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Abstract

The ranking of scores of individual chemicals within a large screening library is a crucial step in virtual screening (VS) for
drug discovery. Previous studies showed that the quality of protein-ligand recognition can be improved using spectrum
properties and the shape of the binding energy landscape. Here, we investigate whether the energy gap, defined as the
difference between the lowest energy pose generated by a docking experiment and the average energy of all other
generated poses and inferred to be a measure of the binding energy landscape sharpness, can improve the separation
power between true binders and decoys with respect to the use of the best docking score. We performed retrospective
single- and multiple-receptor conformation VS experiments in a diverse benchmark of 40 domains from 38 therapeutically
relevant protein targets. Also, we tested the performance of the energy gap on 36 protein targets from the Directory of
Useful Decoys (DUD). The results indicate that the energy gap outperforms the best docking score in its ability to
discriminate between true binders and decoys, and true binders tend to have larger energy gaps than decoys. Furthermore,
we used the energy gap as a descriptor to measure the height of the native binding phase and obtained a significant
increase in the success rate of near native binding pose identification when the ligand binding conformations within the
boundaries of the native binding phase were considered. The performance of the energy gap was also evaluated on an
independent test case of VS-identified PKR-like ER-localized eIF2a kinase (PERK) inhibitors. We found that the energy gap
was superior to the best docking score in its ability to more highly rank active compounds from inactive ones. These results
suggest that the energy gap of the protein-ligand binding energy landscape is a valuable descriptor for use in VS.
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Introduction

Understanding the mechanism of ligand-receptor recognition

plays an important role in the identification of novel compounds

for pharmaceutical development [1–3]. Docking applies the

physico-chemical theory of biomolecular interactions to simula-

tions and is a crucial method for structure-based rational drug

discovery [4]. Protein folding and ligand-protein binding

phenomena share several physical chemistry characteristics,

including a thermodynamically stable native state, large

conformational spaces, and complex energy landscapes [3,5].

Energy landscape analysis was first implemented to investigate

protein folding [6–17] and was further developed in ligand-

protein binding studies [14,18–25]. These studies show that the

shape of the binding energy landscape of highly specific protein-

ligand complexes has a steep slope towards native state, while

less selective complexes have a more uneven shape of the

binding energy landscape with low barriers between conformers

of the complex [3,21,22,24]. Consideration of intrinsic specific-

ity ratio (ISR), defined as dE=DE, where dE is the energy gap

between lowest energy state and average binding energy state

(populations of weakly bound states follow Boltzmann distribu-

tion), and DE is the energy variance of the weakly binding

states, was reported to improve understanding of physiologically

relevant ligand recognition by protein receptors [21,22]. The

energy gap has therefore been proposed as a measure of the

shape of the energy landscape. The approach suggested in

[21,22] was tested on cyclooxygenase (COX) inhibitors, and

known specific inhibitors for COX-2 were correctly identified

[22]. It also was shown that consideration of multiple docking

solutions significantly increases the success rate of obtaining the

crystallographic binding pose [26–28]; however the precise

range of poses to be considered and the theoretical justification

of that range have not yet been proposed. Wei et al [29] used

AutoDock in a limited study to investigate the influence of

incorporating the ligand-protein binding landscape properties

(the energy gap and number of local binding wells) on the

success rate of VS against two targets: influenza virus

neuraminidase and cyclooxygenase-2. Recently, unguided mo-

lecular dynamics simulations of the entire binding process of

cancer drug dasatinib and the kinase inhibitor PP1 to Src

protein kinase were conducted, and energy landscape analysis

was performed [30]. For a review of different aspects related to

the nature of ligand-protein binding energy landscapes, as well
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as various computational approaches to address these aspects

see [31].

The goal of this study is to investigate the contribution of

intermolecular binding energy landscapes to the quantitative

assessment of the quality of ligand recognition by protein

receptors on a large and diverse benchmark of therapeutically

relevant proteins. Based on studies performed in [21,22], we

evaluated the ability of the energy gap between the lowest

energy (best scored pose) and the average energy of all other

poses scored in the searched binding energy landscape to

discriminate true binders from decoys using single-receptor

conformation (SRC) and multiple-receptor conformation (MRC)

VS experiments. In this study we used two diverse benchmarks

to address this question. The first one consists of 485 X-ray

protein conformations of 40 domains from 38 therapeutically

relevant protein targets. This benchmark was selected from the

flexible Pocketome dataset, which is ‘‘an encyclopedia of

conformational ensembles of all druggable binding sites that

can be identified from co-crystal structures in the PDB’’ (visit

http://pocketome.org/website for details). Henceforth, we will

refer to this benchmark as the Pocketome benchmark. The

second benchmark consists of 468 X-ray protein conformations

of 36 pharmaceutically relevant protein targets from the

Directory of Useful Decoys (DUD) [32–34]. For comparison

purposes, the performance of the best docking score is

presented. Also, by using the energy gap as a descriptor we

attempt to measure the height of native binding phase and test

the success rate of near native binding pose identification when

the ligand binding conformations within the boundaries of the

native binding phase have been considered. Furthermore, the

performance of the energy gap was evaluated on PKR-like ER-

localized eIF2a kinase (PERK) inhibitors recently discovered

using a homology model as the VS receptor [35]. All

simulations were performed with ICM (Molsoft LLC, La Jolla,

CA) [36–38].

