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Abstract

Male infertility is a major cause of problems for many couples in conceiving a child. Recently, lifestyle pastimes such as
alcohol, tobacco and marijuana have been shown to have further negative effects on male reproduction. The
endocannabinoid system (ECS), mainly through the action of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) at
cannabinoid (CB1, CB2) and vanilloid (TRPV1) receptors, plays a crucial role in controlling functionality of sperm, with a clear
impact on male reproductive potential. Here, sperm from fertile and infertile men were used to investigate content (through
LC-ESI-MS), mRNA (through quantitative RT-PCR), protein (through Western Blotting and ELISA) expression, and
functionality (through activity and binding assays) of the main metabolic enzymes of AEA and 2-AG (NAPE-PLD and
FAAH, for AEA; DAGL and MAGL for 2-AG), as well as of their binding receptors CB1, CB2 and TRPV1. Our findings show a
marked reduction of AEA and 2-AG content in infertile seminal plasma, paralleled by increased degradation: biosynthesis
ratios of both substances in sperm from infertile versus fertile men. In addition, TRPV1 binding was detected in fertile sperm
but was undetectable in infertile sperm, whereas that of CB1 and CB2 receptors was not statistically different in the two
groups. In conclusion, this study identified unprecedented alterations of the ECS in infertile sperm, that might impact on
capacitation and acrosome reaction, and hence fertilization outcomes. These alterations might also point to new biomarkers
to determine male reproductive defects, and identify distinct ECS elements as novel targets for therapeutic exploitation of
ECS-oriented drugs to treat male fertility problems.
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Introduction

One in six couples has difficulty in conceiving, with the male

factor being the primary cause of infertility in 40% of couples. This

may depend on a reduced number of sperm due to impaired

spermatogenesis or abnormal maturation, or it may be caused by

sperm dysfunction from metabolic deregulation or oxidative stress.

Recently, lifestyle pastimes such as alcohol, tobacco and marijuana

have been shown to have further negative effects on male

reproduction [1–3].

Conventional semen analysis continues to be the only routine

test to diagnose male infertility; however, it cannot discriminate

between sperm of fertile and infertile men [4]. For a test to be

useful diagnostically or prognostically, it must have little overlap

between groups of fertile and infertile men. Routine semen

analysis does not meet these standards [4–7]. Hence, more

sensitive biomarkers of male infertility are urgently needed.

Recent studies [8–10] have shown that the endocannabinoid

system is a key player in the multifaceted process of male

reproduction. In this study we characterised, for the first time, all

major components of the ECS in sperm of fertile and infertile men.

Delta-9-tetrahydrocannabinol (THC), the main psychoactive

compound extracted from Cannabis sativa, impairs spermatogenesis

and sperm function, and acts to reduce the release of testosterone

[11–13]. Anandamide (AEA) and 2-arachidonoylglycerol (2-AG)

are the best characterized endocannabinoids (eCBs). Both are

endowed with distinct biological activities in the central nervous

system (CNS) and in the periphery, where they mimic several

actions of THC [14–15]. eCBs act principally through cannabi-

noid receptors, which are members of the rhodopsin family of G

protein-coupled seven-transmembrane spanning receptors [16],

and include type-1 and type-2 cannabinoid (CB1 and CB2)

receptors as the best characterized targets of eCBs. CB1 has been

found mainly in the central nervous system [17], but is present also

in ovary [18], testis [19], vas deferens [20], and other peripheral

endocrine and neurological tissues [21–22]. CB2 has been found

mainly in peripheral and immune cells [23], but also in neuronal

cells [24–25] and reproductive cells and tissues [26]. Recently,

other CB receptors, like the purported ‘‘CB3’’ receptor (GPR55)

[27–28], and non-CB1/non-CB2 receptors have been identified.

