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Abstract

Intrinsically disordered proteins (IDPs) exist without the presence of a stable tertiary structure in isolation. These proteins are
often involved in molecular recognition processes via their disordered binding regions that can recognize partner molecules
by undergoing a coupled folding and binding process. The specific properties of disordered binding regions give way to
specific, yet transient interactions that enable IDPs to play central roles in signaling pathways and act as hubs of protein
interaction networks. An alternative model of protein-protein interactions with largely overlapping functional properties is
offered by the concept of linear interaction motifs. This approach focuses on distilling a short consensus sequence pattern
from proteins with a common interaction partner. These motifs often reside in disordered regions and are considered to
mediate the interaction roughly independent from the rest of the protein. Although a connection between linear motifs and
disordered binding regions has been established through common examples, the complementary nature of the two
concepts has yet to be fully explored. In many cases the sequence based definition of linear motifs and the structural
context based definition of disordered binding regions describe two aspects of the same phenomenon. To gain insight into
the connection between the two models, prediction methods were utilized. We combined the regular expression based
prediction of linear motifs with the disordered binding region prediction method ANCHOR, each specialized for either
model to get the best of both worlds. The thorough analysis of the overlap of the two methods offers a bioinformatics tool
for more efficient binding site prediction that can serve a wide range of practical implications. At the same time it can also
shed light on the theoretical connection between the two co-existing interaction models.
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Introduction

Most proteins carry out their function through recognizing and

binding to partner molecules, a vast majority of which are proteins

themselves. Studying the details of this molecular recognition

process is essential to understand the organization of living cells

[1]. Following the appearance of the first protein structures the

dominant view of protein-protein interactions was represented by

interactions between well-folded domains, where two protein

domains interact as a result of steric, hydrophobic and charge

complementarity of their interacting surfaces [2]. However, later it

was recognized that a large fraction of protein-protein interactions

are not mediated exclusively by folded domains. Interactions

involving non-folded domains represent a distinct type of binding

mode that is prevalent in various regulatory and signaling

processes [3–6]. In this work we study the relationship between

two related concepts that were introduced to describe such

interactions: disordered binding regions and linear interaction

motifs.

Disordered binding regions correspond to functionally relevant

interaction sites residing in intrinsically disordered proteins and

protein regions (IDPs and IDRs). The characteristic feature of

these regions is that in isolation they exist as ensembles of rapidly

interconverting conformations. Upon recognizing their partner

molecule, they can undergo a disorder-to-order transition and

adopt a well-defined conformation. This coupled folding and

binding process results in a lowered binding strength making such

regions ideal for low affinity, weak and transient binding, crucial

for regulatory and signaling pathways [5,7]. Furthermore, the

plasticity of these regions provides them with increased interaction

capacity. The specific properties of such binding regions are

largely responsible for the biological significance of disordered

proteins [8,9]. Disordered proteins are often found among hubs of

protein-protein interaction networks [4,10,11] and can play a

major role in the evolutionary adaptability of interactomes

providing possible points of network re-wiring [12]. The analyses

of genomic sequences revealed that protein disorder is prevalent

and increases with evolutionary complexity [13,14]. Specifically,

about 50% of human proteins are predicted to contain at least one

larger disordered region, and it was shown that the primary reason

for the emergence of these regions is to harbor binding sites [15].

Recognizing the importance of protein disorder, especially in

critical processes such as transcription, translation, regulation,

signal transduction and stress-response of higher eukaryotes [5,16–

19], fuelled the study of such interactions.

Available structures of disordered binding regions in their

bound form showed very distinct properties compared to

complexes of globular proteins [20,21]. Disordered binding
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regions adopt a largely extended conformation on the surface of

their partner molecule. Furthermore, these disordered binding

sites are usually well localized in the sequence in a sense that the

residues involved in the interaction can be mapped to a single

continuous segment of the protein. This is in contrast to binding

sites of globular proteins that are formed by distant regions of the

polypeptide chain brought together only as a result of folding [20].

Disordered binding regions are also usually more hydrophobic

than their sequential neighborhood [20,21]. The specific sequence

properties of these regions enable their recognition from the amino

acid sequence. The first dedicated prediction methods, a-MoRF-

Pred [22] and a-MoRF-PredII [23] targeted regions adopting an

alpha helical conformation upon binding. In contrast, ANCHOR

[15] is generally applicable regardless of the bound structure of the

binding site and currently is the only such method that is publicly

available [24]. This method is based on the modeling of the

physical background of such binding processes using statistical

potentials. Through a simplified model, ANCHOR can capture

the disordered nature of these binding regions that dominates their

isolated state, as well as the driving force of the binding. The

strength of ANCHOR apart from its generality lies in that the

structural context is inherently modeled during the prediction. As

the relatively high success rate of ANCHOR (around 70%)

indicates, this is essential for recognizing most of the biologically

occurring disordered binding regions. Nevertheless, ANCHOR is

only able to predict aspecific interaction sites without providing

information about the interacting partner.

Parallel to the disordered binding region concept, interactions

between short regions of proteins and globular domains have been

extensively studied using the concept of linear motifs [25]. It was

observed, that the binding to certain globular domains – such as

SH2/SH3, 14-3-3, WW and kinase domains – is mediated by a

limited number of residues that can be represented by either a

sequence logo or a regular expression [26,27]. The linear motifs

capture the sequence features shared among usually non-

homologous interacting partners [3,26]. These features encompass

fixed residues common to all interacting partners, interspersed

with flexible positions that can accommodate a variety of amino

acids without disrupting the binding. These motifs can be found

dominantly in eukaryotic proteins, however some of these motifs

can be expected to be present in other domains of life, and even in

viruses. The most comprehensive and extensive available database

of these motifs is the Eukaryotic Linear Motif (ELM) database

[27]. Motifs are categorized into four groups: cleavage sites (CLV),

ligand binding sites (LIG), targeting signals (TRG) and modifica-

tion sites (MOD). The current update of the ELM database

comprises 1800 annotated motif instances representing 170

distinct motif classes [27]. The present collections is expected to

contain only a small proportion of possible motif mediated

interactions, as a recent moderate estimate places the number of

individual, motif mediated interactions in the human proteome

above 35,000 [28].