Materials and Methods

Protein-ligand Complexes
Two diverse benchmarks were used to investigate the ability of

the energy gap to discriminate true binders from decoys. The

Pocketome benchmark consists of 485 X-ray conformational

ensembles (334 holo structures and 151 apo structures) of 40

domains from 38 therapeutically relevant protein targets (see

Table S1 for details) with high resolution and drug-like ligands co-

crystallized with these proteins (with 8 ligands per protein domain

on average). Four protein domains out of 40 contain only holo

structures. The second benchmark used in our study was adopted

from [34] and consists of 468 high resolution X-ray protein

conformations of 36 pharmaceutically relevant protein targets

from the Directory of Useful Decoys (DUD) with 3,611 true

binders and 32 decoys per true binder (see Table S8 for details).

Because these two benchmarks were originally collected in-

dependently, there is an overlap of 7 protein targets between

them, however sets of true binders and decoys used in VS

experiments against these 7 protein targets were different for each

benchmark. The crystal structures were meticulously collected by

Irina Kufareva and Ruben Abagyan, UCSD Skaggs School of

Pharmacy and Pharmaceutical Sciences [39,40]. A conformational

ensemble for a protein had to represent at least two different

crystal structures and include at least one co-crystallized ligand.

The atomic coordinates were retrieved from the RCSB Protein

Data Bank (PDB) [41].

Homology Model of PERK
To test the performance of the energy gap in VS against protein

homology models we used PERK homology models recently built

in our laboratory. Initially, two homology models of the PERK

catalytic domain were generated from two crystal structures of

eIF2a kinase GCN2 (PDB code: 1zy4 & 1zy5) [42], followed by

conformational sampling of the activation loop. This ensemble of

multiple receptor structures was used for the subsequent VS (see

[35] for details).

Preparation of Proteins
The receptors were set-up by deleting the chains, heteroatoms,

and prosthetic groups not involved in the binding site definition.

The protein atom types were assigned, and hydrogen atoms and

missing heavy atoms were added. The added or zero occupancy

side chains and polar hydrogen atoms were optimized and

assigned the lowest energy. Tautomeric states of histidines and the

rotations of asparagine and glutamine side chain amidic groups

were optimized to improve the hydrogen-bonding patterns. The

cognate ligands were deleted from the complexes only after

hydrogen optimization.

Preparation of Ligands
Coordinates of the ligands were extracted either from the

crystallographic complexes or according to DUD. Bond orders,

tautomeric forms, stereochemistry, hydrogen atoms, and pro-

tonation states were assigned automatically by the ICM chemical

conversion procedure. Each ligand was assigned the MMFF [43]

force field atom types and charges. Ligand molecules were

prepared for docking by a rotational search followed by the

Cartesian minimization in the absence of the receptor, and the

lowest energy conformations were used as starting points for ICM

docking.

Ligand Docking
The well-established ICM docking program was used for the

docking calculations. ICM addresses the docking issue as a global

optimization problem, implementing a biased probability Monte

Carlo (BPMC) global stochastic optimization of the flexible full-

atom models of the ligand in the set of grid potential maps

representing the protein [37,38]. These grid energy maps account

for the hydrophobic, heavy atom and hydrogen van der Waals

interactions, hydrogen-bonding interactions, and electrostatic

potential. A diverse set of ligand conformers was first generated

from PDB ligand coordinates by ligand sampling in vacuo. Each

conformer was locally minimized with relaxed bond lengths and

bond angles using the MMFF-94 force field in order to remove

any bias towards receptor-bound covalent geometry. The gener-

ated conformers were then placed into the binding pocket in four

principal orientations and used as starting points for Monte Carlo

(MC) optimization. The BPMC docking runs were performed

using thoroughness setting of 2, which controls the basic number

of BPMC steps to be carried out.

Virtual Screening (VS)
For each docking simulation a stack of diverse binding poses was

generated, and their respective scoring energies were evaluated

using the ICM scoring function [44]. The score was calculated

using the following formula:

Score~Eint zTDSTor zEvw z a1Eel

z a2Ehb z a3Ehp za4Esf ,
ð1Þ

Energy Gap as a Descriptor in Virtual Screening
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where Evw, Eel, Ehb, Ehp, and Esf are van der Waals, electrostatic,

hydrogen bonding, and nonpolar and polar atom solvation energy

differences between bound and unbound states, respectively. Eint

represents the ligand internal strain and DSTor is its conforma-

tional entropy loss upon binding. The a coefficients are empirical

weights that balance the different terms.

For each ligand-receptor pair, three docking runs were

performed and 200 binding poses were obtained after each run.