Among the latter, non-selective cationic channel type-1 vanilloid

receptor (transient receptor potential vanilloid 1, TRPV1),
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activated by capsaicin and by noxious stimuli like heat and

protons, is an additional target of AEA, but not of 2-AG [29].

eCBs are released from membrane phospholipid precursors

through the activation of specific phospholipases [30], that are

activated ‘‘on demand’’. Although AEA synthesis may occur via

multiple biosynthetic pathways [31], the most prominent route is

catalysed by an N-acylphosphatidylethanolamine-specific phos-

pholipase D (NAPE-PLD) [32]. Similarly, the formation of 2-AG

involves a rapid hydrolysis of inositol phospholipids by a specific

phospholipase C (PLC) to generate diacylglycerol (DAG), which is

then converted into 2-AG by an sn-1-DAG lipase (DAGL) [33].

After re-uptake through a purported specific transporter [34] and

intracellular trafficking to selected targets [35–36], eCBs signalling

is terminated by hydrolysis via fatty acid amide hydrolase (FAAH)

[37] for AEA, and via a specific monoacylglycerol lipase (MAGL)

for 2-AG [38]. Taken together eCBs, their molecular targets (CB1,

CB2, TRPV1), and their metabolic enzymes form the so-called

endocannabinoid system (ECS). Distinct ECS elements have been

identified in seminal plasma [39], male reproductive tissues [40],

Leydig and Sertoli cells [19,41–42], as well as in male germ cells

[41–47], from spermatogonia to mature spermatozoa [44,48–50].

Overall, the present evidence supports an ‘‘evolutionary’’ role of

ECS (and in particular of CB1 and FAAH) as check points in

reproduction [3,9–10,51–53].

The presence of N-acylethanolamines (NAEs), such as AEA, N-

palmitoylethanolamine (PEA) and N-oleoylethanolamine (OEA),

in human seminal plasma [39] further suggests that eCB signalling

takes part in regulating capacitation and fertilizing potential within

human reproductive tracts. Indeed, evidence for the existence of

an active eCBs signalling in sperm has been demonstrated in sea

urchin and also in humans [54–57]. AEA, through the activation

of CB1, decreases the motility of human sperm and reduces their

capacitation ability [58]. In addition, by activating TRPV1, AEA

reduces the fusion of the human sperm membrane with that of the

oocyte [48]. However, at present, there are no data on possible

alterations of ECS elements in sperm from fertile versus infertile

men.

The aim of the present study was to investigate the expression

and functional activity of the main ECS elements in sperm

obtained from fertile and infertile men, in order to ascertain

whether alterations in eCBs metabolism and/or receptor activity

could be associated with male infertility.

Materials and Methods

Reagents
Chemicals were of the purest analytical grade. Anandamide (N-

arachidonoylethanolamine, AEA) and 5-(1,10-dimethylheptyl)-2-

[(1R,5R)-hydroxy-(2R)-(3-hydroxypropyl)-cyclohexyl] phenol

(CP55940) were purchased from Sigma Chemical Company (St.

Louis, MO, USA). N-Arachidonoyl-phosphatidylethanolamine

(NArPE) was synthesized from arachidonic acid and phosphati-

dylethanolamine as reported [59]. [3H]CP55,940 (136.9 Ci/

mmol), [3H]AEA (60 Ci/mmol) and [3H]resinferatoxin

([3H]RTX, 43 mCi/mmol) were from PerkinElmer Life Sciences

(Boston, MA, USA). [3H]NArPE (200 Ci/mmol), [3H]2-oleoyl-

glycerol ([3H]2-OG, 20 Ci/mmol) and [3H]2-arachidonoylgly-

cerol ([3H]2-AG, 200 Ci/mmol) were from American Radiola-

beled Chemicals, Inc. (St. Louis, MO, USA). [14C]Diacylglycerol

([14C]DAG, 56 mCi/mmol) was from Amersham Biosciences.

