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Abstract

Morphine belongs among the most commonly used opioids in medical practice due to its strong analgesic effects.
However, sustained administration of morphine leads to the development of tolerance and dependence and may cause
long-lasting alterations in nervous tissue. Although proteomic approaches enabled to reveal changes in multiple gene
expression in the brain as a consequence of morphine treatment, there is lack of information about the effect of this drug
on heart tissue. Here we studied the effect of 10-day morphine exposure and subsequent drug withdrawal (3 or 6 days) on
the rat heart proteome. Using the iTRAQ technique, we identified 541 proteins in the cytosol, 595 proteins in the plasma
membrane-enriched fraction and 538 proteins in the mitochondria-enriched fraction derived from the left ventricles.
Altogether, the expression levels of 237 proteins were altered by morphine treatment or withdrawal. The majority of
changes (58 proteins) occurred in the cytosol after a 3-day abstinence period. Significant alterations were found in the
expression of heat shock proteins (HSP27, a-B crystallin, HSP70, HSP10 and HSP60), whose levels were markedly up-
regulated after morphine treatment or withdrawal. Besides that morphine exposure up-regulated MAPK p38 (isoform
CRA_b) which is a well-known up-stream mediator of phosphorylation and activation of HSP27 and a-B crystallin. Whereas
there were no alterations in the levels of proteins involved in oxidative stress, several changes were determined in the levels
of pro- and anti-apoptotic proteins. These data provide a complex view on quantitative changes in the cardiac proteome
induced by morphine treatment or withdrawal and demonstrate great sensitivity of this organ to morphine.
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Introduction

Morphine is one of the most effective drugs known for pain-

relieving effects and it has been successfully used in medical

practice for a long time as a powerful analgesic to treat many kinds

of chronic pain [1–3]. Morphine exerts its physiological effects

through opioid receptors (ORs), which belong to the large family

of G protein-coupled receptors (GPCRs) [4]. Because ORs are

mainly expressed in the central nervous system [5–6], and

morphine is a potentially highly addictive substance [7–9], a great

deal of attention has been paid to studying the impact of morphine

and other opioids on nervous tissue.

Chronic administration of morphine was found to induce

changes in OR-mediated signaling, which may underlie the

development of opioid tolerance and dependence [10–11].

Importantly, neuronal changes induced by opioids have been

observed to persist for a long time following cessation of drug

exposure [12]. A number of studies indicated that morphine affects

the expression of genes involved in processes as diverse as cell

signaling [13–16], transcription [17–18], apoptotis [19–20] and

cytoskeleton assembly [21]. Nowadays, there is increasing

evidence to show that morphine can alter protein expression in

different brain areas, even following a single dose. Numerous

proteomic studies further expanded the list of brain proteins

potentially altered by morphine [22–31]. Protein changes induced

by morphine treatment have also been observed in in vitro

experiments on the human neuroblastoma SH-SY5Y cell line,

CHO (Chinese hamster ovary) epithelial cells [32–33] and

primary cortical astrocytes [34].

Whereas the pharmacology and function of opioids in the

central nervous system have been quite extensively characterized,

the actions of these drugs in peripheral tissues are relatively less

understood. It has been well established that morphine may exert

significant effects on cardiovascular system [35] and it is used for

treatment of some types of heart disease [36]. Morphine has also

been studied in connection with its potential cardioprotective

effects against ischemia-reperfusion injury [37–40]. Despite its

broad therapeutic application, the current knowledge regarding

morphine effects on myocardial protein expression is rather

limited. In our previous study, we found that prolonged

administration of high doses of morphine to rats up-regulated

the expression of some cytoprotective proteins in the left

ventricular myocardium, such as ORP150 (hypoxia up-regulated

protein1), GRP78 (78 kDa glucose-regulated protein), HSP27

(heat shock protein beta-1) and HSC71 (heat shock cognate

71 kDa protein) [41]. However, information about the possible
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effect of morphine withdrawal on the expression of myocardial

proteins is missing.

Our present work dealing with the impact of prolonged

morphine treatment and subsequent withdrawal on the rat heart

proteome has been designed to allow extension of previous

findings which were based on a rather limited number of protein

spots showing alterations in intensity on 2D gels. For this purpose

we used a novel proteomic method called iTRAQ (isobaric tag for

relative and absolute quantitation). Besides two-dimensional

differential in-gel electrophoresis (2D-DIGE) or proteomic meth-

ods based on stable isotope labeling (e.g., isotope-coded affinity tag

(ICAT) and stable isotope labeling with amino acids in cell culture

(SILAC)), the iTRAQ technique has proved to be very suitable

especially for comparative studies in which more than two samples

should be evaluated in parallel [42–43]. This approach was

demonstrated to be more sensitive than 2D-DIGE and ICAT [44].

In contrast to the methods using stable isotope labeling, iTRAQ

enables all samples to be processed simultaneously, which reduces

analysis time [45]. The big advantage of iTRAQ over 2D

electrophoresis, which is the most commonly used method in

proteomics, lies in the possibility of identifying low abundant

proteins [46] as well as integral membrane proteins [47].

