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Abstract

Non-negative matrix factorization (NMF) condenses high-dimensional data into lower-dimensional models subject to the
requirement that data can only be added, never subtracted. However, the NMF problem does not have a unique solution,
creating a need for additional constraints (regularization constraints) to promote informative solutions. Regularized NMF
problems are more complicated than conventional NMF problems, creating a need for computational methods that
incorporate the extra constraints in a reliable way. We developed novel methods for regularized NMF based on block-
coordinate descent with proximal point modification and a fast optimization procedure over the alpha simplex. Our
framework has important advantages in that it (a) accommodates for a wide range of regularization terms, including
sparsity-inducing terms like the L1 penalty, (b) guarantees that the solutions satisfy necessary conditions for optimality,
ensuring that the results have well-defined numerical meaning, (c) allows the scale of the solution to be controlled exactly,
and (d) is computationally efficient. We illustrate the use of our approach on in the context of gene expression microarray
data analysis. The improvements described remedy key limitations of previous proposals, strengthen the theoretical basis of
regularized NMF, and facilitate the use of regularized NMF in applications.
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Introduction

Given a data matrix A of size m6n, the aim of NMF is to find a

factorization A~WHT where W is a non-negative matrix of size

m6k (the component matrix), H is a non-negative matrix of size

n6k (the mixing matrix), and k is the number of components in

the model. Because exact factorizations do not always exist,

common practice is to compute an approximate factorization by

minimizing a relevant loss function, typically

minimize EA{WHTE2
F

subject to W , H§0,
ð1Þ

where E:EF is the Frobenius norm. Other loss functions include

Kullback-Leibler’s, Bregman’s, and Csiszar’s divergences [1–4].

Problem 1 has been well studied and several solution methods

proposed, including methods based on alternating non-negative

least squares [5,6], multiplicative updates [1,3,7,8], projected

gradient descent [9–11], and rank-one residue minimization [12]

(reviews in refs. [9,13]).

The NMF problem is computationally hard. Particularly, an

important property is that the factorization is not unique, as every

invertible matrix S satisfying WS§0 and S{1HT
§0 will yield

another non-negative factorization (WS)(S{1HT ) of the same

matrix as WHT (simple examples of S matrices include diagonal

re-scaling matrices) [14]. To reduce the problem of non-

uniqueness, additional constraints can be included to find solutions

that are likely to be informative/relevant with respect to problem-

specific prior knowledge. While prior knowledge can be expressed

in different ways, the extra constraints often take the form of

regularization constraints (regularization terms) that promote

qualities like sparseness, smoothness, or specific relationships

between components [13]. At the same time, the computational

problem becomes more complicated, creating a need for

computation methods that are capable of handling the regular-

ization constraints in a robust and reliable way.

We developed a novel framework for regularized NMF. This

framework represents an advancement in several respects: first,

our starting point is a general formulation of the regularized

NMF problem where the choice of regularization term is open.

Our approach is therefore not restricted to a single type of

regularization, but accommodates for a wide range of regular-

ization terms, including popular penalties like the L1 norm;

second, we use an optimization scheme based on block-

coordinate descent with proximal point modification. This

scheme guarantees that the solution will always satisfy necessary

conditions for optimality, ensuring that the results will have a

well-defined numerical meaning; third, we developed a compu-

tationally efficient procedure to optimize the mixing matrix

subject to the constraint that the scale of the solution can be
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controlled exactly, enabling standard, scale-dependent regular-

ization terms to be used safely. We evaluate our approach on

high-dimensional data from gene expression profiling studies,

and demonstrate that it is numerically stable, computationally

efficient, and identifies biologically relevant features. Together,

the improvements described here remedy important limitations

of earlier proposals, strengthen the theoretical basis of regular-

ized NMF and facilitate its use in applications.