RTX and 2-AG were purchased from Alexis Corporation (San

Diego, CA). Deuterated AEA (d8-AEA) and 2-AG (d8-2-AG) were

from Sigma Chemical Company and Cayman Chemicals (Ann

Arbor, MI, USA), respectively. Rabbit anti-CB1 and anti-MAGL

polyclonal antibodies were from Cayman Chemicals; rabbit anti-

CB2 polyclonal antibody was from Affinity BioReagents (Golden,

CO, USA); rabbit anti-NAPE-PLD polyclonal antibody was from

Novus Biologicals (Littleton, CO, USA); rabbit anti-FAAH, anti-

TRPV1 and anti-b-actin polyclonal antibodies were purchased

from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA, USA).

Rabbit anti-DAGL polyclonal antibody was from Frontier Science

Co. Ltd. (Okkaido, Japan), and horseradish peroxidise (HRP)-

conjugated secondary antibody and non-fat dry milk were from

Biorad (Hercules, CA, USA). Bovine serum albumin was from

Sigma Chemical Company. West Dura Chemiluminescence

System and 3,39,5,59-tetramethylbenzidine (TMB) were from

Pierce (Rockford, IL, USA).

Semen of Fertile and Infertile Men
This project was approved by the Office for Research Ethics

Committees in Northern Ireland and the Royal Group of

Hospitals Trust Clinical Governance Committee. The study was

conducted at the Regional Fertility Centre, Royal Jubilee

Maternity Services, Belfast, Northern Ireland (UK) during the

period September, 2005 to December, 2010. Sperm samples for

research were obtained after written consent was given by each

couple.

Semen from 30 fertile men was obtained from Cryos

International, Aarhus (Denmark) and from Androgen Centro

Infertilidad Masculina, La Coruna (Spain). Each donor was: a)

physically and mentally healthy, b) not suffering from any kind of

hereditary disease, c) seronegative for the human immunodefi-

ciency viruses (HIV) 1 and 2, syphilis, viral hepatitis B and C,

herpes, cytomegalovirus, d) with no bacterial infection in blood

and semen cultures, and e) with a seminal profile exceeding

minimal characteristics by WHO guidelines [60].

Semen from 150 infertile men, surplus to clinical requirements,

were collected by masturbation after 2–5 days of recommended

abstinence.

Following measurement of semen volume, samples were

subjected to conventional light microscopic semen analysis within

1 hour of ejaculation, following a period of incubation at 37uC to

allow for liquefaction according to WHO recommendations [61],

in order to determine sperm concentration and motility. Sperm

morphology was assessed according to Kruger Strict Criteria [62].

Following light microscopic analysis, semen was centrifuged at

1500 rpm for 5 minutes. The supernatant was drawn off and the

pellet was frozen and stored (220uC) prior to ECS characteriza-

tion.

qRT-PCR Analysis
RNA was extracted from sperm using the RNeasy extraction kit

(Qiagen, Crawley, UK), as suggested by the manufacturer.

Quantitative real time reverse transcriptase-polymerase chain

reaction (qRT-PCR) assays were performed using the SuperScript

III Platinum Two-Step qRT-PCR Kit (Invitrogen, Carlsbad, CA,

USA) as reported [63]. One mg total RNA was used to produce

cDNA with 10 U/mL SuperScript III reverse transcriptase, in the

presence of 2 U/mL RNaseOUT, 1.25 mM oligo(dT)20, 1.25 ng/

mL random hexamers, 5mM MgCl2, 0.5 mM dNTP mix and

DEPC-treated water. The reaction was performed using the

following qRT-PCR program: 25uC for 10 min, 42uC for 50 min,

85uC for 5 min; then, after addition of 0.1 U/mL of E. coli RNase

H, the product was incubated at 37uC for 20 min. The target

transcripts were amplified using an ABI PRISM 7700 sequence

detector system (Applied Biosystems, Foster City, CA), with the

following primers: human CB1 F (59-

CCTTTTGCTGCCTAAATCCAC-39); human CB1 R (59-

Endocannabinoid System in Human Sperm
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CCACTGCTCAAACATCTGAC-39); human CB2 F (59-