Membrane proteins must be solubilized by detergents before 2D

electrophoresis, which can be quite a difficult task [48–49].

iTRAQ is a s powerful proteomic approach based on usage of four

amine specific isobaric reagents which label the primary amines of

peptides from four different biological samples. These isobaric

mass labels are placed at the N-termini and lysine side chains of

peptides and produce abundant MS/MS signature ions at m/z

114.1, 115.1, 116.1, and 117.1. Their relative peak areas are

determined by the relative proportions of the labeled peptides

[43]. Using this proteomic technique we succeeded in identifying

1090 proteins and revealed that both prolonged morphine

treatment and withdrawal is accompanied with wide-ranging

changes in myocardial proteins involved in different functions.

Methods

Animal Model
All animal experiments complied with the Guide for the Care

and Use of Laboratory Animals (NIH Publication No. 85–23,

revised 1996) and they were performed with the approval of the

Animal Care and Use Committee of the Institute of Physiology,

Academy of Sciences of the Czech Republic (Protocol #52/2008).

Adult male Wistar rats were housed in groups of 3–4 in standard

boxes enriched with saw-dust bedding. They were maintained on

a 12-h light/dark cycle with ad libitum access to food and water.

Control group of rats (C, n= 10) received an intramuscular (i.m.)

injection of sterile normal saline and three groups of animals

(n = 10 each) were treated with morphine (10 mg/kg/day, i.m.

injection for 10 consecutive days). The first group of morphine-

exposed animals was sacrificed 24 h (M), the second group 3 days

(MW-I) and the third group 6 days (MW-II) after the last dose to

assess the presumed impact of drug withdrawal. After terminating

the experiments, hearts were rapidly excised, dissected, snap-

frozen in liquid nitrogen and stored at 280uC until use.

Cardiac Tissue Processing
Samples of cardiac tissue were processed basically the same way

as described previously [41]. Briefly, the left ventricles were cut

into small pieces by scissors and then homogenized on ice using an

Ultra-Turrax homogenizer. After subsequent homogenization in

a glass-Teflon homogenizer, the suspension was centrifuged at low

speed for a short time and the resulting postnuclear supernantant

(PNS) collected. The pellet was re-homogenized and the second

part of the PNS collected after low-speed centrifugation was mixed

with the PNS obtained in the preceding step. The final PNS was

fractionated on a Percoll density gradient into three major

fractions: cytosol (CS) and plasma membrane (PM)- and

mitochondria (MT)-enriched fractions. The whole fractionation

procedure is described in detail on a schematic flow diagram

(Fig. 1). The final aliquots of cytosol, PM- and MT-enriched

fractions were snap-frozen in liquid nitrogen and stored at 280uC
until use.

Proteomic Analysis
For the iTRAQ analysis acetone precipitated protein samples

(100 mg each) were dissolved in buffer provided in iTRAQ 4-plex

reagent kit (AB Sciex, Foster City, CA) and treated as described by

manufacturer. Labeled samples were pooled and precipitated with

acetone. Pellet was dissolved in 2 M urea in LC-MS grade water

prior to isoelectric focusing on 17 cm immobilized pH gradient

strips pH 3–10 (Bio-Rad, Hercules, CA) for 40,000 VHrs. The

strip was cut into slices 2 mm wide, which were separately

extracted with 50% acetonitrile and 1% trifluoroacetic acid.

Supernatant was dilluted 1:1 by water and used for LC-MALDI.

LC-MALDI analyses were performed on Ultimate 3000 HPLC

system (Dionex, Framingham, MA) coupled to Probot micro-

fraction collector (Dionex). Tryptic peptides were loaded onto

a PepMap 100 C18 RP column (3 mm particle size, 15 cm long,

75 mm internal diameter; Dionex) and separated by a gradient of

5% (v/v) acetonitrile, 0.1% (v/v) trifluoroacetic acid to 80% (v/v)

acetonitrile, 0.1% (v/v) trifluoroacetic acid over a period of

60 min. The flow rate was set to 300 nL/min. Eluate was mixed in

proportion of 1:3 with matrix solution (2 mg/mL a-cyano-4-
hydroxycinnamic acid in 80% ACN) prior to spotting onto

a MALDI target. Spectra were acquired on 4800 Plus MALDI

TOF/TOF analyzer (Applied Biosystems/MDS Sciex) equipped

with a Nd:YAG laser (355 nm, firing rate 200 Hz). All spots were

first measured in MS mode and then up to 12 strongest precursors

were selected for MS/MS analysis which was performed with

collision energy of 1 kV and operating pressure of collision cell set

to 10–6 Torr. Tandem mass spectra were processed with 4000

Series Explorer with subtract baseline enabled (peak width 50),

Gaussian smoothing enabled (filter width 5), minimum signal to

noise 8, local noise window width 250 m/z, minimum peak width

at full width half max 2.9 bins, cluster area signal to noise

optimization enabled (threshold 15), flag monoisotopic peaks

enabled.

Protein identification and quantitation were performed using

Protein Pilot 4.0 (AB Sciex). MS/MS spectra were searched

against Rattus norvegicus sequences assembly downloaded from

GenBank (www.ncbi.nlm.nih.gov/protein) with the following

settings: Trypsin digestion (semitryptic peptides allowed), methyl

methanethiosulfonate modification of cysteines, iTRAQ 4-plex

labeled peptides, instrument 4800, no special factors, default

iTRAQ isotope correction settings, quantification, bias correction,

background correction, biological modifications and thorough ID

parameters selected. Probabilities of modifications were not

altered. Detected protein threshold (unused protein score and

confidence of results) was set to 2.0 and 99.0% and false discovery

rate analysis was enabled. Proteins sharing a set of peptides were

grouped automatically with default Pro GroupTM Algorithm.