The basic assumption behind the concept of linear motifs is that

these sites function autonomously, largely independent of the other

regions of the protein they are embedded in. For interactions

mediated through such motifs, basic pattern matches can be used

to identify putative binding partners of a given domain in

unknown sequences. The strength of this method besides its

simplicity is that it automatically gives information about the

possible interacting partner. However, these patterns can arise

purely by chance with a relatively high probability [29], resulting

in a massive amount of false positive hits by naı̈ve motif searches.

This is partially the consequence of the incomplete description

sequence patterns have to offer. Inside a living cell, the

functionality of the motifs is modulated by spatial and temporal

control [6]. However, the insurance of the biological relevance of

the binding also requires the description of the proper structural

context of the motif, such as being accessible, flexible and capable

of forming the secondary structure necessary to fit into the binding

cleft of the target domain. Unfortunately, current motif definitions

do not include such information.

The disordered binding region and the linear motif concepts

describe molecular interactions on different bases: the former

focusing on the structure (or the lack and formation of it) and the

latter approaching the problem through the sequence. However,

the interactions described by the two concepts share a high degree

of similarity. In both cases the interaction is confined to a relatively

short, linear sequence region in one of the partners. Additionally,

many known linear motif instances were shown to reside in

disordered protein regions. Often the same interaction was

categorized as an example of both linear motif mediated binding

and of disordered binding regions, such as the binding of p53 to

MDM2 and the N-terminal region of p27 binding to the cyclin A-

CDK2 complex. Through many common examples, both the

binding of disordered proteins and linear motifs have been shown

to be essential for the integration and propagation of regulatory

signals controlling eukaryotic cell physiology [6]. Furthermore,

both models fit well with the description of molecular switches

controlled by various post-translational modifications [30,31],

localization or competitive binding [32]. The interplay between

protein disorder and motif regulation has been also shown at a

systems level with regard to the organization and regulation of

living cells [33]. This, together with the realization that in many

cases disordered binding regions and linear motifs describe the

same interactions has led to studies where the two concepts and

hence the two terms are essentially used interchangeably, both in

biological considerations [32] and technical applications [34].

In spite of the fact that these two interaction models have

intertwined at the anecdotal level, the systematic study of their

connection has not been directly assessed. Since the number of

experimentally verified examples are rather limited in both bases,

their connection at a large scale can be studied only via

bioinformatics approaches. The present work investigates this

connection through two prediction methods, each tailored

specially for identifying the respective type of interaction sites.

Disordered binding regions are identified by ANCHOR and linear

motif searches are carried out by using regular expressions taken

from the ELM database. Through the overlap of these two

approaches we set out to take the next step in the integration of the

two concepts.

Results

Predictive Power of Linear Motifs
One of the main limitations of using linear motifs in the

prediction of protein-protein binding regions is the weak definition

of the motifs. The vast amount of false motif hits emerging in

simple motif searches can be qualitatively demonstrated through

biological considerations.

For this purpose, the motifs collected in the ELM database were

used. As these motifs were described mostly in eukaryotes, there

should be a strong bias of real occurrences to appear in eukaryotic

proteins as opposed to bacterial and archaeal proteins. In contrast

to this, scanning bacterial and archaeal protein datasets (see

Methods) for ELM motif pattern matches yields hit numbers

comparable to that of searches in eukaryotic proteins (see

figure 1A). These hit numbers include both real instances and

false positive (random) hits. Although the ratio of true and random

Disordered Binding Regions and Linear Motifs
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hits is unknown, real hits are expected to show a pronounced

enrichment in eukaryotes. On the other hand, random occur-

rences are expected to appear with approximately the same

frequency in all three domains of life. The lack of difference

between eukaryotes and prokaryotes in this regard is the most

alarming in the case of target (TRG) motifs (controlling sub-

cellular localization of proteins), as the lack of cell compartments

in prokaryotes makes such a widespread biologically relevant

usage of target signals very improbable.

Focusing on generic ligand binding motifs (LIG), figure 1B

shows that the number of matches for these motif patterns from

the three domains of life are mostly indistinguishable even when

assessed for each motif separately. Some well defined motifs – such

as the GYF domain binding motif – have pattern descriptions that

match only a handful of protein sequences (18 out of all eukaryotic

sequences from SwissProt and none of the archaeal or bacterial

sequences). However, this is rather the exception than the rule,

with nearly 76% of the LIG motif patterns matching at least 1 out

of 100 proteins. These motifs cover a wide range of functions such

as the interaction with 14-3-3, WW, PDZ, PCNA domains,

nuclear receptors and even the interaction with MDM2 via a motif

that is experimentally described exclusively in the p53 protein

family. Considering the biological meaning of these motifs, it is

clear that with a few exceptions, naı̈ve motif searches are

dominated by false positives.

