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Abstract

Background: The interaction between loci to affect phenotype is called epistasis. It is strict epistasis if no proper subset of
the interacting loci exhibits a marginal effect. For many diseases, it is likely that unknown epistatic interactions affect disease
susceptibility. A difficulty when mining epistatic interactions from high-dimensional datasets concerns the curse of
dimensionality. There are too many combinations of SNPs to perform an exhaustive search. A method that could locate strict
epistasis without an exhaustive search can be considered the brass ring of methods for analyzing high-dimensional datasets.

Methodology/Findings: A SNP pattern is a Bayesian network representing SNP-disease relationships. The Bayesian score for
a SNP pattern is the probability of the data given the pattern, and has been used to learn SNP patterns. We identified a
bound for the score of a SNP pattern. The bound provides an upper limit on the Bayesian score of any pattern that could be
obtained by expanding a given pattern. We felt that the bound might enable the data to say something about the promise
of expanding a 1-SNP pattern even when there are no marginal effects. We tested the bound using simulated datasets and
semi-synthetic high-dimensional datasets obtained from GWAS datasets. We found that the bound was able to dramatically
reduce the search time for strict epistasis. Using an Alzheimer’s dataset, we showed that it is possible to discover an
interaction involving the APOE gene based on its score because of its large marginal effect, but that the bound is most
effective at discovering interactions without marginal effects.

Conclusions/Significance: We conclude that the bound appears to ameliorate the curse of dimensionality in high-
dimensional datasets. This is a very consequential result and could be pivotal in our efforts to reveal the dark matter of
genetic disease risk from high-dimensional datasets.
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Introduction

In Mendelian diseases, a genetic variant at a single locus may

give rise to a disease [1]. However, in many common diseases, it is

likely that manifestation of the disease is due to genetic variants at

multiple loci, with each locus conferring modest risk of developing

the disease. For example, there is evidence that gene-gene

interactions may play an important role in the genetic basis of

hypertension [2], sporadic breast cancer [3], and other common

diseases [4]. The interaction between two or more genes to affect a

phenotype such as disease susceptibility is called epistasis. Biolog-

ically, epistasis likely arises from physical interactions occurring at

the molecular level. Statistically, epistasis refers to an interaction

between multiple loci such that the net effect on phenotype cannot

be predicted by simply combining the effects of the individual loci.

Often, the individual loci exhibit weak marginal effects; sometimes

they may exhibit none. We say it is a pure epistatic interaction if no

single locus exhibits a marginal effect, and we say it is a strict

epistatic interaction if no subset of the interacting loci exhibits a

marginal effect.

The ability to identify epistasis is important in understanding

the inheritance of many common diseases. For example, studying

genetic interactions in cancer is essential to further our under-

standing of cancer mechanisms at the genetic level. Many cancer-

associated mutations and interactions among the mutated loci

remain unknown. For example, highly penetrant cancer suscep-

tibility genes, such as BRCA1 and BRCA2, are linked to breast

cancer [5]. However, only about 5 to 10 percent of breast cancers

can be explained by germ-line mutations in these single genes.

Most women with a family history of breast cancer do not carry

germ-line mutations in the single highly penetrant cancer

susceptibility genes, yet familial clusters continue to appear with

each new generation [6]. This kind of phenomenon is not yet well

understood, and undiscovered mutations or undiscovered interac-

tions among mutations are likely responsible.
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The most common genetic variation is the single nucleotide

polymorphism (SNP) that results when a nucleotide that is typically

present at a specific location on the genomic sequence is replaced

by another nucleotide. In most cases a SNP is biallelic, that is it has

only two possible values among A, G, C, and T (the four DNA

nucleotide bases). The less frequent (rare) allele must be present in

1% or more of the population for a site to qualify as a SNP [7].

The human genome is estimated to contain 15–20 million SNPs.

In what follows we will refer to SNPs as the loci investigated when

searching for a correlation of some loci with a phenotype such as

disease susceptibility.

The advent of high-throughput technologies has enabled genome-

wide association studies (GWAS). A GWAS involves genotyping

representative SNPs in individuals sampled from a population. A

GWAS dataset can concern millions of SNPs and may soon

concern billions. Data in which each record has such a large

number of attributes is called high-dimensional. In case-control

GWAS we identify the disease status along with the values of the

SNPs. Such studies provide researchers unprecedented opportu-

nities to investigate the complex genetic basis of diseases. By

looking at single-locus associations, researchers have identified

over 150 risk loci associated with 60 common diseases and traits

[8], [9], [10], [11], [12], [13].

However, single-SNP investigations could not detect complex

epistatic interactions in which each locus by itself exhibits little or

no marginal effect. To fully exploit genomic data and possibly

reveal a great deal of the dark matter of genetic risk, it is critical

that we analyze such data using multi-locus methods, which

investigate k-SNP patterns. Briefly, a k-SNP pattern is a Bayesian

network (BN) model that describes the relationship between k
SNPs and disease status, and is described in detail in the Methods

Section.

When investigating SNP patterns, in some way we must score

the patterns to determine which patterns are most noteworthy.

Standard techniques such as linear regression may not work well

because both the predictors and the target are discrete. One well-

known technique is Multifactor Dimensionality Reduction (MDR) [14].