All binding poses accumulated after each run were merged in

a single conformational stack, and only the geometrically unique

solutions, with corresponding energies sorted from low to high,

were retained. The energy gap between the lowest energy (best

scored pose obtained from three docking runs) and the average

energy of all other poses scored in the searched binding energy

landscape was calculated and used as a score to discriminate true

binders from decoys. If the lowest energy or the average energy of

all other poses obtained from the docking runs were found to have

a positive value, then those protein-ligand complexes were not

included in the final dataset because of possible indication of

protein-ligand clashes or other structural anomalies, such as high

conformational strain. Performances of the energy gap and the

best docking score were evaluated through retrospective SRC and

MRC VS experiments aimed at separating known ligand binders

from decoys. For the Pocketome benchmark, the evaluation of

docking scores and energy gaps for true binders was performed by

docking ligands co-crystallized within a given domain to the ligand

binding pocket of all conformations of this domain. Henceforth,

we will refer to those ligands as true binders. The cognate receptor

structures were not included in ensemble docking calculations.

The cross-docking effort was aimed at generating diverse decoy

complex structures. For every domain, (i) the size range of all

cognate (co-crystallized) ligands was determined as the number of

their heavy atoms and (ii) 20 ligands chosen randomly from

a dataset of ligands of comparable size (620% of cognate ligand

size) were docked into the ligand binding pocket of all

conformations of this domain. For DUD benchmark, active

ligands (we will refer to those ligands as true binders too) and

decoys of a given protein target were docked to the ligand binding

pocket of all conformations of this target. The performance of the

energy gap was evaluated through MRC VS. For the PERK

homology model we tested the performance of the energy gap on

32 compounds, including 20 active and 12 inactive, validated by in

vitro kinase inhibition assay [35].

Using the approaches proposed above, the binding energy

landscapes of true binders and high-scoring decoys were obtained.

We hypothesized that a significant difference between these two

landscapes should be observed. The energy gap of the binding

energy landscape was used as a score and was evaluated for its

ability to distinguish true binders from decoys. The ROC (receiver

operating characteristic) curve, or ROC AUC, was used to

evaluate the performance of the energy gap. ROC curve analysis

[45] describes the ability of a screening method to avoid false

positives and false negatives. The ideal screening device demon-

strates the ROC AUC value of 1, while a random selection

performance corresponds to the ROC AUC value of 0.5. For

MRC ensemble runs, the ROC curves were calculated using the

best docking score and corresponding energy gap for each ligand

obtained from the protein conformations in the ensemble. As an

early recognition metric, we used the fraction of true binders

recovered within N top-ranked hits (both among true binders and

decoys) predicted by VS, where N is the number of true binders for

a given protein target. The discrimination abilities of the energy

gap and the best docking score were systematically compared.

Statistical Analysis
To evaluate the statistical significance of the obtained ROC

AUC values, we assumed that they are distributed according to

Gaussian distribution with mean 0.5. The uncertainty s is

calculated by performing 20 random statistical experiments in

which the ranks are reshuffled, calculating individual ROC AUCs

and calculating the root mean square deviation of those ROC

AUCs. For each ROC AUC value obtained on a given subset of

binders and decoys for a given structure, its P-value was calculated

as the probability of obtaining the same AUC by random

coincidence:

P-value~1{
1

2
1zerf

ROC AUC value{0:5

s
ffiffiffi
2

p
� �� �

, ð2Þ

where erf is the error function [46] and s is the standard deviation.

P-values below 0.05 indicate that the ROC AUC values are

statistically significance, while P-values greater than 0.05 indicate

that the ROC AUC values are statistically less significant.

Software and Hardware
The receptor and ligand preparations, the docking simulations,

and the energy and gap evaluations were carried out with ICM

3.6-1e (Molsoft LLC, La Jolla, CA). The hardware facility

employed in the present study was a 16 64-bit Intel XEON

X5560 CPUs Linux-based cluster at New York University School

of Medicine (New York, NY). It takes 20–40 seconds to dock one

compound into one receptor and perform post docking confor-

mational stack evaluation on a single CPU.

Results and Discussion

In this study the data set was utilized to investigate the ability of

the energy gap in the searched binding energy landscape to

discriminate true binders from decoys. The evaluation of the best

docking scores and the energy gaps for true binders and decoys

was carried out as is described in the Materials and Methods

section. As an example of a binding energy landscape and

evaluation of the energy gap, the docking of Chk1 protein kinase

inhibitor (PDB HET ID: 422) to Chk1protein kinase (PDB ID:

2br1) is presented in Figure 1.

Screening Performance of the Energy Gap: Single-
Receptor Conformation Virtual Screening

First, the energy gap was evaluated for its ability to distinguish

true binders from decoys for each 485 single receptor conforma-

tion, included in the Pocketome benchmark, individually. The

performances of the energy gap and the best docking score were

measured as the area under the ROC curve, or ROC AUC (see

Materials and Methods section). The resulting distributions of

AUC values are presented in Figure 2. The analysis of the

histograms of AUC values obtained when energy gap is chosen as

a discrimination measure shows that 98% of individual structures

had favorable AUC values greater than 0.5, 96% had AUC values

greater than 0.6, 90% .0.7, 80% .0.8, and 63% of individual

structures displayed good recognition with AUC values greater

than 0.9 (Figure 2A). The analysis of the histogram of AUC values

obtained when the best docking score is chosen as a discrimination

measure shows that 95% of individual structures had favorable

AUC values greater than 0.5, 92% had AUC values greater than

0.6, 86% .0.7, 78% .0.8, and 57% of individual structures

displayed good recognition with AUC values greater than 0.9

(Figure 2A).