Ligand binding motifs mediate interaction with a well defined

protein partner domain. The occurrence of three example LIG

motifs are shown in figure 1C. The top part of figure 1C shows the

occurrence of PCNA, PDZ and cyclin binding motif hits

(random+real occurrences). The position of these three motifs

are shown in figure 1B with vertical lines (note that there are three

sub-types of PDZ motifs and in figure 1C the occurrence of all

three types are added). The bottom parts of figure 1C show the

occurrence of the corresponding interacting domains in the three

domains of life. The occurrence of PCNA, PDZ and cyclin

domains is highly unbalanced with PCNA domains being absent

in bacteria, PDZ domains being absent in archaea and cyclin

domains being exclusive to eukaryotes. The presence of real motifs

is linked to the presence of the interacting partner domain,

however, the corresponding motif hits do not reflect these specific

distributions and all three motif patterns can be found ubiquitously

in all three domains of life.

The same overprediction trend can be shown for targeting

signals as well. Scanning the human proteome (see Methods) for

TRG motifs, about 92% percent of the proteins match motifs that

– in biologically active form – are exclusively found in membrane

proteins (TRG_ENDOCYTIC_2, TRG_ER_diArg_1,

TRG_ER_diLys_1 and TRG_LysEnd motifs). Furthermore,

41% of human proteins match classical nuclear localization

signals and 33% are predicted to be localized to the peroxisome.

The irrationally high numbers for these localizations and the large

overlap between incompatible localizations (95% of proteins

matching NLS’s also match membrane localization motifs) show

that targeting motifs suffer from the same under-definition as

ligand binding motifs.

Combining Linear Motif and Disordered Binding Region
Predictions

Overall efficiency and the reduction of false

positives. The overlap between predicted disordered binding

regions and linear motifs was tested using ANCHOR predictions

and annotated ligand binding linear motif (LIG) instances from the

ELM database. For this purpose a more permissive version of

ANCHOR was chosen, where the prediction threshold was

reduced to 0.4 instead of the original 0.5. Motif instances were

checked and filtered for similarity to minimize redundancy (see

Methods). The majority of annotated LIG motif instances were

recognized by ANCHOR as binding regions yielding a recovery

rate of 66%. In contrast, the overlap between ANCHOR

predictions and unfiltered motif pattern matches in the eukaryotic

sequences in UniProt (containing both random and true motif

instances) is significantly lower with 17.6% (see figure 2). In total

7,164,890 LIG motif hits were found in the total of 171,208

sequences. Upon filtering the hits with ANCHOR, only 1,262,532

LIG motif hits remained, yielding a reduction of over 82%. The

large difference between the overlap of ANCHOR with true and

true+random motif occurrences shows ANCHOR’s sensitivity to

true linear motif instances.

ANCHOR’s recovery rate and the reduction of hits, however, is

highly uneven between different motifs. At one extreme, all 22

instances of the nuclear receptor box motif (LIG_NRBOX) were

recognized, and at the other, none of the 5 TPR binding motifs

were found. To give a more detailed picture on the efficiency of

ANCHOR in motif recognition, recovery rates and the reduction

of hits (calculated on the eukaryotic sequences in UniProt) were

calculated for each motif separately. Figure 3 shows the total

number of true instances and the number of these overlapping

with ANCHOR predictions for all LIG motifs that had at least

three independent annotated instances. For each motif the rate of

recovery was compared to the random overlap (see Methods). For

motifs marked with asterisk the overlap is significantly higher than

expected from random.

The true instance recovery and the reduction of hits is shown in

figure 4 for LIG motifs. Motifs are color-coded according to the

order of magnitude of the number of hits they produce when

scanning the eukaryotic sequences of UniProt. It can be seen that

for well defined motifs giving a moderate number of hits (,104)

the reduction rate is lower with an average of approximately 60%.

However, for more ill-defined motifs (.104 hits), the reduction

rate increases and reaches approximately 85%. This shows that

ANCHOR can be especially useful for filtering hits of poorly

defined motifs, whereas for well-defined motifs the definition

already guarantees a more moderate false positive rate. The

overall performance of ANCHOR in motif recognition is also

reflected in figure 4: with a random filtering procedure the points

describing performance on individual motifs should lie on the

marked diagonal. With a few exceptions, ANCHOR filtering is on

the upper right side of the diagonal.

Efficiency by structural context. The efficiency of AN-

CHOR is highly dependent on the structural context of the motif

instance. Although most motif instances can be found in

disordered protein regions, some motifs are known to reside in

globular domains in accessible surface loops. Furthermore, some

motifs are generally found at terminal regions of proteins. For

example, the PDZ motifs occur exclusively at the C-terminus of

proteins and are usually preceded by a folded domain. As

ANCHOR relies heavily on the disordered state of the protein

region to recognize disordered binding regions, in these cases its

efficiency is expected to be lower.

To test this, true LIG motif instances were grouped according to

the disorder or order of the sequence regions flanking the instance.

Based on this, three groups were established. A motif instance is

categorized as disordered, if both the N- and C-terminal flanking

regions are predicted to be disordered by IUPred [35,36]. Mixed

instances are flanked by a disordered region on one side and by an

ordered one on the other side. Ordered instances reside in a

sequential environment fully predicted to be ordered.

Disordered Binding Regions and Linear Motifs
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Figure 5 shows the efficiency of ANCHOR on all three groups.

This efficiency varies highly between the groups. Only 19.7% of

ordered instances are found, but the recovery rate increases to

60.5% and 86.0% for mixed and disordered instances, respective-

ly. These results are largely independent of the prediction method

used for the assignation of disorder status, and remained consistent

upon using DISOPRED2 or VSL2 (data not shown).

Efficiency by adopted secondary structure. Although the

majority of true motif instances reside in disordered protein

regions, upon binding to the target domain these sequence regions

generally adopt a stable structure. This is exemplified by the solved

structures of many motif instances bound to their partners. As the

molecular details of the binding process are reflected in the

resulting structure, the efficiency of ANCHOR can vary among

motifs with different adopted secondary structures.