TCAACCCTGTCATCTATGCTC-39); human CB2 R (59-AGT-

CAGTCCCAACACTCATC-39); human TRPV1 F (59-TCACC-

TACATCCTCCTGCTC-39); human TRPV1 R (59-

AAGTTCTTCCAGTGTCTGCC-39); human NAPE-PLD F

(59-TTGTGAATCCGTGGCCAACATGG-39); human NAPE-

PLD R (59-TACTGCGATGGTGAAGCACG-39); human FAAH

F (59-CCCAATGGCTTAAAGGACTG-39); human FAAH R

(59-ATGAACCGCAGACACAAC-39); human DAGL F (59-

TTCCAAGGAGTTCGTGACTGC-39); human DAGL R (59-

TTGAAGGCCTTGTTGTCGCC-39); human MAGL F (59-

ATGCAGAAAGACTACCCTGGGC-39); human MAGL R

(59-TTATTCCGAGAGAGCACGC-39); human b-actin F (59-

TGACCCAGATCATGTTTGAG-39); human b-actin R (59-

TTAATGTCACGCACGATTTCC-39). b-Actin was used as

housekeeping gene for quantification. One ml of the first strand

of cDNA product was used (in triplicate) for amplification in 25 ml

reaction solution, containing 12.5 ml of Platinum SYBR Green

qPCR SuperMix-UDG (Invitrogen, Carlsbad, CA, USA) and

10 pmol of each primer. The following PCR program was used:

95uC for 10 min; 40 amplification cycles at 95uC for 30 sec, 56uC
for 30 sec, and 72uC for 30 sec [63].

Expression of ECS Elements
Sperm homogenates (50 mg/lane) were subjected to SDS-PAGE

on a 10% polyacrylamide gel and electroblotted onto a

nitrocellulose membrane as described [63]. Blots were blocked

with 10% non-fat dry milk and 5% bovine serum albumin for 2 h,

and then incubated with anti-NAPE-PLD (diluted 1:1000), anti-

FAAH (diluted 1:1000), anti-DAGL (diluted 1:1000), anti-MAGL

(diluted 1:200), anti-CB1 (diluted 1:100), anti-CB2 (diluted 1:300),

anti-TRPV1 (diluted 1:200) and anti-b-actin (diluted 1:1000)

primary antibodies. After washing, filters were incubated with the

horseradish peroxidise (HRP)-conjugated secondary antibody

(diluted 1:1000) and the detection was carried out using West

Dura Chemiluminescence System [63]. Protein expression levels

were quantified by densitometric analysis, using the ImageJ

software after normalization with b-actin [64].

Protein expression of ECS elements was also determined by

enzyme linked immunosorbent assay (ELISA), as reported [65].

Briefly, wells were coated with sperm homogenates (20 mg/well)

and were incubated for 1 h at room temperature with the same

antibodies and at the same dilutions used in Western blotting

analysis. After rinsing three times with 5% BSA/PBS-Tween 20,

100 ml of HRP-conjugated secondary antibody (diluted 1:5000)

was added and the ELISA plate was further incubated for 30 min

at room temperature. The HRP enzymatic activity was deter-

mined by the addition of 100 mL/well of tetramethylbenzidine

(TMB) containing H2O2 (0.002%), and the absorbance was read

on a Multiskan ELISA Microplate Reader (Thermo Labsystems,

Bevery, MA, USA) at 450 nm.

AEA Metabolism
The synthesis of [3H]AEA by NAPE-PLD was assayed in sperm

extracts (200 mg/test), by using 100 mM [3H]NArPE and reversed

phase-high performance liquid chromatography (RP-HPLC),

coupled to online scintillation counting [59]. The hydrolysis of

10 mM [3H]AEA by FAAH was assayed in sperm extracts (50 mg/

test), by measuring the release of [3H]ethanolamine as reported

[59].