Energy Gap as a Descriptor in Virtual Screening
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Previously, in [47], where the best docking score was chosen to

calculate AUC values, the authors reported that ‘‘holo conforma-

tions have better separation power than apo ones.’’ When we split

the benchmark into holo and apo structures, we observed that,

when energy gap is chosen as discrimination measure, the

distribution of AUC values for holo structures shifted towards

higher AUC values with 67% of holo structures display a good

AUC value (.0.9) compared to 54% in case of apo structures (see

Figure 2B). The analysis of results obtained when the best docking

score is chosen as a discrimination measure shows that 62% holo

and 46% apo structures display good recognition with AUC values

.0.9. Based on our observations, we can indeed conclude that

holo structures perform better than apo ones. The benefit of

considering both holo and apo structures is that it increases the

diversity of binding pockets, which are required for the recognition

of a specific binding profile [47]. According to our results, the

energy gap is more successful at separating the binders from

decoys in both holo and apo structures.

Screening Performance of the Energy Gap: Multiple-
Receptor Conformations Virtual Screening

Consideration of the receptor flexibility is crucial for structure-

based drug design and VS methodologies [34,47–59]. Multiple-

Receptor Conformations (MRC) are a practical alternative to

mimic receptor flexibility [34,47,48,51,52,56,57]. To further study

the recognition properties of the energy gap and influence of the

receptor flexibility on the performance of the energy gap, we

incorporated receptor flexibility by combining 485 protein X-ray

conformations, included in the Pocketome benchmark, in 40

protein domains. On average, the 40 protein domains contained

about 12 conformations (4 of them apo and 8 holo) and 8 ligands

each. For each protein domain, AUC values were evaluated, and

performances of the energy gap and the best docking score were

compared to each other. A histogram analysis when the energy

gap is chosen as a discrimination measure shows that all of the

protein domains display AUC values greater than 0.6, 87% display

AUC values greater than 0.7, 72% .0.8, and 50% of protein

domains displayed good recognition with AUC value greater than

0.9 (Figure 3A). The analysis of the histograms of AUC values

obtained when the best docking score is chosen as a discrimination

measure shows that 97% of protein domains had favorable AUC

values greater than 0.5, 92% had AUC values greater than 0.6,

87% .0.7, 72% .0.8, and only 42% of protein domains

displayed good recognition with AUC value greater than 0.9

(Figure 3A). The resulting AUC value distributions for apo and

holo ensembles are presented in Figure 3b. The analysis of the

histograms, when the energy gap is chosen as discrimination

measure, shows that 55% of holo domains display good AUC

values (.0.9) compared to 44% in the case of apo domains (see

Figure 1. Binding energy landscape evaluation for docking
simulation of Chk1 protein kinase inhibitor (PDB HET ID: 422)
to Chk1protein kinase (PDB ID: 2br1). Color-coded representation
of ICM Docking Scores of all generated docking poses and evaluation of
the energy gap. Each dot represents one docking pose of Chk1 protein
kinase inhibitor. The dots are colored in different colors spread evenly
among rmsd-values from 1.1 to 11.8 Å to the crystallographic position
of Chk1 protein kinase inhibitor (PDB HET ID: 422). The lowest ICM
Docking Score =236.8 kcal/mol (1.1 Å (rmsd) to the crystallographic
position), the highest ICM Docking Score =25.2 kcal/mol (10 Å (rmsd)
to the crystallographic position), and the energy gap of221.5 kcal/mol.
doi:10.1371/journal.pone.0046532.g001

Figure 2. Distributions of AUC values obtained from single-
receptor conformation VS. (A) for 485 protein conformations
included in the Pocketome benchmark and (B) for 485 protein
conformations split in 334 holo and 151 apo structures. See Tables
S1, S2, S3 for details.
doi:10.1371/journal.pone.0046532.g002

Energy Gap as a Descriptor in Virtual Screening
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Figure 3B). The analysis of results obtained when the best docking

score is chosen as a discrimination measure show that 50% holo

and 44% apo ensembles display good recognition with AUC

values .0.9 (see Figure 3B).

In Figure 4, the performance of the energy gap is presented for

each of the 40 protein domains. In this figure, AUC values

obtained when the energy gap is chosen as a discrimination

measure were compared to AUC values obtained when the best

docking score is chosen as such a measure.

By using the energy gap, the binder/decoy discrimination ROC

AUC value was improved for 77% protein domains when

compared to the performance of the best docking score. The

improvement was particularly high for the previously problematic

cases (weak performance of the best docking score) with original

AUC values below 0.9. For these cases we obtained improvement

in 83% of protein domains (Figure 4).