Results

Regularized Non-negative Matrix Factorization with
Guaranteed Convergence and Exact Scale Control

We consider the regularized NMF problem

minimize EA{WHTE2
F zlR(W )

subject to W , H§0, 1T H~a1T ,
ð2Þ

where R(W ) is a regularization term, lw0 determines the impact

of the regularization term, and 1T H~a1T is an extra equality

constraint that enforces additivity to a constant aw0 in the

columns H . While we have chosen to regularize W and scale H, it

is clear that the roles of the two factors can be interchanged by

transposition. We assume that R(W ) is convex and continuously

differentiable, but do not make any additional assumptions about

R at this stage. Thus, we consider a general formulation of

regularized NMF where one factor is regularized, the scale of the

solution is controlled exactly, and the choice of regularization term

still open.

The equality constraint that locks the scale of H is critical.

The reason is that common regularization terms are scale-

dependent. For example, this is the case for R(:)~E:E1 (L1/

LASSO regularization), R(:)~E:E2
F (L2/Tikhonov regulariza-

tion), and R(:)~EC:E2
F (L2 regularization with an inner

operator C that encodes spatial or temporal relationships

between variables). Scale-dependent regularization terms will

pull W towards zero, and indirectly inflate the scale of H
unboundedly. Locking the scale of the unregularized factor

prevents this phenomenon.

To solve Problem 2, we explored an approach based on block

coordinate descent (BCD). In general, the BCD method is useful

for minimizing a function F when the coordinates can be

partitioned into N blocks such that, at each iteration, F can be

minimized (at low computational cost) with respect to the

coordinates of one block while the coordinates in the other blocks

are held fixed. The method can be expressed as the update rule

xi/ arg min
x[Vi

F( . . . ,xi{1,x,xiz1, . . . ),

where xi and Vi denote the coordinates and domain of the ith
block, respectively. The updates are applied to all coordinate

blocks in cyclic order. In the case of NMF, there are three natural

ways to define blocks: per-column, per-row, or per-matrix. We

partition the coordinates of H per column whereas the partition-

ing of W depends on the anatomies of R and the subproblem

solver (details below).

Regarding the convergence of BCD procedures, it can be shown

that if the domain for the ith coordinate block, Vi, is compact and

all subproblems are strictly convex (that is, Vi is convex and F is

strictly convex over Vi), the sequence generated by a BCD

procedure has at least one limit point and each limit point is a

critical point of the original function F [15]. In this context, we say

that an algorithm has converged if the current point is within a

tolerance from a critical point (that is, a point (W ,H) where the

derivative of the objective function is non-negative in all feasible

directions; the first-order necessary condition for optimality). If F

is convex but no longer strictly convex in Vi, limit points are still

guaranteed to exist but are not necessarily critical points (that is,

the solution may not satisfy the first-order criterion for optimality).

In Problem 2, the clamping of the scale bounds H and,

indirectly, also W . Hence, all Vi’s are bounded. Because they

are also closed, they are compact. However, subproblems that

are not strictly convex may still occur. To guarantee solutions

that represent critical points, we therefore need to safeguard

against non-strict convexity in the BCD subproblems. To this

end, we add a proximal point term to objective functions of

subproblems that are not known to be strictly convex

beforehand. A proximal point term penalizes the Euclidean

distance to the previous point in Vi, makes the subproblems

strictly convex, and guarantees that limit points of the generated

sequence are critical points of the original function F [16]. The

BCD updates change to

xi/ arg min
x[Vi

F( . . . ,xi{1,x,xiz1, . . . )zdiEx{xiE2,

where diEx{xiE2 is the proximal point term and di§0 a small

number which can be zero if F is known to be strictly convex

in Vi (in this case the proximal point term is not needed).

Optimizing the Mixing Coefficients
We developed an efficient procedure to optimize each block

(column) of the mixing matrix H. The procedure itself is given in

Algorithm 1. This section describes the proof.