MDR combines two or more variables into a single variable (hence

leading to dimensionality reduction); this changes the representa-

tion space of the data and facilitates the detection of nonlinear

interactions among the variables. MDR has been successfully

applied to detect epistatic interactions in diseases such as sporadic

breast cancer [3] and type II diabetes [15]. Using 28,000

simulated datasets and a real Alzheimer’s GWAS dataset, Jiang

et al. [16] evaluated the performance of 22 BN scoring criteria and

MDR when scoring SNP patterns. They found that several of the

BN scoring criteria performed substantially better than other

scores and MDR. The BN scores that performed best were ones

that computed the Bayesian score, which is the probability of the

data given the pattern.

A difficulty when learning SNP patterns from high-dimensional

GWAS datasets concerns the curse of dimensionality. For example, if

we only investigated all 0, 1, 2, 3 and 4-SNP patterns when there

are 500,000 SNPs, we would need to investigate 2:604|1021

patterns. Therefore, researchers have worked on developing

heuristic search methods that investigate multiple loci using a

GWAS dataset. Lasso, which is a shrinkage and selection method

for linear regression [17,18], was applied to this task [19,20].

However, linear regression obviously has difficulty handling

nonlinear epistatic interactions. Other methods include permuta-

tion testing [21,22], the use of ReliefF [23,24], random forests

[25], predictive rule inference [26], a variational Bayes algorithm

[27], a Bayesian marker partition method [28], an MCMC

approximate model averaging technique [29], a Markov blanket

method [30], the use of maximum entropy [31], the use of

Bayesian networks and greedy search [32], and an ensemble-based

method that uses boosting [33].

Each of these methods has at least one of the following

shortcomings: 1) It only investigates two-locus interactions and still

requires quadratic time; or 2) It has only been shown to detect

interactions in which only one interacting locus has no significant

marginal effect. Many of the methods proceed in stages, using the

first stage to identify promising SNPs, which in some way are

investigated further in the second stage. Strict epistasis constitutes

the worst-case in terms of detecting disease associations because

such associations are only observable if all interacting SNPs are

included in the disease model. None of these two-stage methods

made any progress towards detecting strict epistasis. So, Evans et

al. [34] conclude that ‘‘it is preferable to perform an exhaustive

two-locus search across the genome rather than either of the two-

stage procedures that we examined. Otherwise, investigators risk

discarding significant loci that only exhibit small effects at the

margins.’’

An exhaustive search is not possible when there are millions of

SNPs. So some researchers turned their efforts to reducing the

search space based on ancillary knowledge. You et al. [35]

performed a two-stage application of MDR. The first stage is a

within-gene search in which all combinations of SNPs allocated to

the same gene are investigated. Briggs et al. [36] identified

promising regions harboring epistatic candidates by looking for

concordance in affected sibling pairs. Jiang et al. [37] investigated

all 2-loci combinations where one of the loci was previously known

to be associated with the disease. Perhaps the most promising

technique for reducing the search space is to restrict the search

space for candidate gene sets by using knowledge about molecular

pathways [38].

However, once the search space is reduced, we can still be left

with a large number of SNPs, prohibiting an exhaustive search of

even the pruned dataset. Furthermore, in an agnostic study we are

searching for possible interactions for which we have no previous

knowledge. Therefore, a multi-stage technique that can effectively

locate strict epistatic interactions could still be considered the brass

ring of methods for analyzing high-dimensional datasets.

Initially it might seem that it is not possible to successfully prune

our search for strict epistatic kz1-SNP interactions by investi-

gating k-SNP patterns. This is likely the case when we are scoring

the patterns. However, we have identified a bound (not a score) for

SNP patterns. The bound provides an upper limit on the Bayesian

score of any pattern that could be obtained by expanding a given

pattern. For example, it gives an upper limit on the Bayesian score

of any 2-SNP pattern that could be obtained from a particular 1-

SNP pattern. We speculated that this bound might enable the data

to tell us something about the promise of expanding a 1-SNP

pattern even when there are no marginal effects. We tested the

bound using 6000 simulated datasets developed from models of

strict epistasis. We also injected epistatic interactions in two real

GWAS datasets to create 2400 high-dimensional semi-synthetic

datasets. In the case of both the simulated datasets and the semi-

synthetics datasets, the bound was able to significantly reduce the

search time for the epistatic interaction. This was the case

regardless of the heritability used to generate the interaction and

the dimension of the dataset. The average fraction of the search

space investigated before finding the true pattern (the one

representing the interjected interaction) was as little as 0.0004.

Mining Epistasis from High-Dimensional Datasets
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Methods

We developed both simulated and semi-synthetic datasets based

on models of strict epistasis. We compared the performance of the

bound and Bayesian score in their ability to efficiently locate the

true pattern. After providing background on Bayesian networks,

we discuss specialized Bayesian networks called SNP patterns that

represent relationships among SNPs and a disease. Then we show

the algorithm used for the comparisons, and we describe the

datasets we developed.

