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Abstract

Online social networks offer unprecedented potential for rallying a large number of people to accomplish a given task. Here
we focus on information gathering tasks where rare information is sought through ‘‘referral-based crowdsourcing’’: the
information request is propagated recursively through invitations among members of a social network. Whereas previous
work analyzed incentives for the referral process in a setting with only correct reports, misreporting is known to be both
pervasive in crowdsourcing applications, and difficult/costly to filter out. A motivating example for our work is the DARPA
Red Balloon Challenge where the level of misreporting was very high. In order to undertake a formal study of verification,
we introduce a model where agents can exert costly effort to perform verification and false reports can be penalized. This is
the first model of verification and it provides many directions for future research, which we point out. Our main theoretical
result is the compensation scheme that minimizes the cost of retrieving the correct answer. Notably, this optimal
compensation scheme coincides with the winning strategy of the Red Balloon Challenge.
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Introduction

Social networks facilitate efficient and fast search for rare

information [1–6]. This is accomplished as individuals who are

already involved in the search, share their quest with their friends,

in effect referring them. We term this type of crowdsourcing

referral-based. Providing every member with incentives to recruit as

well as participate in the search opens enormous possibilities for

rallying people for a particular cause [7].

To this end, a scientific study of the power of social networks

and media to mobilize human populations was undertaken by the

United States Defense Advanced Project Research Projects

Agency (DARPA) in 2009. In the DARPA Network Challenge

(also known as the Red Balloon Challenge) 10 red weather

balloons were placed at undisclosed locations throughout the

United States. Participating teams competed to be the first to

locate all of the balloons and win a prize of $40,000. The lessons

learnt from the DARPA Network Challenge, both from the

scientific and practical standpoints, are almost solely drawn (with

few exceptions, e.g. [8]) from the different team strategies to

maximize the awareness and subsequent enrollment into the

search by the different competing teams [9]. These strategies

ranged from relying on people’s altruism to help in the search, to

web-based marketing to large communities of interest, to pure

financial incentives [9].

However, recruiting people is only half of the story. The other

half is distinguishing accurate balloon submissions from inaccurate

ones. For instance, the majority of submissions of balloon sightings

to the winning MIT team turned out to be false (either by sabotage

or by mistake), and the verification task turned out to be the most

challenging, time consuming, and likely the single most decisive

factor in the competition [10]. In MIT’s case, this task was

performed by a time-consuming mixture of common-sense geo-

location rules and direct verification by establishing direct

communication with the participants [9]. Whereas the MIT

recruitment mechanism has been described and analyzed in [7]

and further studied in [11], little is known about the adequacy/

optimality of its verification strategy, or any other team’s

approach.

In this paper, the crowdsourcing process is expanded to include

verification: i.e., the ability to check the accuracy of reports and to

filter out false ones. In other words, not only information

gathering, but also verification is crowdsourced helping filter out

false submissions before they reach the root. It is important to note

that the problem of verification is in no way specific to the

DARPA Network Challenge, but a subject of current research in

crowdsourcing tasks including content annotation [12–14], user

recommendations [15], and disaster relief [16].

In particular, this work initiates a formal study of verification in

crowdsourcing settings where information is propagated through

referrals. We propose a model which is simple and yet illustrates

issues that we believe remain salient in many realistic information

gathering scenarios such as maps of human-rights violations or

post-disaster damage reports. In our model, each referred

participant submits a false report with a given probability. Each

report can be verified at a cost by the person who referred the

reporting participant. Reports returned to the root may or may

not have been confirmed to be accurate. Should a false report

make its way to the root, the recruiter who failed to verify the

report is penalized. Within this model, we derive the compensation

scheme that minimizes the amount of reward necessary to recover
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the true answer. Notably, the optimal payment scheme is the same

as the
1

2
-split contract used by MIT in the DARPA Network

Challenge, though the team did not have the benefit of this

analysis in setting their actual strategy.

The rest of the paper is structured as follows. We highlight the

need for verification using the DARPA Network Challenge as an

example. After that, we present a model incorporating false reports

and the possibility of verification. Analysis of the minimum

required reward and penalty follows together with a proof of the

optimality of the
1

2
-split/MIT contract. Finally, we review related

work and provide conclusions and directions for future work.