Furthermore, the performance of the energy gap in true

binders/decoys discrimination was evaluated through MRC VS

against 468 high resolution X-ray protein conformations of 36

pharmaceutically relevant protein targets from the Directory of

Useful Decoys (DUD), which is one of the most challenging test

sets for benchmarking VS. The biggest challenge comes from the

fact that true binders included in DUD are selected based on

experimental activity and independently from receptor X-ray

structures. In addition to that, decoys included in DUD are ‘‘bona-

fide’’ [34] non-binders, since there is no experimental evidence

regarding their lack of activity. For each protein target, AUC

values were evaluated, and performances of the energy gap and

the best docking score were compared to each other (see Table 1).

By using the energy gap, the binder/decoy discrimination ROC

AUC value was improved for 64% protein targets when compared

to the performance of the best docking score. Notably, the highest

improvement was obtained for previously reported problematic

protein target HMDH_HUMAN [34]. For this protein target we

obtained improvement of 0.14 AUC units. Statistical analysis

showed that the significance of these results was P-value ,1027.

Because successful VS ranks true binders early [60,61], the early

recognition metric based on the energy gap and the best docking

score was evaluated for each protein target as it is described in the

Materials and Methods section. In Table 1, the fractions of true

binders recovered within N top-ranked hits sorted by the energy

gap and the best docking score, where N is the number of true

binders for a given protein target, are presented. Obtained results

indicate that the energy gap rewards early recognition better

compared to the best docking score in 50% of protein targets and

in another 19% of protein targets the energy gap and the best

docking score reward early recognition identically. These results

Figure 3. Distributions of AUC values obtained from multiple-
receptor conformation VS. (A) for 40 protein domains included in
the Pocketome benchmark and (B) for 40 protein domains split in
40 holo and 36 apo domains. See Tables S4, S5, S6 for details.
doi:10.1371/journal.pone.0046532.g003

Figure 4. Color-coded dependence of achieved improvement
in ROC AUC values obtained by the energy gap on original
ROC AUC values obtained by docking score. Each dot represents
one protein domain. The dots are colored in different colors spread
evenly among P-values from 0.00 to 1.00 (smallest P-values, that is,
most statistically significant are red, highest P-values are blue). Overall
improvement is achieved in 77% of cases in binder/decoy ligand
discrimination. In 14% of cases the energy gap and the docking score
performed equally. The improvement is particularly high (up to
0.19 AUC units) for the previously problematic cases with original
AUC value below 0.9. In fact for these cases we obtained improvement
in 83% of the proteins domains.
doi:10.1371/journal.pone.0046532.g004

Energy Gap as a Descriptor in Virtual Screening
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certainly indicate that the energy gap outperforms the best docking

score in its discrimination performance.

The Height of the Native Binding Phase
The folding landscape of proteins has two major phases, a)

molten globule phase where the system has high entropy and

energy, and b) native phase where the system has low entropy and

energy [7]. Similarly, the bimolecular binding energy landscape

also has two major phases, a) non-native unbinding phase, and b)

native binding phase. Native binding phase is a cluster of near

native binding conformations and the native binding state [20,21].

Here we used the energy gap as a descriptor to systematically

analyze and measure the height of the native binding phase for all

485 X-ray protein conformations included in the Pocketome

benchmark. In the present study, we defined the energy gap as the

difference between the lowest energy pose and the average energy

of all other generated poses. In order to measure the height of the

native binding phase we applied different energy cutoffs (from the

best docking score) to cluster the binding conformations within the

native binding phase. We then calculated the energy gap as the

difference between the average energy of all binding conforma-

tions within this cluster (included the best docking score) and the

average energy of all other conformations, and evaluated the

performance of this energy gap for its ability to distinguish true

Table 1. The performance of the energy gap obtained from MRC VS for 36 protein targets included in the DUD benchmark.