The constraints H§0 and 1T H~a1 imply that columns of H

must lie in the a-simplex, defined as

Da~ x[Rn
z D

Xn

i~1

xi~a

( )
:

Geometrically, this is the intersection of the non-negative

orthant and a hyperplane with normal vector 1T and offset a from

the origin. The set is convex and also compact, meaning the

conditions for a BCD to converge discussed in the previous section

are satisfied.

We first derive general optimality criteria for convex functions

on Da. Let f : Da?R be convex and differentiable. By definition,

x[Da is a minimum of f , if and only if the directional derivative at

x is non-negative in every feasible direction

+f T (y{x)§0, Vy[Da: ð3Þ

Considering the special cases y~(0, . . . ,0,yi~a,0, . . . ,0)T , we

see that

Lf

Lxi

§

1

a
+f T x,i~1, . . . ,n ð4Þ

must hold if x is a minimum. However, the converse also holds.

Assuming that Equation 4 holds and letting y be an arbitrary point

in Da, we have

Regularized Non-Negative Matrix Factorization
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+f T y§

1

a
+f T x

X
i

yi~+f T x:

Hence, Equation 3 and Equation 4 are equivalent. Moreover,

Equation 4 can be rephrased as

min
k

Lf

Lxk

§

1

a
+f T x:

This is interesting because the fact that x[Da implies that the

reversed inequality also holds

min
k

Lf

Lxk

~
1

a

X
i

xi min
k

Lf

Lxk

� �
ƒ

1

a
+f T x,

meaning we have inequality in both directions, meaning x is a

minimum if and only if

min
k

Lf

Lxk

~
1

a
+f T x:

The right-hand side of this equation is a weighted average of

partial derivatives. Because the weights are non-negative and the

smallest partial derivative is included when forming this average,

all partial derivatives that correspond to non-zero coordinates of x
must equal the smallest partial derivative at x. Taken together, x is

a minimum of a convex function f : Da?R if and only if

Lf

Lxi

~ min
k

Lf

Lxk

, Vi[P~fj D xjw0g ð5Þ

where P denotes the indices of the non-zero coordinates in x. This

somewhat surprising result sets the stage for the development of an

efficient way to minimize the columns of H .

We next connect Equations 2 and 5 using a rank-one residue

approach. Rewriting WHT , we have

WHT~
X

j

wjh
T
j and defining Ri~A{

X
j=i

wjh
T
j ,

the subproblem of updating a column hi becomes

hi/ arg min
h[Da

ERi{wih
TE2

F zdhi
Eh{hiE2,

which is the same as

hi/ arg min
h[Da

1

2
EhE2

2{hT v, ð6Þ

where v denotes the constant vector (RT
i wizdhi

hi)=(EwiE2
2zdhi

).

The key to solving this problem efficiently lies in the observation

that h can be solved directly when the indices of the non-zero

variables are known. To see this, assume for a while that P is given

and let f be the above objective function of Problem 6. Because f

is convex, Equation 5 implies that all its partial derivatives with

respect to the non-zero variables share a common value, that is

hj{vj~C, j[P

for some C at the minimum. Summing over j and using the fact

that h [ Da, we can solve for C

C~(a{
X
j[P

vj)=#P

meaning hj~Czvj , j[P, hj~0, j6[P. Thus, all that remains is a

way to find P. Although this may seem like a problem with a

complexity of O(2n) at first sight, it turns out that P must

correspond to the indices of the #P largest coordinates of v. To

see this, assume that h is a minimum and that there exist indices

a[P and b6[P such that vavvb. Then, the entries ha and hb could

be swapped to obtain another feasible vector that would yield a

smaller objective function value in Equation 6, contradicting that h
is a minimum. Hence, the only remaining question is how many

coordinates are non-zero at the minimum. This question can be

resolved by computing C and the partial derivatives for different

values of #P until Equation 5 is satisfied. This procedure can be

implemented as a linear O(n) search (Algorithm 1) and is

amenable to speed-ups when used iteratively (Discussion).