The DARPA Network Challenge
Our motivating example is the DARPA Network Challenge

[7,9]. This challenge required teams to provide coordinates of 10
red weather balloons placed at different locations in the

continental United States, offering a reward of $40,000 to the

first team to report all correct locations.

This large-scale mobilization required the ability to spread

information about the tasks widely and quickly, and to incentivize

individuals to act. The MIT team completed the challenge in

8 hours and 52 minutes. In approximately 36 hours prior to the

beginning of the challenge, the MIT team was able to recruit

almost 4,400 individuals through a recursive incentive mechanism.

The MIT team’s approach was based on the idea that achieving

large-scale mobilization towards a task requires diffusion of

information about the tasks through social networks, as well as

incentives for individuals to act, both towards the task and towards

the recruitment of other individuals. This was achieved through a

recursive incentive mechanism, which is illustrated in Figure 1. The

mechanism distributes up to $4,000 per balloon to people along

the referral path that leads to the balloon. The person who finds

the balloon gets $2,000, his immediate recruiter (or, parent) gets one

half of the finder’s compensation, etc. In Figure 1, agent a1 recruits

all of his neighbors, namely a2, a5 and a8, while agent a8 recruits

a6, who finds balloon y1. The finder receives
4,000

2
~2,000. Since

a8 recruited a6, it gets
4,000

22
~1,000. From this sequence, a1

receives
4,000

23
~500.

Likewise, looking at the left recruitment path, the finder receives
4,000

2
~2,000. As above, we have

4,000

22
~1,000 for a3 and

4,000

23
~500 for a2. From this sequence, a1 receives

4,000

24
~250.

Adding up its payments from the two sequences it initiated, a1

receives a total payment of 750. Notice that the amount

distributed to the agents never exceeds $4,000 per balloon. In

this example $3,500 was paid for the first balloon and $3,750 —

for the second. The MIT team donated the undistributed money

to charity.

The contracts described above can be dubbed split contracts,

specifying the percentage of total child’s reward that must be

passed back to the parent. In particular, the MIT’s winning

strategy used a 1
2
-split contract across all nodes.

However, as mentioned above, the MIT’s strategy assumed that

any balloon citing report is correct. Yet, in the actual challenge,

verifying balloon reports turned out to be a major obstacle [10].

Indeed, 124 out of 186 reports turned out to be false either by

sabotage or by mistake. Figure 2 shows all of the reported

locations, highlighting the prevalence of false reports in this kind of

time-critical task (see [9] for examples of misreports). In this paper,

we make a first attempt to model and tackle the verification

problem.

Results

Modeling Referral-Based Crowdsourcing
We model scenarios where the center has an information

gathering task. The information-seeking entity is represented by

Figure 1. Recruitment tree with two paths (shown in thick lines) initiated by a1 led to finding balloons.
doi:10.1371/journal.pone.0045924.g001

Figure 2. Reports of balloons sightings during the Red Balloon
Challenge. Ten big circles represent the true reports. The small circles
are for the false reports.
doi:10.1371/journal.pone.0045924.g002
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the root of a tree, and each node in the tree holds the answer

required to complete the task with a fixed probability t.
Information about the task (or the question) is propagated through

referrals sent from parents to their children until a node holding

the answer is found. The nodes along the path are compensated to

ensure that once an answer-holding node is reached, it reports the

answer (thus, t is the probability of holding and returning the

answer). Unlike the other models, we allow for the possibility of

false reports.

A crucial modeling choice regards the cause of the false reports.

A rational agent that has no stake in the mechanism except for the

compensation received, has no incentive to lie as false reports

never result in a compensation. One may consider a richer

population of agents where some agents derive utility from the

mechanism not succeeding in recovering the true answer, or from

increasing the time until a true answer is discovered. Designing a

compelling utility function for this ‘‘lying’’ type of agent is an

option. However, in such models, false reporting can be overcome

by a payment that is high enough to make the agents’ utility from

truthful reporting a better option.