Bayesian Networks
Let V be a set of random variables, P be a joint probability

distribution of these random variables, and G~(V , E) be a directed

acyclic graph (DAG) where V is the set of nodes in G and E is the set

of edges among these nodes. We say that (G, P) satisfies the Markov

condition if for each variable X[V , X is conditionally independent

of the set of all its nondescendents in G given the set of all its

parents. If (G, P) satisfies the Markov condition, we call (G, P) a

Bayesian network (BN).

It is a theorem [39] that (G, P) satisfies the Markov condition

(and therefore is a BN) if and only if P is equal to the product of its

conditional distributions of all nodes given their parents in G,

whenever these conditional distributions exist. That is, if our

variables are X1, X2, . . . , Xn, and PAi is the set of parents of Xi,

then

P(X1, X2, . . . , Xn)~ P
n

i~1
P(Xi DPAi):

Due to the theorem just mentioned, a BN is often developed by

first identifying a DAG that satisfies the Markov condition relative

to our belief about the probability distribution of the nodes in the

DAG, and then determining the conditional probability distribu-

tions for this DAG. Often the DAG is a causal DAG, which is a

DAG in which there is an edge from X to Y if and only if X is a

direct cause of Y relative to the other nodes in the DAG. See [39]

for a discussion as to why a causal DAG should often satisfy the

Markov condition with the probability distribution of the variables

in the DAG. Figure 1 shows a BN representing the causal

relationships among variables related to lung disorders. In this

network, h1 denotes an individual has a smoking history and h2

denotes that the individual does not. The other variables have

similar denotations. Using this BN, we can determine conditional

probabilities of interest using the BN and a BN inference

algorithm. For example, if a given individual has a smoking

history, a positive chest X-ray, and is fatigued, we can determine

the conditional probability of the individual having lung cancer.

That is, we can compute P(l1Dh1, x1, f1). These inference

algorithms exploit Bayes’ Theorem and are efficient for a large

class of BNs [39].

Methods have been develop both for learning the parameters in

a BN and the structure (DAG) from data. Pierrier et al. [40]

provide a recent review of the literature concerning BN structure

learning. We review structure learning using the Bayesian score

because that method is relevant to the research described here.

A DAG model consists of a DAG G~(V , E) where V is a set of

random variables, and a parameter set h whose members

determine conditional probability distributions for G, but without

specific numerical assignments to the parameters. The task of

learning a unique DAG model from data is called model selection. As

an example, if we had data on a large number of individuals

concerning lung disorders we might be able to learn the DAG in

Figure 1. A BN for diagnosing lung disorders.
doi:10.1371/journal.pone.0046771.g001

Figure 2. Four SNP patterns.
doi:10.1371/journal.pone.0046771.g002

Table 1. Properties of the strict epistatic models used in the
simulated datasets.

# SNPs MAF Low Heritability High Heritability

2 0.05 0.05 0.1

2 0.1 0.05 0.2

2 0.2 0.05 0.2

2 0.3 0.05 0.2

2 0.4 0.05 0.2

3 0.05 0.005 0.01

3 0.1 0.05 0.1

3 0.2 0.05 0.2

3 0.3 0.05 0.2

3 0.4 0.05 0.2

4 0.05 0.001 0.002

4 0.1 0.005 0.01

4 0.2 0.05 0.1

4 0.3 0.05 0.2

4 0.4 0.05 0.2

doi:10.1371/journal.pone.0046771.t001

Mining Epistasis from High-Dimensional Datasets
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Figure 1 from data. When the edges represent causal influences,

this means that we can learn causal influences from data.

In the constraint-based structure learning approach [41], we try

to learn a DAG model from the conditional independencies that

the data suggest are present in the generative probability

distribution P. By the generative probability distribution P we mean

the underlying joint probability distribution of the random

variables, making the assumption that such a distribution exists.

In the score-based structure learning approach [39], we assign a

score to a DAG based on how well the DAG fits the data.

A straightforward score, called the Bayesian score, is the

probability of the DAG model given the Data, which is as follows:

P(GDData)~K|P(DataDG)P Gð Þ,

where K is a normalizing constant. If we assign a uniform prior

probability distribution to the DAG models, we can score them

using the likelihood P(DataDG), and that is the approach taken

here. So we will simply refer to the likelihood as the score. For a

DAG G containing a set of discrete random variables

V~ X1, X2, . . . Xnf g and Data such that each data item is a

vector of values of all random variables in V , Cooper and

Herskovits [42] develop the following formula for this likelihood:

P(DataDG)~ P
n

i~1
P
qi

j~1

C(
ri
k~1 aijk)

C(
ri
k~1 aijkz

ri
k~1 sijk)

P
ri

k~1

C(aijkzsijk)

C(aijk)
, ð1Þ

where ri is the number of states of Xi, qi is the number of different

instantiations of the parents of Xi, aijk is the ascertained prior

belief concerning the number of times Xi took its kth value when

the parents of Xi had their jth instantiation, and sijk is the number

of times in the data that Xi took its kth value when the parents of

Xi had their jth instantiation.

The likelihood in Equation 1 assumes that our prior belief

concerning each unknown parameter in each DAG model is

represented by a Dirichlet distribution, where the hyperpara-

meters aijk are the parameters for this distribution. Cooper and

Herskovits [42] suggested setting the value of every hyperpara-

meters aijk equal to 1, which amounts to assigning a prior uniform

distribution to the value of each parameter (prior ignorance as to

its value). They called this the K2 score.