Optimizing the Components
Unlike the optimization of H , which is independent of R, the

optimization of W depends on the choice of R. We next give W
optimization procedures for three common types of regularization:

Sparseness regularization. A common way to enforce

sparsity is to penalize the L1 norm, the closest convex Lp

relaxation of the L0 penalty (the number of non-zero elements). To

optimize W withR(W )~EWE1, one possibility is to use the rank-

one residue approach. Rewriting WHT as a sum of rank-one

matrices and considering the Karush-Kuhn-Tucker (KKT)

conditions, it is easy to show that the BCD update for the

column/block wi is given by

wi/
½Rhi{

l

2
1�

z

DDhi DD22
,

where ½:�z denotes truncation of vector elements at zero. Another

possibility is to view W as a single block, in which case the

minimization can be rewritten as a non-negative least squares

problem (this follows directly from the KKT conditions) that can

be solved efficiently using for example the Fast Non-Negative

Least Squares algorithm (FNNLS) [17].
Tikhonov regularization. We next consider L2 regulariza-

tion with R~ECWE2
F where C is an m6m filter matrix. This type

of regularization is used to impose various types of smoothing, for

example by using C~I or various difference operators, like

C(i,i)~1, C(i,iz1)~{1, and C(i,j)~0 elsewhere. Partitioning the

coordinates per column and using a rank-one residue approach,

the column-wise BCD updates become

wi/ arg min
w§0

ER{whT
i E2

F zlECwE2:

Regularized Non-Negative Matrix Factorization
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Expanding the norm and removing constant terms, we get

wi/ arg min
w§0

EwE2EhiE2{2Sw, ?RhiTzlECwE2, ð7Þ

which is a non-negative least squares problem. To see this, let LT L

be the Cholesky decomposition of EhiE2IzlCTC and consider

wi/ arg min
w§0

ELw{L{T RhiE2: ð8Þ

Expanding Equation 8 and removing the constant term, we

recover Equation 7. Hence, we can solve Equation 8 which can be

done using non-negative least squares algorithms that start from

the normal equations and do not require explicit Cholesky

decomposition [17–19].

Related base vector regularization. In some applications,

certain base vectors are known to be closer to each other. For

example, this type of regularization may be motivated in the

reconstruction of cell type-specific gene expression profiles from

gene expression profiles of compound tissues, where the gene

expression patterns of related cell types can be expected to be

similar. One way to incorporate such information is to penalize the

squared distance between base vectors that are known to be

related. The objective function becomes

EA{WHTE2
F zl

X
(i,j)[N

Ewi{wjE2

where the set N defines pairs of adjacent vectors, encoded as a

matrix N where each column defines a pair (i, j) by having

elements that are l at position i and j and 0 elsewhere. The

objective function can then be written as

E½A 0�{W ½HT N�E2
F ,

the minimum of which with respect to W can again be found

using FNNLS or other non-negative least squares algorithms.

Computational Efficiency
To illustrate its use, we implemented our method with L1 norm-

induced sparseness regularization (Algorithm 2; denoted rNMF),

and applied it to sets of gene expression profiles of blood disorders

(Table 1). For comparison, we considered two previously

published methods [20,21]. These methods are relevant as control

methods as they also seek to perform NMF with L1 regularization

and exact scale control. Other sparse NMF methods have been

published (Discussion), but solve different formulations and, hence,

are less relevant as controls in this context. Out of the two selected

control methods, we found the method in [21] to be the most

efficient, making it a representative control method. Each data set

was analyzed with different numbers of components (k = 5,10, and

15) and regularization parameter values (l selected to yield 25%,

50%, and 75% zeroes in W ; the value needed to achieve a specific

degree of sparsity varies between data sets).

Throughout, rNMF was 1.5 to 3.0 times faster per iteration and

converged considerably faster (Table 1 and Figure 1a). The

method also exhibited robust closing of the KKT conditions,

illustrating that the theoretical prediction that solutions represent

critical points holds numerically in practice (Figure 1b).