Given this, we pursue a different, simpler modeling avenue

which does not rely on agent utilities. Instead, with probability f
each node happens to be ‘‘irrational’’. Such a node does not hold

the true answer, but claims that he does and sends a false report to

its parent. In other words, f is the probability that the node does

not hold the answer and generates a false report. These irrational

agents are not affected by penalties and compensation: they lie

irrespective of the incentives. In this model, misreports cannot be

prevented but have to be discovered. Such a model of misreports is

consistent with ignorant rather than malicious behavior: e.g.,

misreports due to mistakes and noise. As we alluded to earlier,

modeling malicious behavior requires making assumption about

the utility functions of the malicious agents, and it remains an

avenue for future research. A good starting point may be the work

on spiteful bidding (e.g., see [17,18]).

As soon as a ‘‘reporting’’ node is recruited and generates an

answer (correct or mistaken), it can no longer recruit other nodes

as, from its point of view, the answer has already been recovered.

Therefore, a reporting node is always a leaf node and only leaf

nodes can generate false reports.

Now that we settled on how false reports arise, we need to

model the verification process. We are going to assume that a node

other than the reporter can verify the report with certainty.

Naturally, verification requires some effort which we model with

the cost e incurred by the node performing verification. Note that

under the ‘‘perfect’’ verification, it is sufficient to obtain just one

verification. The next question is which node should perform the

verification. The most immediate candidate is the parent of the

reporting node. After all, it is the parent node who decides which

children to invite, and it is reasonable to hold him accountable for

his invitees. Also, from the point of view of invited children, the

first point of task-related contact for them is the parent.

Furthermore, nobody except for the recruiter may have the

authority/ability to question the recruit.

Given the assumptions above, we model the sequence of events

next. A report goes from the reporting node to the node who

recruited it — its immediate parent in the referral tree. On

receiving a report, the immediate parent can verify whether the

report is correct incurring the cost e. If the report is verified to be

false, it is dropped. Otherwise, the immediate parent submits it

directly to the root. To encourage verification, we assume the

mechanism supports penalties. If a false report is propagated from

a leaf node v back to the root, the immediate parent of v has to pay

the penalty c. Penalizing the leaf node does not make sense as a

node submitting a false report is irrational and, thus, indifferent to

monetary incentives. Penalizing ancestors other than the imme-

diate parent is not fair as they cannot verify the report or control

its submission to the root.

Following [11], we propagate rewards using split contracts (we

discuss why the choice of split contracts is justified in the Related

Work section). Suppose node iz1 has the correct answer. Let

s0,s1,s2, . . . ,si refer to split contracts offered on the path from the

root node 0 to node iz1: i.e., the root offers s0-split to the first

node on the path, who offers s1-split to the second node, etc. The

fraction of the reward received by each node is shown in Table 1.

We will be concerned with incentivizing the immediate parent i
of the reporting node iz1 to participate and perform verification.

His share of the reward is (1{si{1)si. For example, under the
1

2
-

split contract, the parent of a reporting node receives a quarter of

the reward.

Optimal Mechanism
The model detailed above is specified by the probabilities of

false and true reports, the verification cost, the penalty level, the

reward provided by the root, and the split contract determining

allocation of the reward (see Table 2). While the first 3 parameters

are exogenous, the root is likely to have control over the penalty

level, as well as distribution of the reward. Clearly, it is in the root’s

interest to minimize the reward given out. In this section we derive

the split contract which minimizes the reward required to recover

the answer. We also describe the penalty level sufficient to ensure

that verification takes place and no false reports are propagated.

Recall that t and f refer to the probabilities of submitting true

and false answers respectively. These events are disjoint and the

probability that a report is correct is
t

tzf
. Let r denote the reward

offered by the root. Consider a reporting node iz1 and his parent

i. If the report is correct, the parent will receive (1{si{1)sir

resulting in the expected reward of
t

tzf
(1{si{1)sir. When

deciding on whether or not to verify the report, the parent must

consider the verification cost e, and the penalty c for propagating

false reports. Verification cost is incurred regardless of the report

accuracy, while the penalty is paid only if the report is false. The

utility of the parent performing verification appears on the left

hand side while the utility when no verification is performed is on

the right:

t

tzf
(1{si{1)sir{e§

t

tzf
(1{si{1)sir{

f

tzf
c ð1Þ

Thus, the parent prefers verifying the report when the verification

cost is below the expected penalty eƒ
f

tzf
c.