To investigate this, bound structures of known true instances

were analyzed. The bound complex structures were collected

from the ELM database and additional structures were

identified using similarity searches between the sequences of

the proteins containing the instances and the PDB (see

Methods). It was shown that the bound structures of various

instances of the same motif are highly similar [37], therefore it

is plausible to assume that the bound secondary structure of a

motif instance is representative of the whole motif class. As the

bound regions are generally short, they can be characterized by

a single dominant secondary structure. In this study we used the

three standard secondary structure assignments of helix,

extended (b strand) and coil. However, as a significant class

of motifs (such as EVH1, SH3 and certain WW motifs) are

proline rich, a fourth structural class of poly-proline II helices

was added. A list of instances with known bound structures are

shown in table S1. Based on the notion that various instances of

the same motif adopt very similar bound structures, we

extended the secondary structure definitions and motifs that

have at least one annotated instance with an available bound

structure themselves were assigned a secondary structure

category. These motif level structure definitions are shown in

table S2.

To gain a deeper insight into the relationship between

ANCHOR predictions and linear motifs, the efficiency was

evaluated for the four secondary structure classes separately.

There are differences between the efficiency of ANCHOR over

the four structural classes. Figure 6 shows the number of instances

belonging to each of the four structural classes together with the

fraction of these instances recognized by ANCHOR predictions.

Helical motifs are found significantly better than average with a

recovery rate of 89%. These motifs usually interact via a

hydrophobic surface patch that attaches to a complementary

hydrophobic groove on the partner domain. This sequence signal

is readily picked up by ANCHOR and thus these instances are

easily identified. Motifs binding in an irregular structure (coil)

utilize a variety of binding mechanisms and the success of

ANCHOR varies accordingly. As the majority of motifs belong to

this class, the efficiency of ANCHOR on coil motifs is close to the

overall efficiency. Proline-rich motifs that adopt a poly-proline

conformation upon binding (SH3, EVH1 and WW interacting

motifs) represent a special case of binding. In these cases, the

efficiency was somewhat lower than average, however this

difference is not significant (see figure 6). The lowest recovery

rate is achieved in the case of motifs that adopt an extended

structure. These proteins usually bind to their partners via beta-

augmentation where the motif containing region of the protein

forms an additional beta strand to an existing beta strand of the

partner protein. The low efficiency of ANCHOR in this group of

motifs is dominated by the extremely low recovery of motifs

belonging to any of the three PDZ interacting motif classes. 39 out

of the 130 instances in the extended class belong to PDZ binding

motifs and the overall efficiency on these instances is only 26%

(with 10 successful predictions). This low recovery is due to the fact

that most of these PDZ binding motif instances reside in a

structured sequential environment. They are exclusively found at

the C-terminus of proteins and in many cases the interacting motif

is preceded by a structured domain, such as a SAM or an

amidohydrolase domain, a coiled coil region, or domains with

unknown function. ANCHOR uses IUPred to identify regions that

are disordered in isolation but can become ordered upon binding.

This disordered prediction is hindered by the lack of flanking

disordered regions and hence the returned ANCHOR score

remains low. However, omitting the PDZ binding motifs from the

calculations, the efficiency of the recovery of extended motifs

increases to 64%.

Figure 1. Results of motif scans in the three domains of life. A: the number of found motif hits from the four different motif groups (CLV –
cleavage sites, LIG – generic ligand binding motifs, MOD – modification sites, TRG – target signals) in the eukaryotic (blue), bacterial (green) and
archaeal (red) proteins included in the UniProt database. As the size of the three databases are different, the number of actual hits in the prokaryotic
sets were scaled with the ratio of the number of residues in each dataset. B: The average number of motif hits per protein for the three databases
covering the three domains of life. Again, hit numbers in prokaryotic sets are corrected for different number of residues compared to the eukaryotic
dataset. Coloring is identical to that of part A (red – archaea, green – bacteria, blue – eukaryotes). C: The upper bars show the number of found hits in
the three domains of life for PCNA, PDZ and cyclin binding motifs (the average hits per protein for the three motifs are shown with vertical lines in
part B; note that there are three different PDZ binding motifs and each one is shown with separate lines in part B but only their cumulative numbers
are shown in part C). Lower bars show the actual number of corresponding partner domains that can serve as interaction partners for these motifs in
the same datasets. Domain occurrences were taken from the PFAM database. Prokaryotic hit numbers are corrected for different number of proteins
and the coloring scheme follows that of parts A and B.
doi:10.1371/journal.pone.0046829.g001

Figure 2. The predictive power of ANCHOR as a filter in motif
searches. Left: fraction of known instances of ligand binding motifs
recognized by ANCHOR. Right: the reduction in the number of ligand
binding motif hits in the eukaryotic sequences of UniProt.
doi:10.1371/journal.pone.0046829.g002
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Examples
The majority of known linear motifs reside in a disordered

protein region to make the interacting segment accessible for the

partner molecules (see [38] and figure 5). One such example is

show in figure 7A for the nuclear receptor binding motif NRBOX

in the human nuclear receptor coactivator 2 protein (NCOA2).