Analysis of Gene Expression Data
To illustrate the use of our approach in a practical situation, we

applied rNMF to the Microarray Innovations in LEukemia (MILE)

data set [22,23], containing 2096 gene expression profiles of bone

marrow samples from patients with a range of blood disorders

(Affymetrix Human U133 Plus 2.0 arrays; 54612 genes expression

values/probes per sample). We applied rNMF to the MILE data with

varying numbers of components (k = 10, 20 and 30) and varying

degrees of sparsity (l chosen to yield 50%, 75%, and 90% sparsity in

W ). To illustrate the effect of sparsity regularization, we also analyzed

the data using conventional NMF (equivalent to setting l~0).

Now, it is well known that the bone marrow morphology varies

considerably between disorders and between patients, especially in

terms of the abundances of various classes of blood cells. It is also

known that different classes of blood cells exhibit distinct gene

expression patterns [24]. Much of the variation in the data will

therefore be caused by fluctuations in cell type abundances and by

differences in gene expression between cell types. Because rNMF and

NMF are driven by variation, it is reasonable to assess the biological

relevance of the results by testing whether the components contain

gene expression features belonging to specific classes of blood cells. To

this end, we used gene set enrichment testing, a statistical technique

that is widely used in genomics to annotate high-dimensional patterns.

In essence, statistically significant enrichment for a gene/probe set in a

component means that the genes/probes comprising the set have

higher coordinate values (at the set level) in a component than would be

expected by chance (c.f., ref. [25,26]). We defined sets of marker genes

for all major classes of blood cells (Materials and Methods), and tested

for enrichment of each of these sets in each component using the

program RenderCat [25].

As illustrated in Figure 2a, enrichments of cell type markers

were identified in all rNMF components except the weakest ones.

Enrichments of markers for almost all major cell types in the bone

marrow were detected in at least one component. In some

components, enrichments of markers belonging to multiple cell

types were detected. In these cases, the detected cell types

belonged to the same developmental lineages (and hence have

similar gene expression patterns). For example, this can be seen in

Figure 2a where w0, w1, and w2 are enriched for features from

multiple myeloid cell types and w10 and w14 enriched for features

from multiple lymphoid cell types. Together, the results support

that the components are biologically relevant.

Conventional NMF also generated components with enrich-

ments of cell type-specific markers. Interestingly, however, we

observed differences as to which components did and did not

capture cell type-specific features. As shown in Figure 2a, strong

components generated by rNMF could usually be annotated and

components that could not be annotated were usually the weakest

ones. With conventional NMF, this pattern was generally not seen.

Instead, as shown in Figure 2b, strong components could often not

be annotated, suggesting that conventional NMF did not enrich for

cell type-specific features. A likely explanation could be that there

are relatively few cell type-specific markers compared to the number

of genes in the genome, and that limiting the cardinality of

components by including L1 regularization promotes the identifi-

cation of small sets instead of broader features that are less specific.

Discussion

Non-negative matrix factorization has been previously suggest-

ed as a valuable tool for analysis of various types of genomic data,

particularly gene expression data [27–31]. The rationale is that

gene expression is an inherently non-negative quantity. In this

case, NMF allows the data to be expressed in their natural scale,

Regularized Non-Negative Matrix Factorization
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thereby avoiding re-normalization by row-centering as is needed

by dimension-reduction techniques based on correlation matrices

(e.g., principal component analysis).

We developed methods that enable robust and efficient solution of a

range of regularized NMF problems and tested these methods in the

context of gene expression data analysis. The key component of our

approach is an efficient procedure to optimize the mixing coefficients

H over the a-simplex, enabling the scale of the solution to be explicitly

controlled. Further, our approach separates the task of optimizing H

and optimizing W . This has three advantages. First, the optimization

of H becomes independent of the regularization term, meaning the

same algorithm (Algorithm 1) can always be used. Second, as

exemplified by the L1 regularization case, the optimization of W is

simplified, at least with standard regularization terms. Third, a

proximal point term can be included, guaranteeing convergence

towards critical points, ensuring that the results will always have well-

defined numerical meaning [16]. Experimentally, we have illustrated

that our method is computationally efficient and capable of enhancing

the identification of biologically relevant features from gene expression

data by incorporating prior knowledge.