2-AG Metabolism
The synthesis of 2-AG by DAGL was evaluated in sperm

homogenates (200 mg/test) by measuring the release of [14C]2-AG

from [14C]DAG by thin layer chromatography and scintillation

counting [50]. The hydrolysis of 2-AG by MAGL was assayed by

measuring the release of [3H]glycerol from [3H]2-OG by

scintillation counting [50].

Receptor Binding Assays
For cannabinoid receptors studies, membrane fractions from

sperm were prepared as reported [44], and were stored at –80uC.

Membrane fractions (50 mg/test) were used in rapid-filtration

assays [44] with the synthetic cannabinoid [3H]CP55.940

(400 pM), that binds to both CB1 and CB2 receptors [66].The

binding of the TRPV1 agonist [3H]RTX (500 pM) was also

evaluated by rapid-filtration assays [48]. In all experiments,

unspecific binding was determined in the presence of cold agonists

(1 mM CP55.940 or 1 mM RTX), as reported [65].

Endogenous Levels of eCBs
Purified sperm and seminal plasma were subjected to lipid

extraction with chloroform/methanol (2:1, v/v), in the presence of

d8-AEA and d8-2-AG as internal standards [67]. The organic

phase was dried and then analysed by liquid chromatography-

electrospray ionization-mass spectrometry (LC-ESI-MS), using a

single quadrupole API-150X mass spectrometer (Applied Biosys-

tem, CA, USA) coupled with a Perkin Elmer LC system (Perkin

Elmer, MA, USA). Quantitative analysis was performed by

selected ion recording over the respective sodiated molecular ions

[48].

Statistical Analysis
Data were analyzed in the GraphPad Prism statistical PC

program using the non-parametric Mann-Whitney U-test (Graph-

Pad Software, San Diego, CA). A level of p,0.05 was considered

statistically significant. All data were reported as mean 6 S.E.M.

of at least three independent experiments, each performed in

duplicate.

Results

Demographics of Semen from Fertile and Infertile Men
Semen from fertile donors had sperm concentrations ranging

from 48–136 million/mL, morphologies of 5–16% and motilities

of 24–62% (Table 1). Semen from infertile patients had

concentrations of 2–207 million/mL, morphologies of 2–17%

and motilities of 1–66% (Table 1). No significant differences were

found between fertile and infertile men. These data show that

none of the parameters routinely used for semen analysis is

indicative of a man’s fertility potential.

Table 1. Demographic data of fertile and infertile men.

Parameters Fertile donors Infertile men

Men included (n) 30 150

Male age (years) 34.460.9 37.660.6

Semen volume (ml) 3.260.8 3.761.3

Sperm concentration
(106ml-1)

83.3612.8 68.1624.7

Progressive motility (%) 45.6613.9 46.6614.2

Normal morphology (%) 12.763.2 10.164.1

Values are expressed as mean 6 SD, P.0.005 is NS.
doi:10.1371/journal.pone.0047704.t001
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Expression of ECS Genes and Proteins in Sperm from
Fertile and Infertile Men

The results of qRT-PCR experiments on gene expression of the

main components of ECS in sperm from fertile and infertile men

are shown in Table 2. In terms of AEA metabolism, NAPE-PLD

and FAAH genes were expressed to similar extents in both groups.

Instead, a significant decrease of DAGL (p,0.01) and MAGL

(p,0.05) mRNA levels was found in infertile versus fertile sperm. In

addition, the mRNA levels of both CB1 and CB2 receptors were

lower in infertile than fertile sperm (p,0.05). Furthermore, a trend

towards decreased mRNA levels of TRPV1 was observed in

infertile versus fertile sperm (Table 2).

Next, to determine the possible changes of ECS elements at

protein level between fertile and infertile sperm, Western blot

analysis was performed. Figure 1A shows a representative

immunoblot of fertile versus infertile sperm obtained from single

donors. Specific anti-NAPE-PLD, anti-FAAH, anti-DAGL, and

anti-MAGL antibodies, as well as anti-CB1, anti-CB2 and anti-

TRPV1 antibodies recognized a single immunoreactive band of

the expected molecular size, both in fertile and infertile sperm.