NCOA2 is a 1,464 residue long transcriptional coactivator for

steroid receptors and nuclear receptors. Its dysfunction has been

linked to acute myeloid leukemias. The protein contains three

Figure 3. Efficiency of ANCHOR for individual LIG motifs. The total number of annotated instances for each of the ligand binding motifs that
have at least three independent instances in the ELM database. Dark red bars show the number of instances overlapping ANCHOR predicted binding
regions. Stars mark the motifs for which the recovery rate is significantly higher than that expected by chance alone (see Methods).
doi:10.1371/journal.pone.0046829.g003

Figure 4. Recovery ratio and reduction in total number of hits.
Ratio of true instances recovered by ANCHOR versus the reduction in
the number of total hits in the eukaryotic sequences of UniProt as a
result of ANCHOR filtering for all ligand binding motifs that have at least
one annotated instance in the ELM database. Colors show the order of
magnitude of the number of hits. The diagonal line marks the expected
performance of a random filtering procedure.
doi:10.1371/journal.pone.0046829.g004

Figure 5. Efficiency of ANCHOR on linear motifs with respect to
structural context. Instances are classified according to the predicted
disorder status of their flanking sequential environment. Motif instances
with both N- and C-terminal flanking regions predicted by IUPred as
ordered are classified as ‘Ordered’, instances with one or both flanking
regions predicted to be disordered are classified as ‘Mixed’ or
‘Disordered’, respectively.
doi:10.1371/journal.pone.0046829.g005
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verified instances of the NRBOX motif through which it can bind

to the human NR3C1 glucocorticoid receptor. The motifs reside

in the unstructured regions of the NCOA2 protein between

residues 641–882. The motif consists of three leucine residues and

this hydrophobic sequence signal is readily picked up by

ANCHOR and the motif regions are correctly predicted as

disordered binding regions. Figure 7A also shows the known

structure of one of these motif instances bound to a glucocorticoid

receptor [39].

Although in fewer numbers, there are examples of biologically

functional motif instances that are found inside structured

domains. An example is shown in figure 7B: the MAP kinase

binding motif of the human DUS6 protein. DUS6 is a 381 residue

long protein implicated in various signaling pathways, including

apoptosis, growth and cell speciation. It consists of two structured

domains, a rhodanese and a tyrosine-protein phosphatase domain,

connected by a linker region. The motif region is in a surface

accessible part of the rhodenase domain and therefore can be

bound by the target kinase. However, as the monomeric structure

shows in figure 7B, the motif region is structured even without the

presence of the binding partner [40]. As the identification of linear

motif instances with ANCHOR relies heavily on the presence of

protein disorder, these motifs cannot be identified with AN-

CHOR. This motif has an ordered structural context, where the

Figure 6. Efficiency of ANCHOR on linear motifs with respect to bound secondary structure. Motifs are classified according to the
adopted secondary structure upon binding to their partner domain. The efficiency of ANCHOR for separate structural classes were calculated and
were compared to the average efficiency calculated on all instances. The difference between average and secondary structure-specific efficiencies
were compared using standard x2 test. The resulting p-values are quoted for all 4 separate structural classes.
doi:10.1371/journal.pone.0046829.g006
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performance of ANCHOR is very low (see figure 5). The

identification of motif instances similar to these calls for the

application of domain and accessibility predictions.

Application to Whole Proteome Scans
To test the usability of ANCHOR in a large scale scenario, we

scanned the human proteome for the nuclear receptor binding

motif LIG_NRBOX and applied the ANCHOR filtering to the

resulting motif hits. For NRBOX motifs the efficiency of

ANCHOR is 100% on known instances with all 22 known true

motifs overlapping predicted binding regions. In total 7,897 of the

scanned proteins match the NRBOX motif at least once,

accounting for roughly 39% of all human proteins. The number

of proteins containing motif matches is reduced to 1,623 (8%) after

applying ANCHOR filtering (see figure 8A).

NRBOX motifs are annotated with Gene Ontology (GO) terms

from all three existing categories (biological process, cellular

component and molecular function). Proteins with both unfiltered

and filtered NRBOX motif matches were grouped according to their

GO annotations (see Methods). In the case of all three annotation

types (biological processes, cellular components and molecular

functions), ANCHOR filtering increased the ratio of proteins

matching the annotations of NRBOX motifs 1.4–2.3 fold (see

figure 8B–D). In all three cases, the number of proteins bearing no

annotations at all was high and did not change significantly due to the

filtering. This shows that the relatively low ratio of proteins with

correct annotations even after filtering is a consequence of the

generally poor GO annotation of human proteins. Furthermore,

proteins can participate in several processes, can perform multiple

functions and can have multiple localizations. As a result, the proteins

with annotations not matching those of NRBOX proteins are not

necessarily false positives. Due to these limitations, the ratios of

proteins with correct GO terms in themselves are not indicative.

However, the significant enrichment of these proteins as a result of

ANCHOR filtering shows that the filtering procedure greatly

increases the ratio of correct motif hits while reducing the total

number of hits by 80%.

Discussion

Many vital protein-protein interactions in regulation and

signaling processes are not mediated by folded domains but by

relatively short stretches of amino acids that bind their target

protein in a largely extended structure. The two major frameworks

in which these interactions are studied are the concepts of linear

motifs and disordered binding regions. In this work we analyzed

the complementarity of these two concepts.

Linear motifs correspond to short consensus sequence patterns

distilled from proteins with a common interacting partner domain.