However, Heckerman et al. [43] showed that the K2 score does

not assign the same score to Markov equivalent DAG models (two

DAGs are Markov equivalent if they entail the same conditional

independencies). For example, the DAGs X1?X2 and X2?X1 do

not obtain the same score. They suggested determining the values

of the hyperparameters from a single parameter a called the prior

equivalent sample size. If we want to use a prior equivalent sample

size and represent a prior uniform distribution for each variable

(not parameter) in the network, for all i, j, and k we set

aijk~a=riqi where ri is the number of states of the ith variable and

Table 2. Properties of the strict epistatic models used in the
semi-synthetic datasets.

# SNPs MAF Heritability

2 0.05 0.1

2 0.1 0.2

2 0.15 0.3

2 0.2 0.4

3 0.05 0.01

3 0.1 0.04

3 0.15 0.1

3 0.2 0.2

4 0.05 0.001

4 0.1 0.01

4 0.15 0.04

4 0.2 0.1

doi:10.1371/journal.pone.0046771.t002

Figure 3. For the simulated datasets developed from 2-SNP models, the average fraction of the total number of patterns checked
before the bound finds the true pattern.
doi:10.1371/journal.pone.0046771.g003
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qi is the number of different instantiations of its parents. When we

do this, the Bayesian score is called the Bayesian Dirichlet equivalent

uniform (BDeu) score. That score is as follows:

P(DataDG)~ P
n

i~1
P
qi

j~1

C(
a

qi

)

C(
a

qi

z
ri
k~1 sijk)

P
ri

k~1

C(
a

riqi

zsijk)

C(
a

riqi

)
:

Heckerman et al. [43] showed that if we use a prior equivalent

sample size, then Markov equivalent DAGs have the same score.

The Bayesian score does not explicitly include a DAG penalty.

However, the penalty is implicitly determined by the hyperpara-

meters aijk. Silander et al. [44] show that if we use the BDeu score,

then the DAG penalty decreases as a increases.

The Bayesian score decomposes into the product of local scores,

one for each node Xi in the DAG. In the case of the BDeu score,

the local score for Xi with parent set PAi is given by

Figure 4. For the simulated datasets developed from 3-SNP models, the average fraction of the total number of patterns checked
before the bound finds the true pattern.
doi:10.1371/journal.pone.0046771.g004

Figure 5. For the simulated datasets developed from 4-SNP models, the average fraction of the total number of patterns checked
before the bound finds the true pattern.
doi:10.1371/journal.pone.0046771.g005

Mining Epistasis from High-Dimensional Datasets

PLOS ONE | www.plosone.org 5 October 2012 | Volume 7 | Issue 10 | e46771



score(Xi, PAi)~ P
qi

j~1

C(
a

qi

)

C(
a

qi

z
ri
k~1 sijk)

P
ri

k~1

C(
a

riqi

zsijk)

C(
a

riqi

)
, ð2Þ

where ri is the number of states of Xi, and qi is the number of

different instantiations of the nodes in PAi. When learning a DAG

model from data, we could try to maximize our local scores by

looking for an optimal parent set PAi for each node Xi. We could

prune our search space if we had an upper bound on the local

score for any parent set that could be obtained by adding parents

to a current parent set PAi. Singh and Moore [45] proved the

following Theorem relevant to such a bound.

Theorem 1. If in Equation 2 we fix the value of ri

k~1 sijk for each j,

then score(Xi, Pi) is maximized if for each j, sijkj
~ ri

k~1 sijk for some kj .

That is, for every combination of values of the parents of Xi, all data items that

have those values have the same value of Xi.

This theorem could be used to obtain a bound on the local score

that could be obtained by adding parents to a given parent set.

However, the bound is a very loose bound (i.e. the bounds are

much greater than the scores), and therefore the bound has not

proven to be useful in pruning the search space.

SNP Patterns and a Bound for SNP Patterns
We could develop a DAG model that represents many factors

that affect phenotype including inheritable allele variation, somatic

mutations in alleles, environmental factors, and epigenetic

phenomena such as DNA methylation. A subnetwork of that

model contains only variables that represent inheritable allele

variation (the variables whose values are obtained in a GWAS). If,

for example, we have a 5-way interaction, two 3-way interactions,

and two 2-way interactions, there are 15 SNPs in this subnetwork,

all which have edges to the disease node D. We have neither the

data nor the computational time to score such networks. So we

must settle for trying to learn pieces of the network, such as

particular interactions, separately. These small subnetworks are

the focus of this paper, and we call them SNP patterns. Examples of

such patterns appear in Figure 2. The first two represent that a

single SNP by itself is associated with the disease, the third one

represents that two SNPs together are associated with the disease,

and the fourth one represents that three SNPs together are

associated with the disease. It is important to recognize that, for

example, the pattern in Figure 2 (c) does not entail that S1 and S3

are interacting to affect D. Each could be affecting it separately.

Without making specialized mathematical assumptions, it is

difficult to distinguish these two situations from data alone. Jiang

et al. [37] provide one way to do this.