Protein Target
AUC: Best Docking
Score

AUC: Energy
Gap

Early Recognition Metric:
Best Docking Score

Early Recognition Metric:
Energy Gap

P12821_ACE_HUMAN 0.6275 0.6329 0.6327 0.571

P04058_ACES_TORCA 0.7574 0.747 0.7143 0.667

P56658_ADA_BOVIN 0.4339 0.5589 0.4348 0.478

P15121_ALDR_HUMAN 0.5985 0.5912 0.6154 0.654

P00811_AMPC_ECOLI 0.6717 0.6959 0.4762 0.476

P10275_ANDR_HUMAN 0.6405 0.6963 0.7162 0.627

P24941_CDK2_HUMAN 0.7305 0.7209 0.7 0.66

P22734_COMT_RAT 0.6868 0.647 0.6364 0.636

P00374_DYR_HUMAN 0.8925 0.9198 0.9104 0.93

P00533_EGFR_HUMAN 0.8599 0.8775 0.8446 0.849

P03372_ESR1_AG_HUMAN 0.8155 0.7259 0.6866 0.642

P03372_ESR1_ANT_HUMAN 0.7589 0.7447 0.8462 0.744

P00742_FA10_HUMAN 0.9023 0.8872 0.831 0.789

P11362_FGFR1_HUMAN 0.4802 0.477 0.5254 0.542

P04150_GCR_HUMAN 0.4759 0.5836 0.3205 0.462

P04035_HMDH_HUMAN 0.5798 0.7175 0.6571 0.714

P07900_HS90A_HUMAN 0.646 0.7101 0.5417 0.625

P0A5Y6_INHA_MYCTU 0.4647 0.5566 0.4118 0.424

P03176_KITH_HHV11 0.6285 0.621 0.6364 0.591

P08235_MCR_HUMAN 0.8005 0.879 0.6667 0.778

P47811_MK14_MOUSE 0.4877 0.5206 0.5078 0.563

P27907_NRAM_INBBE 0.881 0.8148 0.9388 0.816

P26446_PARP1_CHICK 0.7871 0.8425 0.7273 0.758

O76074_PDE5A_HUMAN 0.6914 0.704 0.6078 0.608

P05979_PGH1_SHEEP 0.7322 0.7352 0.68 0.63

Q05769_PGH2_MOUSE 0.5855 0.5585 0.5632 0.566

P55859_PNPH_BOVIN 0.6689 0.6469 0.76 0.76

P03366_POL_HV1B1 0.6307 0.667 0.55 0.575

P06401_PRGR_HUMAN 0.7008 0.7245 0.6667 0.667

P08179_PUR3_ECOLI 0.9209 0.9241 0.8571 0.857

P00489_PYGM_RABIT 0.563 0.6034 0.7308 0.731

P19793_RXRA_HUMAN 0.7829 0.7849 0.8 0.85

P12931_SRC_HUMAN 0.6973 0.7219 0.6774 0.684

P00734_THRB_HUMAN 0.793 0.7947 0.8308 0.8

P00760_TRY1_BOVIN 0.9009 0.8867 0.8636 0.886

P35968_VGFR2_HUMAN 0.7031 0.7189 0.6757 0.703

For comparison purposes, the performance of the best docking score is presented.
doi:10.1371/journal.pone.0046532.t001
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binders from decoys as it is described above. The results of the

energy gap performance when different energy cutoffs were

applied are shown in Figure 5 and Table 2.

We consider the case when half or more of the X-ray structures

included in the dataset show AUC values greater than 0.9 as an

indicator of a good performance. As it can be seen in Figure 5 and

Table 2, the energy gap, when energy cutoff was set up to

7.0 kcal/mol, still shows a good performance. This finding leads to

the conclusion that on average the native binding phase extends to

7.0 kcal/mol height from the best docking score. Interestingly, this

result is in good agreement with study done by Shan et al. [30],

where unguided molecular dynamics simulations of the entire

binding process of the cancer drug dasatinib and the kinase

inhibitor PP1 to Src protein kinase were conducted and an energy

landscape analysis was performed (see Figure 1C in [30]).

Furthermore, we calculated an average value of maximum heavy

atom RMSDs from the best docking pose to all conformations

within the native binding phase for all true binders of the entire

benchmark. We found that on average the width of the native

binding phase is approximately equal to 6.0 Å RMSD from the

lowest energy pose. Obtained results are consistent with previously

published studies, where Verkhivker et al. [20] found that the

width of the native binding phase for the methotrexate-

dihydrofolate reductase system extends to nearly 5.0 Å RMSD

from the native structure, and Wei et al. [29] found that the width

of the native binding phase extends to 6.5 Å and 8 Å RMSDs for

neuraminidase and cyclooxygenase-2 respectively.

Consideration of the Binding Conformations within
Boundaries of the Native Binding Phase Significantly
Increases Success Rate of Near Native Binding Pose
Identification

The prediction of the ligand native binding pose is an essential

problem in drug discovery. As we mentioned in the introduction,

literature has already reported that the correct binding pose is

often not the best scored solution, and consideration of a small set

of representative docking solutions significantly increases the

success rate of near native binding pose identification [26–28].

However, to the best of our knowledge, the theoretical justification

of number of poses to be considered has not yet been proposed.

Here we examined and statistically quantified the success rate of

near native binding pose identification (heavy atom RMSD to the

crystallographic pose is under 2.0 Å) when the binding conforma-

tions within different energy cutoffs from the best docking score

have been considered. For a given true binder, we applied

different energy cutoffs from the best docking pose to draw the

boundaries of the binding conformations to be considered.

