and the next collision

occur at t = tf. Also, let t = tf+, t = tf2 and t = 0+ indicate the

moments right after t = tf, just before t = tf and right after t = 0,

respectively. Using the work-energy principle,

_hh(t~tfz )~{
cos 2a

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 _hh0z

2
z

k

m
(azm{

p

2
)2

r
~f( _hh0z

), where

_hh0z
~ _hh(t~0z). The derivative of the step-to-step function f

becomes

Lf( _hh0z )

L _hh0z

~{cos 2a
_hh0zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_hh0z

2
z

k(azm{
p

2
)2

mL2

s : ð10Þ

From Eq 8, _hh0z at the fixed point (the period-one gait) becomes

_hh0zfixed~{
cos 2a

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k(azm{

p

2
)2

m(1{cos22a)

vuut
:

Substituting into Eq 10, the derivative of the step-to-step function

at the fixed point is cos22a. With the parameter value of a= p/6

(rad), this becomes 0.25, substantially less than unity, which

guarantees local asymptotic stability of the fixed point of the step-

to-step function. Numerical evaluation yielded the same value,

validating the numerical methods. Simulations demonstrating the

asymptotic stability of the period-one gait with the selected

parameter values are shown in Fig. 4.

Entrainment of the Period-one Gait
To investigate the competence of the model to reproduce

entrainment to mechanical perturbations, we superimposed

periodic plantar-flexion torque pulses on the ankle (in addition

to the torque due to the ankle actuation). In the previous

experimental study [24], periodic square torque pulses of

magnitude 10 N-m and duration 0.1 second were applied to one

ankle of a walking subject at periods that differed slightly from the

subject’s preferred stride period. A magnitude of 10 N-m is

approximately comparable to 10% of maximum ankle torque

during normal walking in male adults. For comparison with the

experimental study in which a perturbation pulse was applied to

one ankle, in the model the period of the perturbation torque, tp

was set to be close to the stride period of the model’s unperturbed

gait, 2t0; the range of tp was 2t060.1 second, which covered a

range of perturbation periods similar to the experimental protocol

in [24]. The amplitude of the added torque pulse was 10% of the

maximal ankle torque of the model, and the pulse width was

0.1 second as in the experiment. By virtue of zero mass of the legs,

a perturbation cannot contribute to the dynamics of the model

when the perturbation torque is applied to an ankle in swing

phase. Any portion of the perturbation pulse that was applied to

an ankle in swing phase was nullified. As a result, the torque to the

A Simple Model Captures Entrainment of Walking
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trailing ankle under periodic mechanical perturbations became

T~
k(m{y(t))zTP(t) if

p

2
{aƒyƒm

0 elsewhere

(
,

where

TP(t)~
A if ntPzdƒtƒntPzdz0:1

0 elsewhere

�
:

The constant A is the amplitude of the perturbation pulse, n is an

arbitrary positive integer or zero, tp is a perturbation period, and d
is the initial phase of the perturbation, which can be an arbitrary

constant.

Entrainment of the model to the perturbations was observed

with a narrow basin of entrainment (Fig. 5); the model entrained to

tp only if tp was close to 2t0. The basin of entrainment was

approximately 3.93% of 2t0, which is within one standard

deviation of the estimated basin of entrainment observed in the

experiment (6.7%63.6% of unperturbed stride period) [24].

Phase Locking at the End of a Double Stance
In addition to reproducing entrainment with a finite basin, the

model also reproduced the phase locking that we observed in

unimpaired human walking [24]. In particular, the perturbation

pulse converged to the end of double stance regardless of the gait

phase at which the perturbation pulse was initiated (Fig. 6).

Furthermore, as shown in Fig. 6, the time-course of phase-locking

bore a clear qualitative resemblance to the pattern observed in the

experiments [24]. The torque profiles at the trailing ankle during

successive cycles are shown in Fig. 7. The perturbation pulse was

clearly phase locked at the end of double stance.