Protein levels of ECS elements, analyzed by densitometry, did not

change between the two groups (Fig. 1B), an observation that was

corroborated by a more quantitative ELISA analysis (Fig. 1C).

Incidentally, the presence of CB1, CB2, TRPV1, NAPE-PLD and

FAAH in fertile human sperm extends previous findings [48],

whereas the presence of DAGL and MAGL in these cells is

unprecedented. On a general note, some discrepancies were

observed between the mRNA and protein expression of the ECS

elements analyzed. However, it should be recalled that disparities

among mRNA abundance and protein levels of proteins are not

unprecedented [68], also in the context of the ECS [63–64,69]. It

can be speculated that distinct regulatory mechanisms of the

steady state levels of mRNAs and proteins might be responsible for

the observed differences.

Activity of ECS Elements in Sperm from Fertile and
Infertile Men

Table 3 shows the activity of ECS elements tested in sperm from

fertile and infertile men. Interestingly, NAPE-PLD and FAAH

activities were significantly decreased in sperm from infertile versus

fertile men. In particular, in infertile sperm NAPE-PLD and

FAAH were reduced respectively compared with ,25% and

,50% of the values in fertile sperm. In addition, a trend towards

decreased DAGL and MAGL activities was observed in infertile

versus fertile sperm. Interestingly, the ratio between FAAH and

NAPE-PLD activity (from ,19 to ,40) and that between MAGL

and DAGL activity (from ,2.5 to ,5.0) almost doubled in

infertile versus fertile sperm (Table 3). Therefore, infertile sperm

seem to improve the overall catabolism of eCBs. Also a slight, yet

not statistically significant, decrease of pan-CBR binding was

found in sperm from infertile versus fertile men, and a dramatic

decrease of TRPV1 binding was detected in infertile versus fertile

sperm. Since the mRNA and protein expression of the latter

receptor differed little between fertile and infertile sperm, it is

proposed that a different intracellular localization might have

masked the binding site of TRPV1 in infertile sperm, thus

preventing its accessibility by the ligand. Unfortunately, the

paucity of sperm samples from donors with proven fertility did not

allow further investigation of this hypothesis, nor was further

assessment of receptor functionality possible (e.g., in sperm

capacitation or calcium mobilization assays). Further studies are

needed to elucidate the characteristics of TRPV1 fully.

Endocannabinoid Levels in Seminal Plasma and Sperm
from Fertile and Infertile Men

Consistent with the activity data, a significant reduction in AEA

(p,0.0001) and 2-AG (p,0.01) levels was found in seminal

plasma of infertile versus fertile men, but not in infertile versus fertile

sperm (Table 4). Moreover, a higher content of 2-AG compared

with that of AEA was detected in all groups tested, and overall

infertile samples presented a lower amount of eCBs with respect to

fertile samples (Table 4).

Discussion

Previous studies demonstrated the presence of a fully functional

AEA-related ECS in sperm obtained from sea urchin [43], frog

[70], mouse [50], boar [44], bovine [71], and human [48].

Recently, our group has also provided evidence that the AEA-

binding TRPV1 receptor could play a role in the acquisition of

sperm fertilizing ability in humans [48].

In order to further our understanding of the role of ECS in male

fertility, here we investigated AEA and 2-AG metabolism in sperm

from infertile versus fertile men, aiming at ascertaining any

difference in the expression and/or activity of ECS elements

possibly associated with male infertility. We found a substantial

modulation of AEA metabolism in sperm from infertile men. The

biosynthesis of AEA through NAPE-PLD and, to a lesser extent,

its degradation by FAAH, were both significantly impaired in

infertile versus fertile sperm, leading to a significant reduction of

AEA content in seminal plasma of infertile sperm. These results

are somewhat reminiscent of previous data obtained in maternal

lymphocytes, where an association between decreased activity of

FAAH and early pregnancy failure was demonstrated [72]; yet, in

women who miscarried the AEA content in blood increased [73].