Table 1. Distribution of the reward r under a split contract.

node 1 receives (1{s0)s1s2s3 � � � si{1sir

node 2 receives (1{s1)s2s3 � � � si{1sir

…

node i{1 receives (1{si{2)si{1sir

node i receives (1{si{1)sir

node iz1 receives (1{si)r

doi:10.1371/journal.pone.0045924.t001
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Proposition 1. For a fixed e, the minimum level of penalty that

enforces verification is

cmin~
tzf

f
e~(1z

t

f
)e ð2Þ

We say that the verification constraint is satisfied if the penalty is at

least the minimum penalty. Notice that whenever the constraint is

satisfied, verification will take place and no penalty will be

incurred.

Not surprisingly, the minimum penalty is proportional to

verification costs. Somewhat paradoxically, however, the required

penalty is highest when almost all reports are true: i.e., when the

ratio
t

f
is high. The reason for this is that from the point of view of

the parent, verification is going to be a wasted effort as there is a

high probability the report is true. Viewed differently, the chances

of being penalized for propagating an unverified report are small.

Thus, the penalty must be high enough to counteract these effects

and eliminate all incorrect submissions.

Verification is most important when the number of false reports

is large relative to the number of true reports. For example, during

the Red Balloon Challenge, the MIT team received 186 reports

with only 62 being true (see Figure 2). A high number of false

reports is likely in scenarios where the answer is difficult to locate

requiring a large number of nodes to be explored. Note that these

are exactly the scenarios relevant to referral-based crowdsourcing.

The expected number of reports until a true report is submitted is

given by the mean
tzf

t
of the geometric random variable specified

by the success probability of
t

tzf
. For example, when t~f 2, the

expected number of false reports is
f zf 2

f 2
{1~

1

f
.

The minimum penalty level provides incentives for the agents to

verify the report rather than propagate it directly. However the

agents have another option, which is to not participate at all. In

order to encourage participation, the reward has to be high

enough as we discuss in the next paragraph. First, we observe that

a parent node also has an option to ignore a report that needs

verification in the hope that the answer will be found and verified

by other nodes deeper down his subtree. We assume this strategy

never leads to a positive payoff (for example, this is the case if the

reporting node complains that his report is held due to the parent’s

reluctance to verify, resulting in the parent being disqualified).

To encourage participation (assuming the verification constraint

(1) is satisfied), the parent’s expected utility must be non-negative
t

tzf
(1{si{1)sir{e§0; i.e., the expected reward must exceed

the effort. Rearranging the terms of this inequality, we get the

following participation constraint for node i.
Proposition 2. The minimum reward sufficient to encourage

participation of node i is

rmin
i ~e

tzf

(1{si{1)sit
~

e

(1{si{1)si

(1z
f

t
) ð3Þ

Not surprisingly, higher verification costs require higher rewards.

In contrast to the minimum penalty, the required reward increases

with the ratio of false reports to true reports
f

t
(i.e., decreases with

t

f
). Intuitively, the required reward is proportional to the cost of

verification incurred before a true answer is found. When the

probability of false reports is high relative to the probability of true

reports, the total verification effort spent before a true answer is

discovered is high. The proposition above assumes the root never

receives more than one true report at the same time, and once the

true report is received, all nodes are immediately made aware of it

and do not incur any costs by performing verification after that.

Multiple true reports can be allowed without affecting the

incentives by compensating nodes along each path independently.

Of course, this means spending the required reward multiple

times, once for each true report.

The reward required to satisfy the participation constraint (3)

for the parent of a reporting node iz1 is inversely proportional to

the fraction (1{si{1)si of the reward that the parent receives. If

we knew a priori which nodes would be reporting answers, we could

minimize the required reward by giving all of it to the immediate

parents (immediate parents are the only nodes with non-trivial

verification and participation constraints as only they can perform

verification and incur penalties). However, any node could be the

immediate parent, and contracts must be designed without

knowing which nodes will initiate a report. In other words, the

participation constraint must be satisfied for any node

r§rmin
i for all nodes i ð4Þ

Notice that unlike the results for the other referral models [11,19],

the reward does not depend on the depth to which the tree needs

to be explored. This is due to the lack of cost for propagating the

answer – which may be a more realistic assumption.

Next we find the contract that minimizes the required reward r.