Such regions usually reside in disordered segments which make

them accessible for the interaction. One of the most attractive

features of known linear motifs is that they can be readily used to

investigate candidate functional sites in eukaryotic proteins, also

providing information about the key residues involved in the

interactions. However, from a computational point of view, the

most serious obstacle is that predicted functional instances of

consensus motifs are overwhelmingly dominated by false positive

matches. We chose a way of demonstrating the weakly defined

nature of most motif patterns based on biological considerations

(figure 1). We scanned whole proteomes from all three domains of

Figure 7. Examples of true motif instances with ANCHOR predictions. A: Three instances of the nuclear receptor binding motif (LIG_NRBOX)
in the human nuclear receptor coactivator 2 protein (NCOA2). Left: IUPred (red) and ANCHOR (blue) predictions for the 601–800 region of NCOA2.
Red bars mark the motif instances with the black box showing the instance for which the corresponding bound structure is shown. Right: the
structure of NCOA2 (salmon) with the motif shown in red bound to the glucocorticoid receptor (grey) (structure 1 m2z). B: MAP kinase binding motif
(LIG_MAPK_1) in the rhodenase domain of the human DUS6 protein. Left: IUPred (red) and ANCHOR (blue) predictions with the red bar and black box
indicating the position of the motif. Right: the structure of DUS6 in monomeric form (structure 1 hzm) with the motif shown in red.
doi:10.1371/journal.pone.0046829.g007
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life with motif patterns from the ELM database and found no

enrichment of motif matches in eukaryotic sequences even for

those motifs that are expected to be specific to these sequences.

This holds true even when localization signals are analyzed

separately – an alarming notion that hints at the prevalence of false

positive hits in these searches. Focusing on eukaryotic proteins

only, most motif patterns produce an irrationally high number of

matches with about 70% of motifs matching 1 out of 100

sequences and about 30% of motifs matching 1 out of 10. This

high number of predicted interacting partners for domains such as

WW, 14-3-3 and cyclin contradicts the known topology of protein

interaction networks. Furthermore, the number of pattern matches

in the three domains of life does not correlate with the presence of

the target domains for individual motifs either (figure 1C). Due to

the weak predictive power of linear motifs, the proteome-wide

identification of functional sites remains a challenging task and the

Figure 8. Application to whole proteome scans. Results of applying ANCHOR as a filter for scanning the human proteome for instances of the
nuclear receptor interacting motif (LIG_NRBOX). A: number of proteins matching the motif; B–D: fraction of proteins containing NRBOX matches with
biological process, cellular component and molecular function GO annotations (B, C and D, respectively) matching the annotations of true NRBOX
instances (black boxes), with other annotations (grey boxes), and no annotations (white boxes). The height of bars in B–D represent 100% of all found
motifs and thus in each sub-figure the complete left bar stands for 7,897 proteins and the complete bar on the right stands for 1,623. The two
different number of hits are scaled to accurately represent enrichments of correctly annotated proteins.
doi:10.1371/journal.pone.0046829.g008
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results need to be interpreted exercising proper caution [41]. Even

in the case of highly specialized methods optimized for a single

type of motif [42], the accuracies of motif instance prediction

algorithms remain low.

To improve the predictive power, various context-based rules

and filters are being developed and applied to reduce the amount

of false positive matches. Most motifs are only functional in certain

cellular or taxonomical context and this information can be built

into the search process. Furthermore, there can be large

differences in how well the regular expressions are defined.

Various scoring schemes were constructed to quantify the

probability of the occurrence of a given motif in random sequences

to give an estimate on the expected false positive rate [29,43,44].

Such measures are also incorporated into the ELM server to

provide warnings for the user of what order of magnitude of false

positives can be expected when using only the pattern to search for

true motif instances. However, these estimations do not take into

account the precise correlations between the occurrences of

various amino acids that is introduced by the structural context,

which has a major impact on both the expected and the real

number of occurrences of the motifs. The distribution of most

amino acids is far from random and in certain cases this correlates

heavily with structure formation. For example hydrophobic

residues tend to cluster in the core regions of globular proteins

(positive correlation) and prolines are likely to be part of proline

rich segments (negative correlation). As the true occurrences of

motifs are also coupled with structure with most linear motifs

residing in disordered regions, recognizing the proper structural

context is crucial.

In this work we suggest that ANCHOR – a method developed

to recognize regions of disordered proteins capable of binding to

an ordered partner – can be used as a structural filter to improve

the predictive power of linear motifs. The basis of this is the strong

correlation between disordered binding regions and linear motifs.

Disordered binding regions predicted by ANCHOR overlap with

known linear motifs with a significantly higher ratio than expected

by random (see figure 3). Furthermore, ANCHOR is much more

sensitive to true motif instances than for protein segments simply

matching a motif pattern. Therefore, the combined method can be

effectively used to enrich the number of true positive motif hits

when scanning through unknown sequences by discarding the

motif hits that do not overlap with ANCHOR predictions (figures 4

and 8). This filtering provides more reliable results as correct

motifs are enriched while the total number of hits are reduced by

nearly an order of magnitude (figure 4). The generality of

ANCHOR, being applicable to any protein sequence is a clear

advantage compared to other, commonly used filters that require

the prior knowledge of the localization of the protein or the ability

to identify existing domains based on sequence alignments.

Furthermore, the performance of ANCHOR in motif instance

identification seems to be largely independent of the adopted

secondary structure in the bound form (figure 6). These results

indicate that ANCHOR can be used as an effective filtering tool in

motif searches.

The strong connection between linear motif-mediated binding

and interactions of disordered proteins is quite remarkable, given

some fundamental differences between the two models. To

understand this, a closer look at the these concepts is required.

It is usually assumed that linear motifs act independently of protein

tertiary structure and only a few residues participate in the binding

that are common between the partners. This, however, is an

idealized scenario that has several limitations. Most true instances

reside in partially or fully disordered protein regions, which makes

them readily accessible for interactions [38], however, some true

motif instances can be found in structured protein regions (see

figure 5 and figure 7 for an example). In recent studies it has been

shown that the evolution of motif flanking regions is not

independent of the evolution of the motif itself and the residues

surrounding real motif instances appear more conserved [45]. The

main factors behind this was found to be the preservation of the

proper structural context in which the motif is accessible and the

increase of specificity by forming additional contacts, on average

accounting for around one fifth of the total binding energy [46].