Ratios of iTRAQ were calculated with default settings of the

Protein Pilot. Protein fold change (iTRAQ ratio for individual

protein) was calculated automatically by the Protein Pilot software

as a weighted average of Log iTRAQ ratios determined for

individual peptides belonging to the particular protein after

Morphine and Myocardial Protein Expression
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background subtraction. To estimate the false discovery rate

(FDR) a decoy database search was performed. For each protein

ratio the Protein Pilot reported p-value and EF (error factor). To

be considered as differentially expressed, individual proteins had to

fulfill the following statistical criteria: P value,0.05, EF,1.5 and

average iTRAQ ratio.2.

Electrophoresis and Western Blotting
Different preparations of myocardial fractions were solubilized

in Laemmli sample buffer and proteins separated by standard

SDS-PAGE. After electrotransfer onto nitrocellulose membranes,

selected proteins were detected on Western blots using appropriate

antibodies. Immunochemically reactive proteins were visualized

Figure 1. Flow diagram of the fractionation procedure for the rat myocardium. The left ventricles were cut into small pieces with dissecting
scissors, homogenized using an Ultra-Turrax homogenizer and subsequently with a motorized glass-Teflon homogenizer. The postnuclear
supernatant (PNS I) after low-speed centrifugation was collected and the pellet rehomogenized in a glass-Teflon homogenizer. The resulting
postnuclear supernatant (PNS II) was collected, mixed with PNS I and applied on the top of 18% Percoll density gradient. After high-speed
centrifugation, the top portion of the gradient mainly containing soluble material was further centrifuged to yield a clear cytosolic fraction. The upper
layer enriched in plasma membranes (PM) and the lower layer rich in mitochondria (MT) were separately diluted in TME buffer and spun down to
remove the Percoll, which formed a compact glassy pellet at the bottom of the centrifuge tube. The sedimented PM or MT containing material
formed a loose white layer on the Percoll pellet and could be easily collected by pipetting. All centrifugation steps were performed at 4uC and tubes
were kept on ice during samples collection.
doi:10.1371/journal.pone.0047167.g001

Morphine and Myocardial Protein Expression

PLOS ONE | www.plosone.org 3 October 2012 | Volume 7 | Issue 10 | e47167



by conventional enhanced chemiluminiscence detection (Pierce

Biotechnology, Rockford, IL, USA). The Western blots were

scanned and evaluated quantitatively by means of densitometry

using ImageQuantTM TL software (GE Healthcare, Chalfont St.

Giles, UK).

Results and Discussion

Identification of Proteins in Myocardial Fractions
The left ventricles isolated from control (C), morphine-treated

(M) and morphine-withdrawn (MW-I and MW-II) rats were

subfractionated into cytosolic (CS), plasma membrane (PM)- and

mitochondria (MT)-enriched fractions (Fig. 1). Enrichment of

these fractions with typical cytosolic, plasma membrane-bound or

mitochondrial proteins was demonstrated previously [41]. Proteins

present in each preparation were digested with trypsin and peptide

populations in the individual fractions were labeled with distinct

iTRAQ reagents. The corresponding peptide populations from

samples of all four experimental groups were then combined for

further analyses.

Using this approach, 541 proteins were identified in the cytosol,

595 proteins in the PM-enriched fraction and 538 proteins in the

MT-enriched fraction. Some of these proteins were found in two

or all three fractions simultaneously. Altogether, 1090 different

proteins were identified in all three fractions prepared from rat

heart. The proteins detected in each fraction were divided

according to their localization or function and their distributions

depicted in the form of pie charts (Fig. 2).

Almost three-quarters of all proteins determined in the cytosol

were specific only for this fraction and were not present in the

other two fractions or at least they did not occur there in

detectable amounts. On the other hand, around half of the

proteins found in the PM-enriched fraction were present also in

the MT-enriched fraction, and vice versa. However, relatively

extensive cross-contamination of these two fractions did not

preclude the assessment of many typical plasma membrane or

mitochondrial proteins in these preparations. Although the

proteins found in both PM- and MT-enriched fractions most

often belonged to the mitochondrial compartment, the PM-

enriched fraction harbored a far greater number of PM-bound

proteins than MT-enriched fraction and it was enriched in such

PM proteins as caveolin 1, caveolin 2 and caveolin 3, flotillin 1,

Gb2 subunit, AP-2 a1 subunit and AP-2 s1 subunit. Whereas four

different subunits of spectrin (erythrocytic spectrin a1, erythroid
spectrin b, spectrin b2, a-fodrin (spectrin a2)), which represents an

important scaffold protein crosslinking the PM with actin skeleton,

were detected only in the PM-enriched fraction, non-erythrocytic

spectrin b1 was found only in the MT-enriched fraction. Some of

the PM-bound proteins (Na,K-ATPase a1 subunit precursor,

Na,K-ATPase a2 subunit precursor, Gai2 subunit) were detected

in both membrane fractions and others (clathrin heavy chain) in

the PM-enriched fraction and cytosol.