The Optimal Split Contract. The MIT mechanisms (i.e.,
1

2
-

split) is a special case of the family of split-contract mechanisms.

While intuitively the
1

2
-split seems to be the most natural one, no

theoretical guarantees on its performance have previously been

provided. We do this here. As we will show, in the context of our

model, the
1

2
-split mechanism is the optimal split-contract

mechanism.

Theorem 1. The
1

2
-split contract minimizes the reward required to

recover the answer.

Proof. Suppose node iz1 returns the true answer and recall

the corresponding distribution of the reward in Table 1. We are

free to choose the values for s1, . . . ,si that minimize the required

reward subject to the participation constraint. Specifically, at the

time the contract is offered to node j on the path to node i, it must

hold that r§ e
(1{sj{1)sj

(1z
f

t
). The required reward is inversely

Table 2. Symbol list.

Symbol Meaning

t Probability that a node has the answer

f Probability of a node generating a false report

e Verification cost

c Penalty for submitting a false report

r Reward offered by the root node

sj{1 Percentage of its reward that node j must pass to parent j{1

doi:10.1371/journal.pone.0045924.t002
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proportional to (1{sj{1)sj . Also, observe that the constraint must

hold for any j, and thus, the required reward is determined by the

node j with the lowest share (1{sj{1)sj . Formally, the reward

required by a contract (s1, . . . ,si) is given by the minimum value x

that satisfies

(1{sj{1)sj§x V1ƒjƒi

In fact, a split-contract must specify shares si for any i[Z, since the

mechanism must return the true answer no matter how deep in the

tree it is found.

(1{sj{1)sj§x Vj[Z ð5Þ

It is easy to see that x~
1

4
for the

1

2
-split mechanism (i.e.,

sj~
1

2
Vj). Next we show that no other mechanism can have a

higher performance guarantee. Suppose x~
1

4
ze for ew0.

Constraints (5) can be written as

sj§
x

1{sj{1
~

1

4
1{sj{1

z
e

1{sj{1
§

1

4
1{sj{1

ze

We used sj[½0,1� to obtain the last inequality. Observe that

1

4
1{si{1

§si{1 for si{1[½0,1� to obtain

sj§sj{1ze

Since the above inequality holds for all j, we get

sj§s0zje

But for any ew0 this results in sjw1 for jw
1

e
violating the

constraint sj[½0,1�. Thus, eƒ0 and xƒ

1

4
, establishing optimality

of the
1

2
-split.

Discussion

Related Work
Our work can be seen as an application of mechanism design

[20] to social networks and information gathering tasks. The

model has similarities to the model of Query Incentive Networks

(QIN) presented by Kleinberg and Raghavan [19]. In that model,

the root needs to recover an answer from a network of nodes

where each node has a small probability of holding the answer. In

order to encourage nodes to return the answer, the root proposes a

reward that is propagated down the tree. Once an answer-holding

node is recruited, it sends the answer to its parent, who forwards it

to the grandparent, and so on until the root is reached. There is a

constant (integer-valued) cost incurred by each node on the path

from the answer-holding node back to the root. The authors

describe the minimum reward required to obtain the answer with

high probability when each parent can offer a reward to its

children.

Our model is similar to the QIN model in that we are searching

to retrieve an answer from the network where the question is

propagated via invitations that parents send to their children. The

main novel ingredients in our model are (i) the possibility of false

reports; (ii) the option to verify the reports at a cost; and (iii) the

ability of the root to penalize false report submissions. These

attributes appear in many real-world settings making our model

more readily applicable.

It is interesting to note that the introduction of costly verification

and penalties allowed us to dispense with one of the assumptions of

the QIN model: the costly propagation of the answer is no longer

required. Without this assumption, the QIN model admits

degenerate solutions, where the root gets the answer for an

arbitrarily small cost (indeed, the required reward would also be

zero in our model if we set the probability of false reports to zero).

Our disposal of this assumption is important, for example in

situations where propagating the answer has negligible cost (e.g.,

forwarding an email or re-tweeting) relative to a demanding

verification task (e.g., checking if a balloon report is authentic by

personally sighting it), or when the nodes can send the answer

directly to the root without propagating it up the referral path.