Discussion

Despite its intentionally extreme simplicity, the model presented

here reproduced all of the following features observed in normal

human walking: 1) a periodic bipedal walking pattern; 2) local

asymptotic stability of that periodic walking pattern; 3) entrain-

ment of that walking pattern to periodic mechanical perturbations

with a narrow basin of entrainment; and 4) phase locking to locate

the perturbation at the end of double stance when entrained. The

extreme simplicity of the model must be emphasized. All of the

complex biomechanics of the human musculo-skeletal system (on

the order of 600 muscles activating about 200 degrees of freedom)

was distilled into a model with only one degree of freedom.

Though those additional complexities no doubt contribute to

unimpaired locomotion, our results show the competence of this

simple model to reproduce observable features of sagittal-plane

human locomotor dynamics.

An important detail of this model is that it involves afferent

feedback: actuation of the trailing-leg ankle is triggered based on

the system state, and the control of the angle of leading leg before

foot ground collision requires feedback. The afferent information

required for the triggered actuation might be derived from foot

contact of the leading leg, reflecting cutaneous input or load-

related afferents, e.g. from Golgi tendon organs. Alternatively, it

might be derived from stretch receptors, for example those that

signal hip extension; or it may arise from a combination of these

sources. The information required for control of leading leg angle

might also be obtained from proprioceptive sensory feedback.

However, the model deliberately omitted any self-sustaining

intrinsic neural oscillator such as a CPG. It also omitted supra-

spinal control specifying limb kinematics. Though either or both of

these factors plausibly contribute to unimpaired human locomo-

tion, the competence of our model suggests that they may be non-

essential to reproduce observed features of normal human

walking—stable periodic oscillation, entrainment and phase-

locking—that may instead emerge from the nonlinear dynamics

of the neuro-mechanical periphery.

Energy Dissipation Plays a Key Role in Asymptotic
Stability

The simplicity of our model facilitates physical interpretation of

the results: though afferent feedback is included, simple mechanics

account for much of the model behavior. The existence and

stability of the model’s period-one gait can be explained physically.

Figure 4. Asymptotic stability of period-one gait. Errors in initial conditions of angular velocity converge to zero as the number of steps
increases.
doi:10.1371/journal.pone.0047963.g004
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The model was designed to be energetically identical to a rimless

spoked wheel on a slope, perhaps the simplest passive dynamic

walker [32]. The amount of work done by ankle torque is constant

per step, but the loss of kinetic energy due to foot-ground collision

is proportional to the square of speed. Faster collisions dissipate

more energy and the model slows down; slower collisions dissipate

Figure 5. Entrainment to mechanical perturbations with a finite basin. Stride period is plotted as a function of stride number; (a) shows
entrained gaits, and (b) shows gaits that failed to entrain. For entrained gaits, the stride period converged to the perturbation period, tp, whereas
stride period continued to fluctuate when gait was not entrained. Note that the model shows a narrow basin of entrainment. Any perturbation with
tp.2t0 or tp#2t0280 (ms) did not entrain the model.
doi:10.1371/journal.pone.0047963.g005

Figure 6. Phase-locking at terminal stance of normal human walking and the mathematical model. In (a), the experimental data of
normal subjects from [24] are shown. The estimated phase difference between toe-off (initiation of swing) and the initiation of the perturbation pulse
is plotted as a function of stride number. In (b), the phase difference between toe-off of the model and the initiation of the perturbation pulse is
plotted for entrained gaits with (tp = 2t0250 ms) and various initial phases of the perturbation pulse. In both (a) and (b), regardless of the initial
phase, the perturbation pulse converged to a phase close to toe-off; the model successfully reproduced the phase-locking at the end of double
stance which was observed in the experiment.
doi:10.1371/journal.pone.0047963.g006
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less and the model speeds up. Similarly, for a passive dynamic

walker on a slope, gravity supplies a fixed amount of energy per

step, but foot-ground collision dissipates kinetic energy in

proportion to square of speed. A constant energy added per step

combined with energy loss per step proportional to square of speed

yields asymptotically stable periodic motion.