In the case of a SNP pattern G and Data concerning the SNPs

and disease in the pattern, the local BDeu score (Equation 2) is as

follows:

score(D, PD)~ P
q

j~1

C
a

q

� �

C
a

q
z 2

k~1 sjk

� � P
2

k~1

C(
a

2q
zsjk)

C(
a

2q
)

, ð3Þ

where PD is the parent set of D in the pattern, q is the number of

Table 3. For the simulated datasets developed from 2-SNP models, average fraction over all 100 datasets of the total number of
patterns checked before finding the true pattern.

100 Data Items 1000 Data Items

Low Heritability High Heritability Low Heritability High Heritability

MAF Bound Score Bound Score Bound Score Bound Score

0.05 0.007 0.042 0.007 0.042 0.008 0.044 0.008 0.048

0.1 0.033 0.133 0.047 0.134 0.037 0.148 0.037 0.139

0.2 0.151 0.356 0.153 0.385 0.159 0.386 0.159 0.404

0.3 0.348 0.594 0.349 0.554 0.359 0.571 0.362 0.555

0.4 0.623 0.641 0.629 0.696 0.662 0.673 0.656 0.714

doi:10.1371/journal.pone.0046771.t003

Table 4. For the simulated datasets developed from 3-SNP models, average fraction over all 100 datasets of the total number of
patterns checked before finding the true pattern.

100 Data Items 1000 Data Items

Low Heritability High Heritability Low Heritability High Heritability

MAF Bound Score Bound Score Bound Score Bound Score

0.05 0.001 0.015 0.001 0.017 0.0005 0.006 0.0009 0.014

0.1 0.010 0.075 0.012 0.079 0.006 0.032 0.005 0.031

0.2 0.072 0.312 0.073 0.309 0.064 0.316 0.063 0.307

0.3 0.232 0.557 0.238 0.566 0.228 0.557 0.225 0.579

0.4 0.554 0.699 0.566 0.770 0.554 0.705 0.552 0.738

doi:10.1371/journal.pone.0046771.t004
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different instantiations of the parents of D, and sjk is the number of

times in the data that D took its kth value when the parents of D

had their jth instantiation.

Using Theorem 1, we can obtain a bound on the local score that

could be obtained by adding parents to a given parent set. Given a

SNP pattern and the score in Equation 3, an upper limit on the

BDeu score of any SNP pattern obtained by adding more SNPs is

as follows (t is the number of combined states of the SNPs added):

bound(D, PD)~ P
q

j~1
P
2

k~1

C(
a

qt
)

C(
a

qt
zsjk)

|

C(
a

2qt
zsjk)

C(
a

2qt
)

:

If all variables are binary, and we are looking only for a bound on

adding one SNP, t~2, if it is a bound on adding two SNPs, t~4,

and if it is a bound on adding three SNPs, t~8.

As noted earlier, this is a very loose bound and would not be

useful for provably pruning the search space. However, in the case

of searching for strict epistatic interactions, perhaps it is asking too

much to hope for provable results. We would achieve valuable

progress if we could just often heuristically locate such interactions

without an exhaustive search. We conjectured that the bound

might enable us to do that, and that is what is investigated here.

Algorithm
Suppose we have a dataset concerning SNPs and a disease, and

our goal is to find a 2-SNP pattern with a particular BDeu score

(Equation 3). This pattern could be the highest scoring pattern or

it could be the true pattern representing an epistatic interaction

used to generate the data. Often these two patterns are the same.

We search for that pattern as follows. First, all the 1-SNP patterns

are sorted by either their 2-SNP scores or their 2-SNP bounds. Let

S1, S2, S3, S4,::::: be the resultant sorted list of SNPs. We then

investigate 2-SNP patterns according to the following order:

S1S2,

Table 5. For the simulated datasets developed from 4-SNP models, average fraction over all 100 datasets of the total number of
patterns checked before finding the true pattern.

100 Data Items 1000 Data Items

Low Heritability High Heritability Low Heritability High Heritability

MAF Bound Score Bound Score Bound Score Bound Score

0.05 0.001 0.007 0.002 0.012 0.0004 0.004 0.0005 0.015

0.1 0.005 0.052 0.005 0.053 0.001 0.036 0.001 0.037

0.2 0.048 0.271 0.048 0.275 0.028 0.262 0.028 0.283

0.3 0.170 0.554 0.165 0.544 0.139 0.534 0.137 0.552

0.4 0.486 0.674 0.514 0.751 0.471 0.751 0.466 0.713

doi:10.1371/journal.pone.0046771.t005

Figure 6. For the simulated datasets with 1000 SNPs and high heritability, the average fraction of the total number of patterns
checked before the bound finds the true pattern.
doi:10.1371/journal.pone.0046771.g006
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S1S3, S2S3,

S1S4, S2S4, S3S4,

S1S5, . . . :

We stop when we locate the pattern for which we are searching,

and we keep track of the number of patterns checked before we

find that pattern.