Furthermore, for all conformations within these boundaries, we

calculated the heavy atom RMSDs from the crystallographic pose,

and the closest conformation with its corresponding heavy atom

RMSD was saved. These RMSD values were compared to the

RMSD values between the lowest energy poses (Energy cutoff = 0)

and the crystallographic poses (Figure 6). As it can be seen in

Figure 6, the success rate of near native binding pose identification

increases substantially when all binding conformations within the

boundaries of the native binding phase (energy cutoff = 7.0 kcal/

mol) are considered compared when only the lowest energy poses

were considered. In fact, we found that 80% of the time, correct,

near native poses were identified when all docking conformations

within the boundaries of the native binding phase were considered

Figure 5. Distribution of AUC values obtained from single-
receptor conformation VS for 485 protein conformations
included in the Pocketome benchmark when different energy
cutoffs from the best docking score were applied to cluster
binding conformations within the native binding phase. See
Table S7 for details.
doi:10.1371/journal.pone.0046532.g005

Table 2. The performance of the energy gap obtained from single-receptor conformation VS for 485 X-ray protein conformations
included in the Pocketome benchmark when different energy cutoffs from the best docking score were applied to cluster binding
conformations within the native binding phase.

Energy cutoff (kcal/
mol)a AUC .0.5 AUC .0.6 AUC.0.7 AUC .0.8 AUC .0.9

3.0 98% 94% 87% 79% 60%

4.0 98% 94% 86% 77% 56%

5.0 97% 94% 85% 76% 54%

6.0 97% 93% 85% 75% 52%

7.0 96% 91% 84% 75% 50%

8.0 95% 90% 83% 74% 48%

9.0 95% 90% 83% 72% 47%

Percentage of protein conformations displaying AUC values above certain energy cutoffs is presented. See Table S7 for details.
aAccording to ICM scoring function.
doi:10.1371/journal.pone.0046532.t002
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as opposed to 66% when only the lowest energy poses were

considered. We observed that the increase in success rate of near

native binding pose identification is mostly due to the decrease in

the number of cases with an RMSD greater than 3.0 Å. Moreover,

our findings indicate that 78% of the time, the first near native

docking solutions obtained among all generated binding con-

formations within the boundaries of the native binding phase are

ranked within the first five scored poses and in 80% of the time

within the first ten scored poses. Expanding the boundaries of the

binding conformations to be considered beyond the energy cutoff

of 7.0 kcal/mol improves the success rate of near native binding

pose identification (see Figure 6). We found that on average the

energy difference between the lowest energy pose and the first near

native pose is approximately equal to 7.8 kcal/mol. However, the

added complexity of having more than five docking poses to

consider may not be justified for routine VS experiments.

Obtained results clearly suggest that consideration of the binding

conformations within the boundaries of the native binding phase

increases the success rate of near native geometry identification.

Evaluation of the Energy Gap Performance on PERK
Inhibitors Designed using Homology Modeling

To further evaluate the discrimination ability of the energy gap,

we tested its performance on a more sophisticated case: VS against

a protein homology model. We applied the binding energy

landscape analysis to PERK inhibitors that were recently

discovered using homology models [35]. For each of 32

compounds, which included 20 active and 12 inactive compounds,

we calculated the energy gap and the best binding score. We then

ranked the compounds according to the energy gap and the best

docking score, respectively. As expected, the energy gap is superior

to the best docking score in its ability to more highly rank active

compounds from inactive ones (Figure 7). In fact, in 11 out of 20

cases (55%) the energy gap ranks active compounds higher than

the best docking score; in another 5 cases (25%) both approaches

performed identically, and in only 4 cases (20%) the best docking

Figure 6. Changes in the success rate of finding the correct X-ray binding mode as a function of energy cutoff. aAccording to ICM
scoring function.
doi:10.1371/journal.pone.0046532.g006

Figure 7. Histogram of the difference in the ranking of PERK
inhibitors by the energy gap and the best docking score. ‘‘0’’
indicates no change in ranking by the energy gap as compared to the
best docking score: for example, ‘‘0’’ means that ligand X was the 11th

ranked compound in the list by the energy gap and also the 11th ranked
compound in the list by the best docking score. Negative numbers
mean that the energy gap ranking is higher than the best docking score
ranking: e.g. if the compound is ranked 5th in the list by the energy gap
and 7th in the list by the best docking score the above score would be
22. The histogram shows many more compounds with negative
difference scores showing that the energy gap results in a higher true
positive yield upon experimental testing of the top N compounds in
this case of VS against protein homology models that was independent
of the set in this study.
doi:10.1371/journal.pone.0046532.g007
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score ranks active compounds higher than the energy gap. These

results indicate that the binding energy landscape analysis is able

to improve the hits-list processing in the VS against protein

homology models.

Future Directions
All of the docking experiments in this paper were performed

with ICM, and logical questions could arise about the applicability

of obtained results to other platforms. Consistency between our

findings and results obtained in independent studies [29] and [30]

clearly suggest that all of our principle observations are transfer-

able to other platforms and that incorporating information of the

binding energy landscape greatly benefits the process of VS.

However, it is certain that more systematic studies across different

docking programs and scoring functions are necessary. Also, it is

important to mention that in this study protein flexibility was

modeled by using multiple X-ray conformations. Although this

approach is one of the most promising alternatives to mimic

protein plasticity, it has limitations. Among those limitations we

would like to mention the lack of multiple experimental structures

for many of protein targets. In addition to that, pre-generated

receptor conformational ensemble may not catch receptor

conformational changes upon ligands binding to receptor [58].