It is important to note that the dissipation of kinetic energy due

to foot-ground collision is the essential source of locally stable

entrainment (i.e. with a narrow basin of attraction) of this model. It

also gives rise to the asymptotic stability of the model’s

unperturbed periodic gait. Many widely-cited (indeed ‘‘classical’’)

studies have assumed that animal locomotion evolved to consume

the least energy [34,35,36,37,38,39]. Though the value of

minimizing the energy cost of transportation is self-evident, robust

stability arguably takes a higher priority. The derivative of the

step-to-step function (cos22a in our model) determines the strength

of the asymptotic stability. It is also directly related to the

reduction of kinetic energy due to foot-ground collision. Provided

the parameter values admit a periodic gait, greater energy

dissipation per step yields stronger stability and vice versa. The

extreme example of high energy efficiency but marginal stability is

pure rolling on level ground. In our model, as a approaches zero,

step size becomes infinitesimal and the behavior approaches pure

rolling. However, although the energy cost of transportation

approaches zero in this limit, stability also becomes marginal as the

Floquet multiplier cos22a approaches unity.

Despite its simplicity, our model may represent fundamental

aspects of the peripheral neuro-mechanics of legged animals. To

the extent that it does, it demonstrates a trade-off between energy

efficiency and stability that appears to be a fundamental feature of

legged locomotion. Evolution may be regarded as optimizing the

probability of reproduction, supported by optimizing survival (at

least until reproduction) [40]. Reliable performance (e.g. robust

locomotor stability) may therefore take higher priority than energy

efficiency. In our model, stability requires energy dissipation;

strictly minimal energy consumption implies marginal stability. At

a minimum stability (which requires energy dissipation) should be

included in the function to be optimized. Although collision-free

legged locomotion is physically possible, to the best of our

knowledge non-elastic interaction between foot and ground, which

dissipates kinetic energy, is a common characteristic of legged

animal locomotion. In human locomotion muscles do more

positive than negative work even when walking at constant

average speed on level ground [41]. This provides evidence of

energy dissipation (e.g., due to the non-elastic interaction between

a foot and ground) in normal human walking.

Limitations of Conservative Walking Models
Energy conservative walking models are appealing; they serve as

a ‘‘gold standard’’ for minimal energy consumption in legged

locomotion, and have nice mathematical properties. Unfortunate-

ly, they cannot reproduce the entrainment to periodic perturbation

that was observed. Nor can they reproduce the robust stability of

animal locomotion. Some studies have reported stable limit-cycles

in energy-conservative models [26,42,43]. However, their stability

can neither be robust nor asymptotic in response to an arbitrary

perturbation, however small. By definition, a conservative model

has no means to recover from a change of its energy level. If the

model suffers a perturbation that changes its energy level, its limit-

cycle is marginally stable at best. Of course, the probability that an

arbitrary perturbation will not change system energy is zero;

practically every perturbation changes the energy level. No

Figure 7. Torque profiles at the trailing ankle during successive cycles. Time profile of torque to the ankle is plotted per stride when a
perturbation with period of 1.8841 (s) (tp = 2t0250 ms) is applied. The perturbation pulses, which are superimposed on the intrinsic ankle actuation,
drift along the gait cycle, but eventually phase lock at the end of double stance where the intrinsic ankle actuation torque approaches zero. The
evolution of stride durations (displayed in red numbers) shows that the stride duration converges to the perturbation period; entrainment is
achieved.
doi:10.1371/journal.pone.0047963.g007
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conservative model is able to exhibit the asymptotic stability which

appears to be one of the most fundamental properties of animal

locomotion. Most important for the purpose of this paper, no

conservative model can reproduce the entrainment to periodic

mechanical perturbations with phase-locking that we observed in

unimpaired human walking [24]. In a conservative model, a

perturbation such as we applied that occurred late in the double

stance phase would necessarily increase the system energy. With

phase locking such as we observed, system energy would increase

on every stride and grow without bound. That is clearly

incompatible with our experimental observations.