This strategy extends readily to search for k-SNP patterns. The

following is an algorithm for the general case:

Algorithm 1 Find_Pattern

n~total number of SNPs;

k~number of SNPs in the patterns we are investigating;

S~array containing the SNPs in sorted sequence;

scoresearch~score of pattern we are trying to locate;
numpatterns~0;
scorepatterns(k, n);
procedure scorepatterns(int start, int end);

if start~0

numpatterns~numpatternsz1;

score~Bayesianscore(V );
if score~scoresearch

output (numpatterns);
halt;

endif

else

for i~start to end
V ½t{startz1�~S½i�;
scorepatterns start{1, i{1ð Þ;

endfor

endelse

Algorithm 1 constructs each candidate pattern in the array V .

When V contains k SNPs, the pattern is scored. If its score is equal

to the score of the pattern for which we are searching, the

algorithm outouts the number of patterns checked and halts. Note

that if we are searching for a pattern representing a particular

epistatic interaction, it will halt when we find any pattern with the

same score as that pattern. However, in our experiments this

unlikely event never occurred.

Simulated Data Sets
Fisher et al. [46] created GAMETES, which is a software

package for generating strict epistatic models with random

architectures‘ We used GAMETES to develop 2-SNP, 3-SNP,

and 4-SNP models of strict epistatic interaction. The software

Figure 7. For the LOAD datasets, the average ratio of the number of patterns checked by the bound to the number of patterns
checked by the score before each finds the true pattern.
doi:10.1371/journal.pone.0046771.g007

Table 6. Approximation of the average running time before finding the true pattern.

1000 SNPs 10,000 SNPs 100,000 SNPs

Bound Exhaustive Bound Exhaustive Bound Exhaustive

2-SNP 10 sec 12 min 16 min 20 hours 28 hours 84 days

3-SNP 7 min 3 days 5 days 8 years 14 years 7,662 years

4-SNP 1 day 2 years 14 years 19,146 years 4|105 years 2|108 years

doi:10.1371/journal.pone.0046771.t006
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allows the user to specify the heritability and the minor allele frequency

(MAF). We wanted to test a full range of MAFs (0.05 to 0.4) and

relatively low and high heritabilities (0.05 and 0.2). However, we

found that to obtain models with a low MAF, it was sometimes

necessary to decrease the heritability. The actual MAFs and

heritabilities used in the simulations are shown in Table 1.

For each of the 30 combinations of MAF and heritability, we

developed datasets in which there were 100 SNPs and 1000 SNPs.

Each dataset had 1000 cases and 1000 controls. For each of the 60

variations, 100 datasets were generated, making a total of 6000

datasets. We used the BDeu score with a~9 to score the SNP

patterns and to compute their bounds using a given dataset. For

each of the datasets, we first sorted the SNPs by their bounds. For

the 2-SNP interactions, it was the bound on adding one SNP; for

the 3-SNP interactions, it was the bound on adding two SNPs; and

for the 4-SNP interactions, it was the bound on adding three

SNPs. We then used Algorithm 1 to determine how many patterns

were checked before the true pattern representing the interaction

was discovered. In the case of the 1000 SNP datasets it was not

computationally feasible to actually run Algorithm 1. Rather we

simply determined the locations where the interacting SNPs

appeared in the sorted list, and then using these locations we

computed where Algorithm 1 would find the true pattern

representing the interacting SNPs. We repeated this procedure

with the SNPs sorted by their scores.

We did not vary the number of cases and controls because that

number does not have a significant effect on the running time. The

data needs to preprocessed to obtain the counts needed in the

computation of the bound and the score. The only effect that the

number of cases and controls has on the running time is that the

pre-processing time increases linearly with the total number of

cases and controls.

Semi-Synthetic Datasets
Reiman et al. [13] developed a GWAS late onset Alzheimer’s

disease (LOAD) dataset on 312,317 SNPs from an Affymetrix

500 K chip, plus the measurement of a locus in the APOE gene,

which is known to be predictive of LOAD. The dataset consists of

859 cases and 552 controls. See http://www.tgen.org/

neurogenomics/data concerning this dataset. Hunter et al. [47]

conducted a GWAS concerning 546,646 SNPs and breast cancer

as part of the National Cancer Institute Cancer Genetic Markers

of Susceptibility (CGEMS) Project. The dataset consists of 1145

Table 7. For the LOAD datasets, average fraction over all 100
datasets of the total number of patterns checked before
finding the true pattern.

MAF 2-SNP 3-SNP 4-SNP

Bound Score Bound Score Bound Score

0.05 0.008 0.054 0.0003 0.017 0.0001 0.006

0.1 0.043 0.170 0.009 0.085 0.002 0.044

0.15 0.102 0.274 0.035 0.206 0.012 0.124

0.2 0.187 0.393 0.083 0.353 0.037 0.281

doi:10.1371/journal.pone.0046771.t007

Table 8. For the breast cancer datasets, average fraction over
all 100 datasets of the total number of patterns checked
before finding the true pattern.

MAF 2-SNP 3-SNP 4-SNP

Bound Score Bound Score Bound Score

0.05 0.008 0.045 0.0008 0.014 0.00009 0.004

0.1 0.045 0.137 0.010 0.079 0.002 0.045

0.15 0.109 0.272 0.038 0.173 0.013 0.120

0.2 0.199 0.370 0.092 0.283 0.041 0.258

doi:10.1371/journal.pone.0046771.t008

Figure 8. For the breast cancer datasets, the average fraction of the total number of patterns checked before the bound finds the
true pattern.
doi:10.1371/journal.pone.0046771.g008
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cases and 1142 controls. See http://cgems.cancer.gov/ concern-

ing this dataset.