Protein classification according to their functional categories

revealed that the largest group in each of the three fractions

comprised the proteins participating in metabolic processes (Fig. 2).

This finding is in agreement with some previous reports indicating

a high proportion of metabolic proteins in the rat cardiac

proteome [50–51]. Interestingly, both membrane fractions (PM

and MT) contained approximately twice more transport proteins

than the cytosolic fraction.

Proteins were considered as up- or down-regulated only if at

least two-fold change was recorded in the protein abundance.

Levels of 237 proteins were found to be altered in myocardial

samples from morphine-exposed or withdrawn rats as compared

with the corresponding controls. In order to describe synoptically

which cell functions might have been affected by morphine

treatment or withdrawal, distribution of altered proteins according

to their function has been depicted using Venn diagrams for each

group (M, MW-I and MW-II) and fraction (CS, PM and MT)

(Fig. 3, 4 and 5).

The proteins whose levels were altered by morphine treatment

or withdrawal are listed in Table S1 (see Supplement). Whereas

administration of morphine for 10 days changed the expression of

72 myocardial proteins, subsequent 3- or 6-day drug abstinence

was accompanied by alteration in 105 or 60 proteins, respectively.

Proteins with significantly altered expression levels were unevenly

distributed between all three myocardial fractions: 121 proteins

were found in the cytosol, 30 proteins in the PM-enriched fraction,

69 proteins in the MT-enriched fraction and 17 altered proteins

occurred in two or three fractions simultaneously. The majority of

proteins with altered expression were found in the cytosolic

compartment and most changes (58) appeared 3 days after

morphine withdrawal. Hence, drug withdrawal was apparently

associated with more profound alterations in the rat cardiac

proteome than sustained morphine treatment alone. Most of the

altered proteins included those involved in the metabolism,

structural support and regulation of protein expression. All the

identified proteins whose levels were not significantly altered are

listed in Table S2 (see Supplement).

Proteins Involved in Signal Transduction
All detected proteins can be arranged into several groups

according to their function or structural homology. Some proteins

such as ribosomal proteins or small G proteins (members of Rab

family, RhoA, Rac2, RAP1A, Ran or Ral-A) were not altered at

all. However, it does not mean that the fate of small G proteins

cannot be influenced by morphine treatment or withdrawal.

Interestingly, the level of GDP dissociation inhibitor 2 (GDI-2)

which regulates the translocation of GDP-bound Rabs from and to

the membrane [52] decreased 2.3 times following a 3-day

morphine abstinence period. It can be speculated that membrane

release and activation of Rab proteins might have been affected

under these conditions [53].

As mentioned above, mass spectrometry analysis allowed the

identification of some subunits of trimeric G proteins and also

some other proteins, which can be involved in signal transduction

mediated by opioid receptors. We did not reveal any alterations in

the amount of Gai2 protein, Gb2 protein, GNAS complex locus

Xlas (fragment of the long isoform of Gas protein) or subunits of c-
AMP dependent protein kinases (PKA catalytic subunit a, PKA I

regulatory subunit a, PKA II regulatory subunit a). Interestingly,
6-day morphine withdrawal resulted in up-regulation of caveolin 1

(2.0-fold) and flotillin 1 (2.1-fold), which could imply a possible

reorganization of the plasma membrane and increased formation

of caveolae and lipid rafts [54].

Although there was no detectable amount of protein kinase C

isoforms, some proteins with protein kinase activity or proteins

engaged in PKC signaling, such as PKC substrates or binding

proteins (PKC and casein kinase substrate in neurons protein 2,

PKC and casein kinase substrate in neurons protein 3, PKC d-
binding protein, PKC substrate 80K-H), were identified mainly in

the PM-enriched fraction. However, the myocardial expression of

these proteins was not affected by morphine treatment. Similarly,

no changes were found in the levels of the identified protein

phosphatases (PP1 catalytic subunit a, PP1 catalytic subunit b,
PP2A catalytic subunit b, PP2A regulatory subunit A a, PP2A
regulatory subunit B a, protein phosphatase T, protein tyrosine

phosphatase-like member a, protein tyrosine phosphatase non-

Morphine and Myocardial Protein Expression
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receptor type 11, protein-tyrosine phosphatase mitochondrial 1,

low molecular weight protein tyrosine phosphatase isoform A).

Interestingly, phospholipase C d1 (PLC-d1) was found to be up-

regulated (3.2-fold) in the cytosolic fraction after morphine

treatment, and 3 days of abstinence resulted in its marked

down-regulation (10.7-fold). PLC-d isoforms were shown to differ

from the other PLC isoforms because they are not activated by

heterotrimeric G proteins or protein phosphorylation cascades

[55]. It was proposed that this enzyme is activated by a rise in the

concentration of free cytosolic calcium generated by PLC-b and

further amplifies Ca2+ signals initiated by activation of PLC-b, -c
and -e isoforms [56]. It also can be activated by transglutaminase