Our results also indicated that the local sequence elements contain

additional information necessary for the binding and this

information is not captured by the motifs. Furthermore, the same

binding surface can be involved in multiple binding modes that

can only be captured by multiple motifs. In other cases, a more

refined definition of motifs can help to understand the molecular

basis of different specificities within certain subclasses.

The concept of disordered binding regions approaches the

binding from a different angle by focusing on the specific region of

a disordered protein that becomes ordered upon the binding.

Analyses of structured complexes of disordered proteins showed

that the length of these regions can vary between 10 to at least 70

residues, and it is characteristically longer than a single motif. At a

closer look, however, there are indications that the binding is not

even, and certain residues make more significant contributions to

the binding. This can be reflected by the distribution of atomic

contacts, evolutionary conservation or alanine scanning. One well-

characterized example is the binding of a 69 residues long segment

of the disordered human p27 to the complex of cyclin A-cyclin-

dependent kinase 2. Within this longer region there are individual

sites with different structural and functional features. Relatively

stronger atomic contacts are formed between the N-terminal

regions and the two short C-terminal regions forming beta

hairpins and a 3–10 helix, respectively. The intervening helical

segment, that is prefomed even in the unbound form, makes fewer

contacts in the complex. Both the N-terminal and C-terminal

regions have important functional roles. The N-terminal region

recognizes cyclin A through a motif that is shared among cyclin

binding proteins. The C-terminal region is responsible for the

blocking of the catalytic site of CDK2. This and other examples

indicate that the binding of disordered proteins is more general

and cannot be reduced to linear motifs. Nevertheless, identifying

residues that have a prime role in terms of function, specificity and

partner recognition within the longer segments of disordered

binding regions is an important challenge in this field [47].

The differences between the concepts of linear motifs and

disordered binding regions are reflected in their dedicated

prediction methods. Disordered binding regions can be predicted

from the amino acid sequence using ANCHOR. The method

focuses on the disordered nature of these segments in isolation and

their ability to undergo a disorder-to-order transition. The

predictions are based on estimated interaction potentials that are

averaged over several residues. As a consequence, predicted

binding regions are relatively insensitive to single amino acid

changes, although in reality the mutation of a single key residue

can impair the binding. The incorporation of motif matching can

introduce a heavy emphasis on these residues. Furthermore, the

presence of motifs automatically introduces information about the

interaction partner. In return, ANCHOR is able to remedy the

high false positive rate of motif searches. As there is a continuous

score behind ANCHOR predictions, this false positive rate is

tunable to fit custom applications. On the other hand, ANCHOR

incorporates the estimation of potential interaction energies,

through which the disordered nature of the protein is taken into

account. This way ANCHOR inherently introduces context-
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dependency into the predictions. Both prediction tactics have their

own strengths and weaknesses and the combined approach is able

to get the best of both worlds.

Altogether, our results support the complementarity of the

linear motif and disordered binding region concepts. The overlap

of the two approaches has strong practical implications in a wide

range of fields. On one hand ANCHOR can be effectively used in

filtering putative binding motifs which can aid the prioritization of

candidate motifs for experimental works and improve the quality

of proteome-wide systems biology analyses. This can aid the more

reliable reconstruction of protein-protein interaction networks.

Apart from the reliable filtering of motif hits, the combined

method can also advance the distillation of new motifs from

protein sequences, termed de novo motif discovery. The starting

point in these studies is often the assembly of sequences of proteins

known to have a common interacting partner. In certain cases,

high resolution structures of complexes interacting via linear

motifs can be exploited in the distillation of new consensus motifs

[37]. In more general cases, the algorithmically most challenging

step is usually the identification of the regions through which these

proteins interact using the sequence alone. As consensus motifs are

usually composed of only a handful of residues, this sequence

signal is difficult to pick up, as generally the rest of the sequence is

unrelated and presents itself as noise. Different approaches can aid

the more reliable identification of new motifs [44,48,49] (for a

recent review about motif discovery see [50]), including masking of

poorly conserved residues [51] and taking biological context into

account [45,52]. The strong correlation between ANCHOR

predictions and biologically relevant motif instances gives way to

restricting the protein regions to consider when searching for the

interacting regions. As ANCHOR takes into account all residues

in the sequence when marking potential binding regions, the

presence of less conserved flanking residues can be turned to signal

from noise.

In general, the combination of the two predictions correspond-

ing to the two binding models enables us to get the advantages of

both approaches: predict interactions with relatively low false

positive rate, with structural context and with information about

the partner. Furthermore, the integration of the two concepts is

also necessary for a deeper and a more complete picture of the

molecular details of protein-protein interactions.

Methods

Databases
Motif patterns and instances. Linear motif patterns and

instances were taken from the ELM website (newest release as of

Oct. 12, 2011). In total 166 motif patterns were found categorized

into four distinct groups (CLV - cleavage sites: 8 motifs; LIG –

ligand binding sites: 107 motifs; MOD - modification sites: 30

motifs; TRG – target sites: 21 motifs). Instances of the LIG motifs

were checked and filtered and only ones with ‘‘true positive’’

logical instance annotations were kept. This checking reduced the

number of instances from 1,117 to 1,051. Furthermore, motif

instances residing in highly similar sequences were removed with

only one representative being kept. Similarity filtering was done

with BLAST using a 1024 e-value cutoff. All protein sequences

containing annotated instances were input to an all-against-all

BLAST search. Based on local similarity of the motif containing

region of proteins, clusters of similar instances were created and

one representative was chosen at random while the rest of the

instances were omitted in further analyses. Multiple instances from

the same sequence were only kept if they did not produce a

significant similarity using the above criteria. ELMs that do not

have any annotated instances were also omitted. As a result 826

instances were kept encompassing 97 ligand binding motifs.