We developed 2-SNP, 3-SNP, and 4-SNP models of strict

epistatic interactions using GAMETES, and used the models to

inject interacting SNPs into each of the real GWAS datasets

resulting in semi-synthetic datasets. The models generated have

the properties shown in Table 2. For each of the 12 models, 100

datasets were developed.

We used the BDeu score with a~9 to score the SNP patterns

and to compute their bounds using a given dataset. We used

Algorithm 1 to search for the true pattern representing the

interacting SNPs using both the bound and the score to sort the

SNPs.

Results

Simulated Datasets
For the simulated datasets developed from the 2-SNP models,

Table 3 shows the average over all 100 datasets of the fraction of

patterns checked by both the bound and the score before the true

pattern is found. Tables 4 and 5 show the same information for the

datasets developed from the 3-SNP and 4-SNP models. Figures 3,

4, and 5 show the average fraction of patterns checked by the

bound in graphical format.

These tables and figures show that the bound usually performs

much better than we would expect by chance, and also performs

substantially better than the score. When the MAF is small (0.05)

the average fraction of patterns checked by the bound is at most

around 0.008. By chance alone we would expect that average to be

around 0.5. In general, the average fraction increases as the MAF

increases. On the other hand, the heritability and the dimension of

the dataset have little effect on the average fraction. It is somewhat

surprising that the bound performs about as well when the

heritability is low as when it is high. Since unknown genetic risk

might confer low heritability, this is an encouraging result.

The other variable that affects the performance of the bound is

the number of SNPs involved in the epistatic interaction. That is,

the performance improves as the number of SNPs increases.

Figure 6 illustrates this using the experiments in which there were

1000 SNPs and the heritability was high.

In order to make these results more transparent, we did an

analysis using actual times. As noted above, the performance does

not seem to degrade as the dimension of the datasets increases (i.e.,

the results are about the same for the 100 SNP datasets and for the

1000 SNP datasets). If we assume that this result holds true for

larger dimensions, then Table 6 shows the approximate average

running needed to locate the true pattern using both the bound

and a blind exhaustive search. The times were based on using an

Intel Xeon CPU 2.66 GHz, which takes about 0:0029 seconds to

compute the bound for one pattern. In the exhaustive search it is

assumed that the true model will be found after checking half of

the models on the average.

Notice that the bound always performs about an order of

magnitude better than the exhaustive search as far as the

dimension that it can handle in an acceptable amount of time.

That is, in the case of the 2-SNP models the bound can handle

100,000 SNPs whereas the exhaustive search can only handle

10,000 SNPs; in the case of the 3-SNP models the bound can

handle 10,000 SNPs whereas the exhaustive search can only

handle 1000 SNPs; and in the case of the 4-SNP models the bound

can handle 1000 SNPs whereas the exhaustive search cannot.

These results indicate that in the case of pure epistasis the

bound can often locate the true pattern much sooner than would

be expected by chance, and offers a substantial improvement over

using the score to locate that pattern.

Semi-Synthetic Datasets
For the LOAD datasets, Table 7 shows the average over all 100

datasets of the fraction of patterns checked by both the bound and

the score before the true pattern was found. Figure 7 show the

average fraction of patterns checked by the bound in graphical

format. Table 8 and Figure 8 show the same information for the

breast cancer datasets.

The results are similar to those for the simulated datasets. In the

case of both the LOAD and the breast cancer datasets, when the

MAF is small (0.05 or 0.1) the bound never checks more than 5%

of the patterns before finding the pattern representing the

interacting SNPs, and it always checks substantially fewer patterns

than the score.

Consider the following example. In the case of the LOAD

dataset, there are 4: 877 1|1010 2-SNP patterns. When the MAF

is 0.05, the bound checks only 3:9016|108 of these patterns.

Using an Intel Xeon CPU 2.66 GHz, it takes about 0:0029
seconds to compute the score or the bound for one pattern. So an

exhaustive could be expected to find the true pattern in about 2.24

years. However, the bound can be expected to find the true

pattern in about 13.09 days.

It is well known that the APOE gene is associated with LOAD

[12,13]. The APOE gene has three common variants e2, e3 and

e4. The least risk is associated with the e2 allele, while each copy of

the e4 allele increases risk. As mentioned above, Reiman et al. [13]

developed a GWAS late onset Alzheimer’s disease (LOAD) dataset

on 312,317 SNPs and APOE status. These researchers investigat-

ed pairs of loci, where one locus is APOE status, in order to

possibly learn epistatic interactions of other loci with APOE. They

performed separate analyses in APOE e4 carrier and APOE e4
non-carriers. They found that 10 of the 25 SNPs with the most

Table 9. The 1-SNP score, 2-SNP bound and 2-SNP score for
real loci and injected loci.