II (TGII or Gah), which is an atypical G protein with GTPase and

transglutaminase activities [57]. PLC-d1 was shown to be an

Figure 2. Classification of proteins identified in the left ventricular myocardium according to their subcellular localization and
function. The proteins of each fraction (CT, PM and MT) isolated from hearts of control (C), morphine-treated (M), and morphine-withdrawn (MW-I
and MW-II) rats were labeled by isobaric reagents provided in iTRAQ 4-plex reagent kit. After LC-MALDI analyses performed on Ultimate 3000 HPLC
system and acquisition of spectra on 4800 Plus MALDI TOF/TOF analyzer, proteins were identified and quantified using Protein Pilot 4.0. Localization
and function of the proteins were assigned on the basis of current annotations in the Swiss-Prot database. Sections of the pie charts represent the
proportion of proteins found within each functional category.
doi:10.1371/journal.pone.0047167.g002
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effector and GEF protein for TGII in the a1B- and a1D-adrenergic
receptor pathways [55,57]. Our analyses allowed us to identify

some proteins which can interact with PLC-d1 such as importin b1
[58], isoform of Ral protein and calmodulins [56] or proteins

which can inhibit PLC-d1 activity such as RhoA [59], but the

expression levels of none of these proteins were affected neither by

morphine treatment nor by subsequent drug withdrawal. In-

terestingly, in our previous study based on 2D mapping we found

a 2.3-fold increase in the amount of phosphatidylinositol transfer

protein a (PITPa) in the cytosolic fraction after prolonged

administration of morphine to rats [41]. Because previous research

has shown that the presence of PITPa may enhance the activity of

PLC-d1 in HL-60 cells [60], it is highly likely that not only

morphine treatment led to up-regulation of PLC-d1 but also might

have enhanced its activity. It was previously reported that PLC-d1
has an important role in the protection mediated by tumor

Figure 3. Venn diagrams showing the distribution of myocardial proteins in the cytosolic fraction altered by morphine treatment
and withdrawal. Numbers in the individual circles or sectors refer to the number of altered proteins which were determined in the cytosolic fraction
isolated from the left ventricles of morphine-treated (M) and morphine-withdrawn for 3 days (MW-I) or 6 days (MW-II) rats. These proteins were
arranged according to their function into 16 groups.
doi:10.1371/journal.pone.0047167.g003

Morphine and Myocardial Protein Expression
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necrosis factor (TNF) receptor against adriamycin-induced

cardiotoxicity [61]. The present finding of a 3.2-fold increase of

PLC-d1 in the cytosolic fraction of myocardial samples from

morphine-treated rats suggests that this enzyme could also

participate in the molecular mechanism of cardioprotective action

of this drug. However, only future research aimed at untangling

the molecular mechanism of cardioprotection conferred by

morphine can prove or disprove this speculative hypothesis. Apart

from PLC-d1, lysophospholipase 1 and phospholipase A2 activat-

ing protein were also identified by iTRAQ analysis but myocardial

levels of these proteins were not altered by morphine.

It is known that the acute or chronic morphine treatment can

cause the elevation of free cytosolic calcium concentration via

PLC-b [62–64]. One might therefore speculate that the levels of

some calcium binding proteins or proteins involved in calcium

handling, transport and signaling could possibly be influenced by

Figure 4. Venn diagrams showing the distribution of myocardial proteins in the plasma membrane-enriched fraction altered by
morphine treatment and withdrawal. Numbers in the individual circles or sectors refer to the number of altered proteins which were determined
in the PM-enriched fraction isolated from the left ventricles of morphine-treated (M) and morphine-withdrawn for 3 days (MW-I) or 6 days (MW-II) rats.
These proteins were arranged according to their function into 16 groups.
doi:10.1371/journal.pone.0047167.g004

Morphine and Myocardial Protein Expression
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morphine treatment. Nevertheless, only histidine-rich calcium

protein identified in the PM-enriched fraction was significantly up-

regulated (3- or 3.9-fold, respectively) after 3- or 6-day drug

withdrawal. Interestingly, its level was not changed in the other

two fractions prepared from samples derived from morphine-

exposed animals (M, MW-I, MW-II), compared to the correspond-

ing controls. The other proteins in this group (calcium binding

protein, calcium regulated heat stable protein 1, calcyclin,

calmodulin 2, calnexin, calsequestrin 1, calsequestrin 2, calpain

small subunit 1, sarcalumenin, sarcoplasmic reticulum Ca2+-

ATPase, vasopressin-activated calcium-binding mobilizing recep-

tor protein) were not altered at all. These results suggest that if

Ca2+ signaling pathways were affected by morphine, this effect

need not necessarily be accompanied by marked quantitative

changes of Ca2+ binding proteins.