Usage of flexible docking approaches, such as MedusaDock [58]

and RosettaLigand [59], may potentially help to overcome the

limitations mentioned above. We hope that our study will

stimulate research in these areas.

There is no doubt that it is difficult to avoid errors when

evaluating the binding energy levels corresponding to different

docking poses [5]. This automatically raises the questions of which

docking poses/energy levels exist in reality and which do not. The

success of applying the energy landscape theory to the rational

drug discovery depends on our ability to filter (geometrically and

energetically) the subset of representative realistic docking poses

from the entire set of generated solutions.

Conclusions
In this study we investigated the screening performance of the

energy gap between the lowest energy (best scored pose) and the

average energy of all other poses scored in the searched binding

energy landscape to discriminate true binders from decoys. We

performed the study based on the assumption that the energy gap

calculated during docking is a measure of the binding energy

landscape sharpness, an assumption which was previously pro-

posed and supported [21,22]. To test the performance of the

energy gap, we performed single and ensemble docking experi-

ments in two large and diverse benchmarks of therapeutically

relevant proteins. We found that, despite the fact that current ICM

docking score already displays good discrimination power between

true binders and decoys, the energy gap outperforms (improve-

ment in AUC values in 77% of protein domains for multiple-

receptor conformations VS experiments included in the Pock-

etome benchmark and in 64% of protein targets included DUD

benchmark) the ICM docking score in its ability to discriminate

true biologically relevant binders among decoys. Moreover, true

binders tend to have larger energy gaps than decoys. We also

found that the energy gap rewards early recognition better

compared to the best docking score. Furthermore, we used the

energy gap as a descriptor to evaluate the height of the native

binding phase and found that it has about 7.0 kcal/mol height

from the lowest energy pose. We tested the success rate of near

native binding pose identification when the binding conformations

within the boundaries of the native binding phase have been

considered. We observed that the success rate increases from 66%

when only the lowest energy conformations were considered to

80% when all conformations within the native binding phase were

considered. We also found that expanding the boundaries of the

binding conformations to be considered beyond the energy cutoff

of 7.0 kcal/mol (native binding phase) increases the success rate of

near native binding pose identification, however the added

complexity of having more than five docking poses to consider

may not be justified for routine VS experiments. Finally, we

applied the binding energy landscape analysis to the PERK

inhibitors recently discovered in our laboratory using homology

modeling. The results showed that the energy gap is superior to

the best docking score in its ability to discriminate the active

compounds from the inactive ones on the VS against not only

crystal structures but also protein homology models.

VS is based on the assumption that the final state of the ligand-

receptor complex contains all the necessary information for the

discrimination of biologically relevant ligand-receptor complex

conformations from biologically artifactual alternatives. Notably,

a ligand may show excellent complementarity with a receptor

target pocket in silico but may be biologically irrelevant due to its

statistical mechanics profile: it may have a preference for many

sites on the receptor and on other receptors at once. The presence

of a funnel-shaped energy landscape, detectable by an energy gap

as we have defined it here, may discriminate these artifactual

ligands from physiologically relevant ligands exhibiting the same

level of in silico complementarity in their final bound state. Based

on obtained results, we can conclude that the energy gap reported

by VS algorithms contains information distinguishing between

these two scenarios. The successful integration of binding energy

landscape scores (such as the energy gap investigated in this study)

with the usual VS lowest energy score can improve the

physiological relevance of well established approaches in VS for

rational lead discovery, which are often adequate in discriminating

binders from the background but generate many false positives.

From this study, we suggest that in VS experiments the binding

energy landscape analysis should be applied after all clearly

structurally incompatible chemicals are filtered based on the

lowest energy score. After this step all binding conformations

within the boundaries of the native binding phase have to be

investigated and analyzed in detail.
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Table S1 PDB IDs, Swiss-Prot IDs and performance of
485 X-ray protein conformations included in the Pock-
etome benchmark.

(XLS)

Table S2 PDB IDs, Swiss-Prot IDs and performance of
334 holo X-ray protein conformations included in the
Pocketome benchmark.

(XLS)

Table S3 PDB IDs, Swiss-Prot IDs and performance of
151 apo X-ray protein conformations included in the
Pocketome benchmark.

(XLS)

Table S4 Swiss-Prot IDs and performance of 40 protein
domains included in the Pocketome benchmark.

(XLS)

Table S5 Swiss-Prot IDs and performance of 40 protein
domains when only holo structures included in the
Pocketome benchmark were considered.

(XLS)
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Table S6 Swiss-Prot IDs and performance of 36 protein
domains when only apo structures included in the
Pocketome benchmark were considered.
(XLS)

Table S7 The performance of the energy gap obtained
from single-receptor conformation VS for 485 X-ray
protein conformations included in the Pocketome
benchmark when different energy cutoffs from the best
docking score were applied to cluster binding conforma-
tions within the native binding phase.
(XLS)

Table S8 Complete MRC VS DUD benchmark.
(XLS)
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