Previous work on regularized NMF is limited compared with

previous work on conventional NMF. A straightforward formu-

lation is

minimize EA{WHTE2
F zl1R1(W )zl2R2(H)

subject to W , H§0,
ð9Þ

where are the functions R1 and R2 enforce the regularization

constraints, and the parameters l1,l2w0 control the impact of the

regularization terms [13]. This formulation allows regularization

of both factors and basic computation methods can be derived for

some choices of R1 and R2 by extending conventional NMF

methods [32,33]. However, balancing l1 and l2 against each other

is often difficult and simultaneous regularization of both factors is

rarely wanted. More commonly, the goal is to regularize one of the

factors. For example, to get sparse component vectors, an L1

penalty can be imposed on W whereas H does not have to be

regularized. In Equation 9, single-factor regularization would

correspond to setting l1 or l2 to zero. Again, with standard scale-

dependent regularization terms, this will pull the regularized factor

towards zero and inflate the unregularized factor unboundedly.

Scale-independent penalty terms have been proposed [34], but

these are non-convex and therefore complicate optimization with

respect to the regularized factor. One could also attempt to control

Table 1. Time (seconds) needed to complete one update of all coordinates and to reach convergence in sets of gene expression
data from blood disorders.

rNMF control

Data set, reference Data size iteration convergence iteration convergence

Acute Myeloid Leukemia [36] 222836293 0.75 21.7 2.2 219.4

Acute Myeloid Leukemia [37] 546136461 3.95 128.8 10.2 .600

Acute Myeloid Leukemia [38] 446926162 0.96 17.3 1.5 163.6

Acute Lymphoblastic Leukemia [39] 222156288 0.94 17.8 2.3 245.7

Multiple Myeloma [40] 546136320 3.04 29.1 6.4 .600

All methods were implemented in C++ and identically initialized. Timings obtained on a 2.30 GHz Intel Core i7 2820QM CPU with 16 GB RAM. For convergence, we
required a relative decrease in the objective function less than 10{4 in successive iterations. Throughout, a~1 and d~10{5 .
doi:10.1371/journal.pone.0046331.t001

Figure 1. Convergence of rNMF on real data. Left: The objective function decreases faster with rNMF (blue) than the control method (dashed).
We standardized the objective function by dividing it by the squared Frobenius norm of A. Right: As predicted theoretically, rNMF closes the KKT
conditions (y axis indicates the negative logarithm of the max-norm of the KKT condition matrix for W , that is (KKTW )ij~ min (df =dwij ,wij) which

should approach the zero matrix). The results in this figure were obtained for gene expression profiles of Acute Myeloid Leukemia [36], k = 10, and l
set to yield about 50% sparsity. This example is representative as similar results were obtained for other data sets and parameter choices.
doi:10.1371/journal.pone.0046331.g001
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the scale of the unregularized factor within the framework of

Problem 9 by choosing Ri(:)~E:1{1E2
F or Ri(:)~E:T 1{1E2

F

[13]. However, this again requires balancing of l1 against l2

which is difficult, and, moreover, the scale can only be controlled

approximately. Another ad hoc approach could be to compensate

for the pull of the regularization term by standardizing the column

norms of W or H between iterations. This is equivalent to

inserting a diagonal matrix D and its inverse between the factors.

This operation is safe in conventional NMF because the value of

the objective function will not change. With a regularization term,

however, column standardization is unsafe: although the value of

the fitting term EA{WHTE2
F will not change, the value of the

regularization term may, meaning the objective function may

increase between iterations. To control the scale exactly, [20]

proposed a truncated gradient descent method and [21] a

multiplicative update method, and studied regularization with

respect to sparsity. These methods represent the closest predeces-

sors of our approach and were therefore used as control methods.