Locus 1-SNP Score 2-SNP Bound 2-SNP score

APOE 2836.08 213.74 –

rs1007837 (GAB2) 2947.88 217.50 2831.33

rs7101429 (GAB2) 2947.16 217.53 2830.58

rs901104 (GAB2) 2947.69 217.57 2830.69

rs4291702 (GAB2) 2947.36 217.66 2830.51

rs4945261 (GAB2) 2947.83 217.59 2831.68

rs7115850 (GAB2) 2945.19 217.89 2827.261

rs10793294 (GAB2) 2947.24 218.39 2830.84

rs2450130 (GAB2) 2948.28 217.60 2830.49

S1 (0.05) 2949.25 214.60 2836.31

S2 (0.05) 2949.12 214.42 2836.31

S1 (0.1) 2964.67 216.42 2761.12

S2 (0.1) 2964.50 216.24 2761.12

S1 (0.15) 2950.29 217.56 2668.48

S2 (0.15) 2950.16 217.54 2668.48

S1 (0.20) 2950.56 218.42 2612.31

S2 (0.20) 2950.36 218.60 2612.31

The 2-SNP scores for the real loci are the scores of the patterns in which the
other locus is APOE. The 2-SNP scores for the injected loci are the scores of the
injected patterns. For the injected SNPs, the MAFs are shown in parentheses.
doi:10.1371/journal.pone.0046771.t009
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significant LOAD association in APOE e4 were located in the

GAB2 gene. They did not find that the GAB2 gene is significantly

associated with LOAD in the APOE e4 non-carriers. Reiman et al.

[13] provide biological evidence that GAB2 modifies LOAD risk

in APOE C̄4 carriers.

Using this same dataset, Jiang et al. [37] scored all 2-SNP

patterns where one of the loci is the APOE gene and the other loci

is one of the 312, 317 SNPs being investigated. Eight of the ten

highest scoring patterns contained a GAB2 SNP, substantiating

the results in [13].

This discovery of a possible interaction between GAB2 and

APOE was achieved because of APOE’s high marginal effect.

Table 9 compares this sort of result to our result concerning the

discovery of the strict epistatic interactions we injected into the

LOAD dataset. The average score and bound over all SNPs were

2950.46 and 217.898 respectively. We see from Table 9 that

APOE has an extremely high score (by far higher than any other

1-SNP pattern), and that the GAB2 SNPs have both unremarkable

scores and bounds. However, due to APOE’s high score, it was

reasonable and computationally efficient to investigate the

interaction of every SNP with APOE. By so doing, it was

discovered that patterns including APOE and GAB2 were quite

likely. Our injected SNPs have unremarkable scores. Little

discovery would be expected by looking at their scores alone.

However, the bounds for the SNPs are quite high (almost as high

as APOE’s bound) when the MAF is 0.05, and they decrease as the

MAF increases. This result is consistent with the results shown in

Table 7. So the bounds enabled us to discover the strict epistatic

interactions.

It might seem odd that the average bounds for the interacting

SNPs are around 218 when the MAF is 0.2 (see Table 9), which is

worse than the average bound, but yet we find the pattern

containing those SNPs after investigating only about 0.187 fraction

of the 2-SNP patterns (see Table 7). The explanation for this is that

both SNPs’ bounds ordinarily ranked around the mid-point of the

sorted list of all bounds. So Algorithm 1 would find the pattern

containing them fairly early. The following example illustrates why

this is the case. If there were 7 SNPs, there would be 21 patterns,

and if the SNPs ranked as the 3rd and 4th SNPs, Algorithm 1

would discover the pattern containing them after investigating

only 6 patterns.

Finally, note that the bound is a very loose bound. Therefore, it

would not be useful in a best-search first algorithm that prunes

SNPs based on their bounds and which is able to guarantee that

we discovered the highest scoring pattern. However, as we have

seen, the bound can be quite effective for guiding a heuristic

search for high scoring patterns. In general, when we are searching

for possible epistatic interactions, our concern is with finding likely

patterns that we can then further investigate for biological

plausibility. It is not necessary that we know that a discovered

interaction has the highest score of all patterns.

Discussion

We identified a bound on the Bayesian score of any SNP

pattern that could be obtained by expanding a given SNP pattern.

Using simulated datasets based on models of strict epistasis, we

showed that the bound can locate the true pattern, when searching

moderate-dimensional datasets, much faster than can be expected

by chance. Using semi-synthetic datasets based on models of strict

epistasis, we showed that the bound can locate the true pattern,

when searching high-dimensional GWAS datasets, much faster

than can be expected by chance. The average fraction of patterns

checked before finding the true pattern was as little as 0.0004.

These results indicate that the bound can be an extremely useful

tool in algorithms that search high-dimensional datasets for strict

epistatic interactions.

We used an algorithm that sorts the SNPs by their bounds and

by their scores to test the effectiveness of the bound. Although this

was an effective way to compare the bound to the score, in practice

it may not be the most effective way to use the bound in a heuristic

search. First, the algorithm assumes we know the number of

interacting SNPs up front. Second, if, for example, we were

looking for a 4-SNP interaction, we would be able to visit very few

different SNPs. We plan to incorporate the bound into other

algorithms we have developed such as MBS [32]. Our final

algorithm will use both the bound and the score to guide our

search.
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