Finite Work Done by a Perturbation Determines a Finite
Basin of Entrainment

The average speed of the model (step length/step period), v, is

plotted as a function of the perturbation pulse initiation phase, Q,

in Fig. 8. The minimum average speed is that of period-one gait

without a perturbation. It occurs when all of the perturbation pulse

is applied within the swing phase. The model cannot walk more

slowly because the mechanical perturbation, which applies to the

trailing ankle, only accelerates the system. The maximum average

speed occurs when all of the perturbation pulse is applied within

the double-stance phase. It is upper-bounded because the amount

of the acceleration due to the perturbation is limited. The range of

average speeds under perturbation is less than 9% of the minimum

(unperturbed) average speed. The limited amount of energy

supplied by the mechanical perturbation results in the small range

of average speeds, and therefore, with a fixed step length

determined by a, determines a finite basin of entrainment to

periodic perturbations.

Phase Locking Occurs at the End of Double Stance
Entrainment only requires the walkers’ cadence to converge to

the perturbation period; the perturbation pulse will then occur at a

constant phase in the entrained gait, but it may be at any constant

phase. Remarkably, in experiments with unimpaired humans, we

observed phase-locking for all entrained gaits such that the

perturbation occurred at the end of double stance [24]. The model

presented here reproduced that observation which may be

understood using the v vs. Q curve of Fig. 8. If a perturbation

pulse is entirely contained in a swing phase, it cannot accelerate

the model. The average speed increases as the perturbation phase

approaches 0, the onset of double stance, because a progressively

larger portion of the pulse occurs in the double stance phase,

where it can accelerate the model (the red line in Fig. 8).

Conversely, the average speed decreases when the pulse

approaches the end of the double stance phase because a

progressively larger portion of the pulse occurs during the

following swing phase, where it can do no work (the green line

in Fig. 8). Consequently, the v vs. Q curve has a positive slope at the

onset of a double stance, and a negative slope at the end of a

double stance.

If the model is entrained to a periodic perturbation its cadence is

same as the perturbation period. Any small variation that

accelerated the model would make the perturbation pulse occur

at a later phase in the following stride. In other words, Q increases

on the next stride if the model accelerates. Near the end of double

stance, if the model accelerates, increased Q decreases speed on the

next stride because
dv

dQ
v0. A similar argument applies if any small

variation decelerated the model; the negative slope of v vs. Q
stabilizes the entrained gait.

The v vs. Q curve (Fig. 8) also has a negative slope in the earlier

portion of double stance. However, the negative slope of this

region may be ignored for the following reasons. First, the negative

slope in this region is much smaller than at the end of double

stance; the strength of the stability is much weaker. Second, this

region allows only an extremely narrow basin of entrainment, less

than 0.13% of 2t0. This region could account for only a limited

fraction of the entrained gaits which occupied a basin more than

30 times wider, both in the model (Fig. 5) and the experiment [24].

Finally, the negative slope within the double-stance phase is

sensitive to the details of the model, especially the ankle torque

profile (Eq. 1). With a different ankle actuation profile, the portion

of a double stance with a negative slope may move, shrink, or even

vanish. In contrast, the negative slope at the end of double stance

is always evident as long as we make the physically reasonable

assumption that a torque pulse at the ankle provides no propulsion

when the leg is in swing phase.

The mechanism of stability described above also makes the end

of double stance an attractor for phase locking. If the model speed is

lower than that of an entrained gait, ventrained, the next

perturbation pulse will occur at an earlier phase, and the speed

will increase toward ventrained due to the negative
dv

dQ
. If the model

speed is higher than ventrained, the next pulse will occur at a later

phase, decreasing the speed toward ventrained. Aside from the

unimportant exception (early in double stance phase) discussed

above, all the other phases with positive
dv

dQ
act as repellors.

Accordingly, the pulses are phase-locked to the strongest attractor

at the end of a double stance. The end of double stance may be

regarded as the ‘‘global’’ attractor for phase locking associated

with entrainment.