Figure 5. Venn diagrams showing the distribution of myocardial proteins in the mitochondria-enriched fraction altered by
morphine treatment and withdrawal. Numbers in the individual circles or sectors refer to the number of altered proteins which were determined
in the MT-enriched fraction isolated from the left ventricles of morphine-treated (M) and morphine-withdrawn for 3 days (MW-I) or 6 days (MW-II) rats.
These proteins were arranged according to their function into 16 groups.
doi:10.1371/journal.pone.0047167.g005

Morphine and Myocardial Protein Expression
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Figure 6. Immunoblot analyses of the unphosphorylated and phosphorylated forms of HSP27. Cytosolic proteins (20 mg) isolated from
the left ventricular myocardium of control (C), morphine-treated (M), and morphine-withdrawn for 3 days (MW-I) or 6 days (MW-II) rats were separated
on 15% polyacrylamide gels by SDS-PAGE and electrotransferred onto the nitrocellulose membrane. Specific primary antibodies were used for the

Morphine and Myocardial Protein Expression
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Proteins Involved in Apoptosis and Oxidative Stress
A number of studies dealing with morphine effects on cell

viability, apoptosis and oxidative stress have been published during

the past decade. It was reported that morphine treatment resulted

in apoptosis in macrophages [65–66], SH-SY5Y [67] or microglia

and neurons [68–69]. On the other hand, protective effects of

morphine were observed in macrophages [70], astrocytes [69,71]

or heart [37–38,64]. Morphine has also been shown to enhance

the generation of reactive oxygen species (ROS) in macrophages

[65] and SH-SY5Y [67]. Hence, it seems that morphine can cause

either cell apoptosis or protection depending on the cell type and

experimental context. Therefore, it is worth paying attention to

potential changes of proteins involved in apoptosis, cellular

protection and ROS generation.

Many proteins involved in cellular protection/apoptosis, which

were detected in our present study, were not altered after

morphine treatment or withdrawal, e.g. proteins that can induce

apoptosis and/or activate caspases (apoptosis-inducing factor,

diablo, C9 protein, B-cell associated protein 31, BCL2/adenovirus

E1B 19 kDa-interacting protein 3, endonuclease G, Gb2-like 1,

reticulon-3, VDAC1, SP120), proteins that protect cells against

apoptosis (CHIP28k, mitochondrial inner membrane protein,

glutathione peroxidase 4 isoform A precursor, mitochondrial

protein 18 kDa, prohibitin, protein DJ-1, vanin 1), proteins

engaged in release of cytochrome c from mitochondria into the

cytoplasm (Clu protein, growth hormone-inducible transmem-

brane protein, mitochondrial fission 1 protein, presenilin associ-

ated rhomboid like) or proteins conferring protection against

release of cytochrome c (mitochondrial OPA1, optic atrophy 1

homolog, sulphated glycoprotein 2).

We determined four proteins possibly involved in the induction

of apoptosis, expression of which was affected by morphine.

Programmed cell death 5 protein was up-regulated (2.1 fold) in the

cytosolic fraction after morphine treatment, dynamin 1 like was

up-regulated (2.6-fold) in the cytosolic fraction after a 3-day drug

abstinence period, programmed cell death 6 interacting protein

was up-regulated (2.6-fold) in the cytosolic fraction after 6-day

abstinence and lactate dehydrogenase A was down-regulated (3.4-

fold) in the cytosolic fraction after 6-day abstinence. Interestingly,

the level of the latter protein was not changed in the PM- and MT-

enriched fractions. Another four proteins were found to be altered

after morphine exposure or withdrawal that can play a role in

protection of cells against apoptosis. Cystatin B was down-

regulated (2.2-fold) and Bcl2-associated anthanogene 3 up-

regulated (2.4-fold) in the cytosolic fraction after morphine

treatment, prothymosin a was down-regulated (4.9-fold) in the

cytosolic fraction after 3 days of drug abstinence, acetyl-CoA

acyltransferase 2 was down-regulated (3.2-fold) in the MT-

enriched fraction after 6 days of abstinence (its level was

unchanged in the PM-enriched fraction and cytosol). These results

indicate that a certain imbalance between pro- and anti-apoptotic

proteins may arise in the myocardium during morphine treatment

or withdrawal. However, up-regulation of programmed cell death

5 protein in the cytosol does not necessarily mean the induction of

apoptosis because this protein is translocated from the cytosol to

the nucleus during the early stage of apoptosis [72].

It seems that if chronic morphine treatment induced apoptosis,

it would not be mediated by the formation of pores in the

mitochondrial membrane and release of cytochrome c. OPA1

protein and mitochondrial inner membrane protein, which control

the shape of mitochondrial cristae and thus may regulate

cytochrome c redistribution [73–75], were not affected by

morphine treatment or withdrawal. The expression of another

protein involved in mitochondrial fusion, mitofusin-1 [73–74], was

also not changed. Mitochondrial morphology thus did not seem to

be affected by morphine. Moreover, no release of cytochrome c

from mitochondria to the cytoplasm was observed after morphine

treatment or withdrawal; the levels of cytochrome c detected in all

three fractions were not altered.

Calpain-dependent proteolysis can contribute to cell death by

cleavage of pro-apoptotic Bid [76]. There are two different major

isoforms of calpain, m-calpain (calpain 1) and m-calpain (calpain

2), which contain a large 80 kDa catalytic subunit and a common

small 30 kDa regulatory subunit [77]. They are activated by

elevation of intracellular calcium and their proteolytic activity is

regulated by specific inhibitor calpastatin [77]. In our present

study, a small regulatory subunit of calpain, m-calpain and

calpastatin were identified. Nevertheless, the levels of these

proteins were not altered by morphine treatment or withdrawal.

In addition, expression of the majority of caspase and calpain

substrates (a-fodrin, actin, protein phosphatase 2A, vimentin,

lamin A, Ca2+-ATPase, Ga protein, PKA, ryanodine receptors,

talin, tropomyosin, tubulins, vimentin, vinculin) [78–79] identified

in our study were also not altered. Only tau and troponin T were

down-regulated (17.0-fold and 2.8-fold, respectively) after 3-day

drug abstinence. These results indicate that calpain and caspase

pathways were not significantly activated by morphine treatment

or withdrawal.