Here, low AEA levels is in keeping with the decreased CB1 and

CB2 binding observed in sperm from infertile men. In this context,

high intracellular levels of AEA are essential to promote the

fertilizing ability of both boar [44], bovine [74] and human sperm

[48], by activating TRPV1 receptors at an intracellular binding

site. Indeed, TRPV1 ion channels are key players in capacitation

and acrosome reaction [75], which are critical steps in sperm

fertilizing ability [76–78].

Mammalian sperm cannot penetrate the oocyte’s zona pellucida

immediately after ejaculation. A final stage of maturation called

capacitation must first be completed. Capacitation is the process

during which sperm’s motility pattern changes from progressive

Table 2. Gene expression at mRNA level of ECS elements in
human sperm.

mRNA levela Fertile sperm Infertile sperm

NAPE-PLD 13.668.0 7.066.0

FAAH 1.260.3 0.460.1*

DAGL 25.5611.7 0.860.4**

MAGL 4.161.7 0.860.5*

CB1 57.1631.6 2.261.5*

CB2 32.9623.6 13.5612.4*

TRPV1 12.969.4 7.366.2

Values are expressed as mean 6 S.E.M.
aExpressed as arbitrary unit. The amount of target transcripts, normalized to the
housekeeping gene (b-actin), was calculated using the comparative CT method.
*p,0.05 versus fertile.
**p,0.01 versus fertile.
doi:10.1371/journal.pone.0047704.t002
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motility to a very energetic, non-progressive pattern hyperacti-

vated motility where increased flagellar curvature and wider

lateral head movements provide the sperm with more strength to

penetrate the outer vestments and cumulus cells of the oocyte.

This process is facilitated by a calcium influx. Another feature of

capacitation that further aids the process of fertilization is the

sperm’s ability to undergo the acrosome reaction. The regulation

of this capacitated state is closely associated with the sperm’s

proximity to the oocyte. If the process is initiated too early, that

sperm will be infertile [76–78].

In this context, AEA takes part in regulating sperm capacitation,

by producing an increase in sperm calcium concentration via

TRPV1 channels [71,74]. The consistent absence of detectable

TRPV1 activity in infertile sperm, concomitant with the low levels

of AEA detected in seminal plasma of infertile men could lead to a

reduced fertilizing capacity of AEA. In addition, as TRPV1 ion

channels contribute to the choice between cell survival and death

Figure 1. Protein expression of the ECS elements in human sperm. Representative Western blots (A) and densitometric analysis of the
immunoreactive bands (B) of the ECS elements in fertile and infertile sperm. The expected molecular mass of each protein is reported on the right-
hand side. C) Protein content of the ECS elements determined by ELISA assay in fertile and infertile sperm, expressed as absorbance units at 450 nm.
doi:10.1371/journal.pone.0047704.g001

Table 3. Activity of ECS elements in human sperm.

Specific Activity Fertile sperm Infertile sperm

NAPE-PLDa 5769 1462***

FAAHa 1067688 5616155*

DAGLa 236690 140640

MAGLa 620672 676644

CBRb 147647 70621

TRPV1b 9161 , LOD

Values are expressed as mean 6 S.E.M.
aExpressed as pmol/min per mg of protein.
bExpressed as fmol/mg of protein.
*p,0.05 versus fertile.
***p,0.0001 versus fertile.
LOD, limit of detection (10.060.1 fmol/mg of protein).
doi:10.1371/journal.pone.0047704.t003

Table 4. Endocannabinoid levels in human sperm.