When it comes to the convergence, the strongest proved result

for conventional NMF is guaranteed convergence to critical

points. Some conventional NMF methods always find critical

points, for example alternating non-negative least squares. By

contrast, regularized NMF methods are less well characterized. To

our knowledge, the only regularized NMF method that is known

to guarantee critical point solutions is an alternating non-negative

least squares method that solves Problem 9 whenR1 is the squared

L1 norm and R2 is the L2-norm [32]. Methods based on Lee-

Seung’s multiplicative descent method do not guarantee critical

points [13], nor do current exact-scale methods [20,21].

In conclusion, we have presented a new framework for

regularized NMF. Our approach has advantages in that it

accommodates for a wide range of regularization terms, guaran-

tees solutions that satisfy necessary conditions for optimality,

allows the scale of the solution to be controlled exactly, is

computationally efficient, and enables decomposition of gene

expression data subject to knowledge priors. Hopefully, this study,

along with other efforts, will further the development of methods

to analyze complex high-dimensional data.

Materials and Methods

Microarray data sets generated on Affymetrix microarrays were

retrieved from NCBI Gene Expression Omnibus (http://www.

ncbi.nlm.nih.gov/gds; accession numbers GSE1159, GSE6891,

GSE12417, GSE13159, GSE19784, and GSE28497). Because

NMF assumes an additive model, non-log transformed gene

expression values were used throughout the experiments. Sets of

cell type-specific markers were inferred by use of the d-map

compendium containing gene expression profiles of all major

classes of blood cells sorted by flow cytometry (Affymetrix U133A

arrays) [24]. One set per cell type was inferred by comparing d-

map profiles belonging to this cell type to all others using Smyth’s

moderated t-test [35], selecting the top 100 probes as markers

(results agreeing with those shown were obtained using the top 50,

150, 200 and 250 probes). Gene set enrichment testing was

performed using the program RenderCat [25].

URLs
A C++ implementation is available at http://www.broadinstitute.

org/,bnilsson/rNMF.rar.

Algorithm 1
Pseudocode to optimize a column hi in H , given Ri, wi, the

current hi, and the proximal point parameter d. Note that in the if

clause, the first condition j~~n asserts that the program never

tries to reach vnz1 whereas the second asserts that C is the

minimal value of the partial derivatives. Because v is sorted in

descending order, and Lf =Lhj equals C if j[P and {vj otherwise,

it is sufficent to compare C with {vjz1.

v~(RT
i wizdhi) = (EwiE2

2zd)

½v,J�~sort(v,0descend 0)
a~1:0
for j~1 to n do

a~a{vi

C~a=j

if j~~n or Cƒ{v(jz1) then
break

end if

end for
h(jz1 : n)~0
h(J)~h
return h

Algorithm 2
Pseudocode for the complete rNMF procedure with R(W )

~jjW jj1. To change the type of regularization, change the wi update.

Note that the rank-one residual R is updated cumulatively to save

computations.

Figure 2. Application to gene expression microarray data from blood disorders. Columns indicate components, rows classes of blood cells.
Blue cells indicate significant enrichment of cell type-specific markers (as detected by gene set enrichment testing; pv10{5) in the component
generated by rNMF with 90% sparsity (a) and conventional NMF (b). The components have been ordered by strength (defined as L2 norm of wkhT

k )
with w0 denoting the strongest component. As discussed in detail in Results, strong components generated by rNMF capture cell type-related gene
expression features more clearly than conventional NMF.
doi:10.1371/journal.pone.0046331.g002
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d~10{4

R~A{WHT

Repeat
for i~1 to k do

R~Rzwih
T
i

hi~ Algorithm1(R,wi,hi,d)

wi~½Rhi{
l

2
1�z=jjhijj22

R~R{wih
T
i

end for

until stopping criterion is reached

return (W ,H)
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