Eukariotic, bacterial and archaeal SwissProt

datasets. SwissProt sequences were retrieved through the

Uniprot ftp server (ftp.uniprot.org) on Nov. 04, 2011. Eukaryotic

sequences that constitute the Eukaryotic SwissProt database were

assembled by joining the appropriate available taxonomic

divisions (fungi, plants, vertebrates, invertebrates, mammals,

rodents and human). The resulting database contains 171,208

sequences. Bacterial and archaeal datasets were retrieved from the

corresponding taxonomic divisions of the Uniprot server. These

datasets contain 326,910 and 18,674 sequences.

Human proteome dataset. Human protein sequences were

downloaded from the appropriate taxonomic division from the

Uniprot ftp server on Nov. 04, 2011. The database contains

20,256 sequences.

Identifing bound structures of motif instances. Bound

structures of motif instances were collected from the ELM

database and additional structures were identified using a BLAST

search. The sequence of each instance protein of each LIG motif

was used as a query sequence in a BLAST search against the PDB.

Significant hits were collected and filtered. Only those matches

were kept that had one chain matching the motif containing

segment of the instance (at least 90% sequence identity, excluding

his-tags and other engineered parts) and where this region was in

contact with another protein partner.

Secondary structure assignment of bound instances. For

each bound structure the secondary structure of the motif

containing protein was calculated using the DSSP and PROSS

algorithms on a per residue basis. The overall secondary structure

type of the bound segment was determined by the majority of the

conformation of the amino acids belonging to the motif region and

being in contact with the partner.

Pfam domains. The number of PCNA, PDZ and cyclin

domain occurrences in the sequences from the three domains of

life were collected from the Pfam database (http://pfam.sanger.ac.

uk/).

Prediction Methods
IUPred. The default version of IUPred was used (http://

iupred.enzim.hu) with the ‘‘long’’ setting.

ANCHOR. We used the default version of ANCHOR

(http://anchor.enzim.hu), but lowered the cutoff value to 0.4 for

disordered binding regions. However, we kept both included

filters, meaning that all predicted binding regions shorter than 6

residues and predicted binding regions with extremely low

disorder scores were removed. We considered an ELM instance

found if there was an overlap between the instance and a binding

region predicted by ANCHOR.

Statistical Analyses
Assessing the significance of overlap between motif

instances and ANCHOR regions. The expected overlap

between ANCHOR regions and randomly selected protein

segments was determined in a stepwise fashion. First, 10,000

regions of length l were selected randomly from the sequences of

the UniRef50 non-redundant database. These sequences were

input to ANCHOR and the fraction of randomly selected

segments overlapping with ANCHOR predicted regions were

calculated. This procedure was repeated 10 times and the average

overlap % was calculated. This was done with varying the l length

between 3 and 20. From this the probability p of a randomly

selected segment of length l overlapping with ANCHOR regions

was fitted: p(l)~0:10984zl � 0:004494. The significance of the
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overlap between real motif regions and ANCHOR was calculated

using the binomial distribution using p(l) as the background

probability, substituting the average length of the known instances

of each motif. The overlap was considered significant, if the

probability of the overlap based on the random case was below

0.01.

GeneOntology (GO) Annotations
GO annotations of the inspected LIG_NRBOX motif was taken

from the ELM website. These annotations include from all three

main categories of GO (biological process, cellular component and

molecular function). From the biological processes the ‘‘Regula-

tion of transcription’’ (GO:0006355) was kept, as the other

annotated term (‘‘Positive regulation of transcription’’,

GO:0045893) is a direct child term of GO:0006355. From the

molecular function annotations the ‘‘Transcription Co-activation’’

(GO:0003713) was also omitted due to being a child term of

‘‘Transcription Cofactor’’ (GO:0003712). The ‘‘Transcription

Factor Binding’’ (GO:0008134) term was replaced with its

ancestor term ‘‘Protein binding’’ (GO:0005515).

GO annotations of human proteins were taken from the Gene

Ontology Annotation section of the EBI homepage (http://www.

ebi.ac.uk/GOA/proteomes.html). These annotations were

mapped to the higher level annotations given in the Generic

GOslim subset of GO. However, to remove bias in the analysis,

Generic GO terms were slightly modified. All root level terms

were removed (biological_process, cellular_component and mole-

cular_function) in order to remove the excessive but uninformative

term hits. For similar reasons very broad cellular component terms

(‘‘cell’’, ‘‘intracellular’’ and ‘‘organelle’’) were also excluded. The

biological process term ‘‘Regulation of biological process’’

(GO:0050789) was removed as it is not used in the EBI human

proteome annotations. Instead, its child term ‘‘Regulation of

transcription’’ was added. Furthermore, the molecular function

term ‘‘Transcription Cofactor’’ was also added as none of its child

or ancestor terms are included in the Generic GOslim.

Supporting Information

Table S1 Secondary structure classification of true LIG
motif instances. Secondary structure classification was based on

bound structures of true positive instances. Structure assignation

was done with the DSSP and PROSS algorithms: H – helical, E –

extended (b structures), C – irregular, P – poly-proline II helix.

Column 4 shows the ID of respective PDB entry together with the

chain ID of the protein containing the motif, then the interacting

domain partner, separated by ‘-’.

(XLS)

Table S2 Secondary structure classification of LIG
motif classes. Secondary structure classification was based on

representative bound structures of true positive instances.

Structure assignation was done with the DSSP and PROSS

algorithms: H – helical, E – extended (b structures), C – irregular,

P – poly-proline II helix.

(XLS)
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