Similarly, there were no significant changes in the expression

levels of proteins involved in modulation of oxidative stress, such as

superoxide dismutase 1, superoxide dismutase 2, glutathione

peroxidase, glutathione peroxidase 4 isoform A precursor,

glutaredoxin 3, glutaredoxin 5, peroxiredoxin 2, peroxiredoxin

3, peroxiredoxin 5, peroxiredoxin 6, antioxidant enzyme B166,

catalase, protein DJ-1, thioredoxin 1, thioredoxin like protein 1,

thioredoxin domain containing 17, thioredoxin reductase 2,

protein disulfide isomerise A6, CDGSH iron sulfur domain

containing protein 1, dihydrolipoyl dehydrogenase mitochondrial.

HSPs
Some members of the family of heat shock proteins (HSPs) were

markedly affected by morphine treatment or withdrawal. Altera-

tions in HSPs expression were observed mainly in the cytosolic

fraction and less in the MT-enriched fraction. No changes were

found in the PM-enriched fraction. Heat shock 10 kDa protein 1

(HSP10) was up-regulated (2.1-fold) in the cytosolic fraction after

morphine treatment. Interestingly, this protein was up-regulated

(2.3-fold) in the cytosol and down-regulated in the MT-enriched

fraction (2.1-fold) after 6-day drug abstinence. These results

suggest that HSP10 is affected by morphine and that subsequent

withdrawal can cause its redistribution from the cytoplasm to

membrane compartments.

Heat shock 60 kDa protein (HSP60) was significantly up-

regulated only in the cytosolic fraction (and not in both membrane

fractions) after morphine treatment (2.0-fold) and a 6-day

morphine abstinence (2.0-fold). Similarly to HSP10, a slight

redistribution of HSP60 to the MT-enriched fraction (1.8-fold

increase) was found after 6-day morphine abstinence, which may

detection of unphosphorylated HSP27 (A) and HSP27 phosphorylated at Ser82 (B) and Ser15 (C). Actin was used as a loading control and the relative
levels of individual forms of HSP27 (HSP27, p-HSP27-Ser82 or p-HSP27-Ser15) after normalization were expressed as a percentage of the
corresponding control level. Data represent the mean6S.E.M. of three separate experiments; *p,0.05 vs control.
doi:10.1371/journal.pone.0047167.g006

Morphine and Myocardial Protein Expression

PLOS ONE | www.plosone.org 10 October 2012 | Volume 7 | Issue 10 | e47167



imply that both proteins may undergo a common fate. The anti-

apoptotic effect of both HSP10 and HSP60 has been well

established in several studies in which over-expression of these

proteins protected myocytes and H9C2 cells against ischemic

injury [80–81]. In addition, HSP60 have been shown to interact

with Bax/Bak proteins, thus providing protection against apopto-

sis [82].

Heat shock 70 kDa protein 1A/1B (HSP70) was markedly up-

regulated in the cytosolic fraction (15.9-fold) as well as MT-

enriched fraction (2.3-fold) after morphine treatment. This protein

was also up-regulated (6.8-fold) in the cytosolic fraction after 6

days of morphine abstinence. Importantly, it has been demon-

strated that over-expression of HSP70 protects the myocardium

from ischemic injury [83].

Two members of the family of small heat shock proteins with

cell protective effects, heat shock protein 27 kDa protein 1

(HSP27, HSPB1) and a-B crystallin [84–85], were also found to

be altered. Both HSP27 and a-B crystallin were up-regulated (2.6-

and 2.1-fold, respectively) in the cytosolic fraction after morphine

treatment. a-B crystallin was up-regulated (2.1-fold) in the

cytosolic fraction also after a 6-day drug abstinence. It was shown

that these proteins can be phosphorylated and activated via the

MAPK p38 (MAPK14)/MAPKAP-2 pathway [86–87]. Interest-

ingly, in our study MAPK14 (isoform CRA_b) was found to be up-

regulated (2.5-fold) in the cytosolic fraction after morphine

treatment. Therefore, it is plausible to assume that cardioprotec-

tion induced by morphine may occur at least partly via the MAPK

p38/MAPKAP-2/HSP27 or a-B crystalline pathway.

In order to determine whether HSP27 could be activated by

morphine treatment or withdrawal, its phosphorylation state was

assessed by Western blotting using specific antibodies against

phosphorylated amino acids Ser82 and Ser15 of HSP27 (Fig. 6).