Endogenous content Fertile sperm Infertile sperm

AEA in sperma 0.960.3 0.860.1

AEA in seminal plasmab 26.463.6 7.361.2***

2-AG in sperma 37.969.2 31.366.8

2-AG in seminal plasmab 218.8655.4 56.7614.1**

Values are expressed as mean 6 S.E.M.
aExpressed as pmol/mg of protein.
bExpressed as pmol/ml.
**p,0.01 versus fertile.
***p,0.0001 versus fertile.
doi:10.1371/journal.pone.0047704.t004
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during spermatogenesis in murine sperm [49], a decrease of sperm

TRPV1 could be at least partly responsible for the oligospermia of

infertile men. In addition, AEA present in both seminal plasma

and uterine fluids prevents premature capacitation in freshly

ejaculated sperm via a CB1-dependent signalling pathway [10,53],

a defense mechanism that may be impaired in infertile men.

The ECS plays a physiological role in maintaining a quiescent,

uncapacitated condition before sperm interacts with the oocyte

[47]. Therefore, it may be speculated that the reduction of AEA

causes infertile sperm to lose their quiescent state and with that,

the ability to prevent premature capacitation. This could then

precipitate a premature acrosome reaction rendering that sperm

infertile by its inability to penetrate an oocyte in vivo, or indeed in

assisted conception such as in in vitro fertilization. This hypothesis

is further supported by work from one of our groups [79], where

the converse occurred: direct exposure of sperm to recreational

concentrations of THC reduced acrosome reactions in vitro.

Using an animal model, we have also shown how the

deregulation of the endocannabinoid system markedly impaired

spermatogenesis with reductions in total sperm count, depleted

spermatogenic efficiency and impaired sperm motility by short and

long term exposure to HU210, a selective agonist for CB1 and CB2

receptors [3].

Additionally, the present findings show for the first time that

components related to 2-AG metabolism are present in human

sperm, extending recent data in murine sperm [50]. Much alike

AEA, we report an increased synthesis: degradation ratio of 2-AG

in infertile versus fertile sperm, paralleled by a lower concentration

of 2-AG in seminal plasma of infertile versus fertile men.

Interestingly, a regulatory role of 2-AG has been identified at

the start up of mouse epididymal sperm. In particular, along the

epididymis, sperm from caput to cauda encounter a decreasing

concentration of 2-AG, that induces them to acquire the potential

to become motile through CB1 activation [80]. Such a 2-AG

gradient is controlled by a tight equilibrium between DAGL and

MAGL activity in the epididymal tissues [80]. In addition AEA

and 2-AG, by acting extracellularly at CB1 (and AEA also

intracellularly at TRPV1), may play a key-role in controlling the

spatio-temporal interaction of sperm with oocyte and sperm–

oocyte fusion [50]. Therefore, in infertile men a decrease of 2-AG

levels in seminal plasma could also reduce the fertilizing capacity

of sperm through a mechanism yet to be explored.

Failed fertilization occurs in up to 10% of in vitro fertilization

treatment cycles. Since the majority of fertility treatments are self-

funded, this is a major expense to infertile couples. The current

evaluation of the fertility potential of the male partner, and hence

the fertility treatment choice, is based on semen analysis. However,

semen parameters have failed to discriminate fertile and sub-fertile

men as seen in this study and also reported by Giwercman and

colleagues [81]. The present identification of the ECS as a family

of new biomarkers to determine male infertility with more

accuracy has enormous potential in the fertility clinic.

In conclusion, we report for the first time the presence of ECS

components of 2-AG-related metabolism in human sperm and we

show an overall reduction of AEA and 2-AG biosynthesis in sperm

from infertile versus fertile men. More interestingly, these findings

suggest that the functional loss of TRPV1 in infertile sperm could

cause a loss of capacitation including the acrosome reaction, thus

affecting negatively the interaction between sperm and oocyte, and

ultimately resulting in fertilization failure. This is the first

characterisation of ECS in human fertile versus infertile sperm,

and provides compelling data that identify a previously unknown

defect in male fertility. Our results open the opportunity for

therapeutic exploitation of ECS-targeted drugs to treat male

fertility problems, as well as for exploiting differences in semen

ECS constituents to diagnose infertility. The possible involvement

of new players of endocannabinoid signalling, such as GPR55,

remains to be addressed in an independent investigation.
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