Ankle Actuation Constant, k
The parameter value, k, was chosen to approximate the amount

of ankle torque during normal human walking. The chosen value

of 87.3 N?m/rad is of the same order of magnitude as the human

ankle stiffness with co-contraction of ankle muscles, which is

approximately 50 N?m/rad [44]. One plausible reason for the

Figure 8. The average speed of the model (step length/step
duration), v, vs. the phase of a perturbation pulse, Q for a pulse
of constant amplitude and duration. When a pulse is located in a
swing phase, it cannot accelerate the model, and v is lower than when
the entire pulse is inside double stance. Average speed, v, increases as Q
approaches 0, the onset of double stance, and decreases as Q
approaches the end of double stance.
doi:10.1371/journal.pone.0047963.g008
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difference may be muscle activation levels. In [44] subjects were

asked to maintain muscle activation at 20% of maximal activation

level as indicated by electromyography (EMG) amplitude whereas

in normal human walking EMG amplitudes of ankle plantar-

flexion and extension muscles exceed 20% of maximal activation

level: 90% for Soleus, 80% for Gastrocnemius, 40% for Posterior

Tibialis, 40% for Flexor Digitorum Longus, 80% for Flexor

Hallucis Longus, 40% for Peroneus Brevis, and 30% for Peroneus

Longus [30]. The simplicity of the model and the ignored

physiological and anatomical realism may be another source of the

discrepancy. However, most importantly, comparison between the

ankle actuation constant, k and human ankle stiffness during

walking may be appropriate only when the human ankle acts as a

spring that stores and releases potential energy during stance phase

with a constant equilibrium position, which may be invalid given that

lower limb muscles are actively modulated during stance.

Limitations of This Model
To maximize simplicity, we neglected numerous aspects of

locomotion. For example, multi-period gaits were not analyzed.

Though multi-period asymmetric gaits are observable in human

locomotion, we limited our attention to the existence and stability

of a period-one gait, which represents the fundamental mode of

normal gait. In the model the periodic mechanical perturbation

could only accelerate gait and entrainment was only possible for

perturbation periods shorter than preferred stride period tp,2t0.

Experimentally, we observed entrainment both to faster and

slower perturbations, albeit with a narrow basin of entrainment

[24].

Physiological and anatomical realism was ignored by assuming a

point mass body and massless legs. The massless legs significantly

simplified the system dynamical equations and allowed zero torque

at the hip joint. That is consistent with the experimental

observation that ankle torque is the largest joint torque in normal

human walking [30,45]. The observation that the model’s

unperturbed average speed (1.03 m/s) was relatively slow,

comparable to the speed of freely-selected slow human walking,

may partly be due to the lack of actuation at hip and knee joints

while the ankle actuation parameter, k, was determined based on

normal human ankle torques during walking [33].

Conclusion

Human walking exhibits many features associated with limit-

cycle oscillators including entrainment to periodic perturbations. A

finite basin of entrainment such as we observed experimentally

requires a non-linear dynamical system, but there are several

physiologically-plausible candidates that might be responsible. Any

combination of several peripheral neuro-mechanical factors—self-

sustaining oscillatory neural networks (e.g., CPGs in the spinal

cord); ‘‘chaining’’ of reflexes based on afferent feedback; gravito-

inertial dynamics of the musculo-skeletal system; and discrete,

dissipative mechanical interaction with the physical environ-

ment—may exhibit limit-cycle behaviors and entrainment; and

they may do so without supra-spinal control. The remarkable

competence of the simple model presented here suggests that a

state-determined process based on afferent feedback may be the

minimal model component to describe measurable human walking

behavior, in particular, asymptotically stable periodic motion and

entrainment with phase locking to a narrow range of periodic

perturbations.

The mechanics of the periphery accounts for a significant

portion of this model’s competence. Combined with minimal

afferent feedback, simple peripheral mechanics can account for

asymptotically stable periodic walking, entrainment to a narrow

range of perturbations and phase locking. In the model, energy

dissipation due to non-elastic foot-ground interaction is the key to

asymptotic stability, entrainment and phase locking, suggesting

that energy dissipation may be an essential element of legged

animal locomotion rather than an accidental imperfection. This

further suggests that intermittent collisional foot-ground interac-

tion should be emphasized in human motor control and the design

of therapeutic robots and exoskeletons to restore or assist human

walking. It may not only provide essential sensory cues to

coordinate locomotor patterns, but may also be a key mechanical

factor that determines the stability of locomotion.
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