Both these sites can be phosphorylated by MAPKAP-2 and the

major site of phosphorylation of this protein is Ser82 [88]. The

increased expression levels of HSP27 in samples from morphine

treated animals were verified by Western blotting (Fig. 6A). The

amount of HSP27 phosphorylated on Ser15 and, to a lesser extent,

on Ser82 was also increased (Fig. 6B,C). Although HSP27 was

phosphorylated at both phosphorylation sites after morphine

treatment, 3-day drug abstinence further increased its phosphor-

ylation. By contrast, after 6 days of abstinence HSP27 phosphor-

ylation returned to normal values. These results partly support

some recently published findings. Two recent studies have

reported that naloxone-precipitated morphine withdrawal induced

activation of HSP27 by phosphorylation at Ser15 but not at Ser82

[89–90]. Moreover, although chronic morphine treatment led to

increased expression of HSP27, enhanced phosphorylation and

activation of this protein was not observed [89–90]. The partial

discrepancy between these and our present observations may be

explained by different experimental conditions. Nevertheless, it

can be concluded that morphine withdrawal can strongly enhance

phosphorylation of HSP27 at Ser15, irrespective whether it is

spontaneous (in the case of morphine abstinence) or elicited by

treatment with the opioid inverse agonist naloxone.

In order to determine whether HSP27 could be activated after

morphine treatment or withdrawal, its phosphorylation was

assessed by immunoblotting with specific antibodies against

phosphorylated amino acids Ser82 and Ser15 of HSP27 (Fig. 2).

Both sites can be phosphorylated by MAPKAP-2 and the major

site of phosphorylation of this protein is Ser82 [88]. It was verified

using antibodies against HSP27 that morphine treatment led to

up-regulation of HSP27. Nevertheless, it resulted also in

phosphorylation of Ser15 and in less extent in phosphorylation

of Ser82 (Fig. 2).

Non-phosporylated HSP27 was shown to exist in the form

of large oligomers and its phosphorylation leads to dissociation of

these oligomers [91]. Phosphorylation and oligomerization of

HSP27 is connected with modulation of the interaction between

HSP27 and actin [91–92]. While the non-phosphorylated HSP27

can block actin polymerization, the phosphorylation of HSP27 is

related to re-organization of actin-based cytoskeletal structures

[88]. It has been suggested that this re-organization of the actin

cytoskeleton induced by phosphorylation of HSP27 could lead to

cytoprotection due to stabilization of actin filaments [93].

The phosphorylation and activation of HSP27 might be also

related to the observed down-regulation of tau after 3 days of

morphine abstinence. HSP27 and a-B crystallin can interact with

microtubules and neurofilaments and protect against protein

aggregation [94]. Both proteins can interact with pathological

hyperphosphorylated tau and thus facilitate its dephosphorylation

and degradation. This process was observed mainly in studies

dealing with Alzheimer disease [94–96].

Conclusions and Future Directions
This work follows up our previous research focused on the

consequences of prolonged morphine administration on the rat

heart [41] and further elaborates this issue. Results of our present

proteomic study clearly indicate that iTRAQ approach may yield

a wealth of information regarding the effect of morphine on the

cardiac proteome. Quantitative analysis of proteomics data

obtained by this method revealed a number of significant changes

induced by both morphine exposure and withdrawal. An

important outcome from this study is the realization that the

protein and hence gene expression responses to morphine in the

heart are quite complex. A similarly wide-ranging response to

morphine has been previously observed in brain tissue.

A number of significant changes found in the expression of

different myocardial proteins due to morphine treatment suggest

that the potential cardiac effects of this drug should be carefully

taken into account when using it for medical purposes. Impor-

tantly, as can be seen from this study, morphine withdrawal may

apparently have even a greater impact on the heart proteome than

the use of this compound itself. Hence, morphine should be

considered as a drug with potentially profound effects on cardiac

protein expression profiling, which may have been difficult to

appreciate so far. Future studies should elucidate whether and to

what extent morphine-induced changes in protein expression may

play a specific role in the regulation of heart function.

Supporting Information

Table S1 Complete list of the myocardial proteins
altered after morphine treatment or withdrawal. The

proteins whose expression levels were altered at least twice after

morphine treatment (M) or drug withdrawal for 3 days (MW-I) or 6

days (MW-II) compared to controls were arranged according to

their function into several groups. Expression values of up-

regulated (q) or down-regulated (Q) proteins are expressed as fold

change from untreated controls. Number of accession (gi numbers

from GenBank/EMBL/DDBJ databases) and fraction in which

protein alteration was detected are quoted for each protein (CS,

cytosol; PM, plasma membrane-enriched fraction; MT, mito-

chondria-enriched fraction). %Cov, the percentage of matching

amino acids from the identified peptides divided by the total

number of amino acids in the sequence. Peptides, number of

unique peptides per identified protein. The occurrence of

individual proteins in other fraction(s) without alterations after

morphine treatment or withdrawal is mentioned in Notes noted
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using the following markings: (1) CS, no change; (2) PM, no

change; (3) MT, no change; (4) CS+PM, no change; (5) PM+MT,

no change.

(PDF)

Table S2 Complete list of the myocardial proteins
whose levels were not significantly altered after mor-
phine treatment or withdrawal. The proteins whose

expression levels were not significantly altered after morphine

treatment (M) or withdrawal for 3 days (MW-I) or 6 days (MW-II)

compared to controls were arranged according to their function

into several groups. Number of accession (gi numbers from

GenBank/EMBL/DDBJ databases) and fraction in which the

protein was detected are quoted for each protein (CS, cytosol; PM,

plasma membrane-enriched fraction; MT, mitochondria-enriched

fraction). %Cov, the percentage of matching amino acids from

identified peptides divided by the total number of amino acids in

the sequence. Peptides, number of unique peptides per identified

protein.

(PDF)
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