Our model restricts attention to split contracts. However, this

seems to be the right class of contracts to focus on for the following

reasons. The simplest and most common alternative is fixed

rewards: each parent promises its children a fixed amount. While

original work on QIN considered fixed contracts [19], Cebrian et

al. [11] showed that a significantly lower reward is required when

using split contracts. Also, in our setting, where verification and

recovery of the answer must occur with certainty, fixed contracts

are inappropriate: any contract that offers a fixed amount to each

node will require an infinite investment to be recovered with

probability one as the answer may be arbitrarily deep within the

tree. Another natural idea is to share the reward equally among all

the nodes along the path. In this context, this division of the

reward coincides with the Shapley value [21]. However, such a

division would also require an infinite reward in our model: for an

answer that is d levels deep, the root would have to pay each of the

d nodes along the path the minimum reward that a node will

expect to undertake verification. Notice that d may be arbitrarily

large.

Another justification of split contracts comes from the work of

Emek et al. [22]. The authors take an axiomatic approach to show

that a special case of split contracts with an equal split at each level

arises naturally in multi-level marketing. Similar to our model, in

multi-level marketing recursive referrals are sought from the

participants. A fundamental difference is that in the marketing

model participants are compensated for each referral they make,

while in QIN and our context, only referrals that contribute to

finding the answer generate a reward.

We acknowledge that in reality recruitment trees are finite and

potentially not very deep, while our assumption is that propagation

of referrals can produce arbitrarily deep trees, reaching very large

(possibly infinite) numbers of individuals. Indeed, recent work

suggests that we live in a ‘‘small but slow world’’, as social network

topology and human burstiness can actually hinder information

propagation, effectively reducing the population reached [23–28].

However, as the DARPA Network Challenge showed, wide

dissemination of information does occur in certain scenarios [29–

33].

Conclusions and Future Work
Since the seminal experiments by social psychologist Stanley

Milgram in the 1960s, it has been established that social networks

are very effective at finding target individuals through short paths

Verification in Referral-Based Crowdsourcing
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[1]. Various explanations of this phenomenon have been given

[3,4,6,34]. However, it has also been recognized that the success of

social search requires individuals to be motivated to actually

conduct the search and participate in the information diffusion.

Indeed, it has been shown experimentally that while successful

chains happen to be short, the majority of chains observed

empirically terminate prematurely [5]. Dodds et al. conclude that

‘‘although global social networks are, in principle, searchable, actual success

depends sensitively on individual incentives’’ [5]. In other words, a key

challenge in social search is the incentive challenge. However, while

models like the Query Incentive Networks model [19], and the

split-contract approach [7] both provide incentives for diffusion,

the problem of verifying the received reports has not previously

received any formal treatment.

The issue of verification arises in many real-world crowdsour-

cing scenarios (e.g., mapping social uprisings [35,36] or gathering

disaster response requests [37,38]). Indeed, some competitive

scenarios have even been subject to larger levels of sabotage, as

illustrated by the attack on the crowdsourced strategy to tackle the

2011 DARPA Shredder Challenge [39]. For such settings, our

paper provides the first steps towards formally analyzing verifica-

tion schemes. Specifically, we introduced a model for studying

verification in referral-based crowdsourcing. We explored the

relationship between various parameters, including the size of the

reward offered by the mechanism, the probability of possessing the

answer, the probability of false reports, the cost of verifying the

correctness of reports, and the penalty imposed by the mechanism

on false reports. Our main theoretical result is the proof that the

optimal distribution of the reward in our model is given by the 1
2
-

split contract. This contract happened to be the one used by the

winner of the Red Balloon Challenge, showing that this way of

sharing the reward is also appealing in practice. Our paper

provides the first theoretical justification of this mechanism in the

presence of misinformation. Our second contribution is in

initiating a formal study of verification in information-gathering

scenarios. Our model provides a starting point for future research

where various assumptions may be relaxed. We outline some

directions next.

We provided results for the uniform and known verification

cost. Bitcoin provides an example of a real system where this

assumption holds: the expected computational cost of authorizing

a transaction is uniform and known (see [40] for more details on

Bitcoin). In other scenarios such as quality verification of

crowdsourced tasks (e.g., accuracy of a translation, deciding

whether a photo is authentic, or evaluating a programming job)

costs may be heterogeneous as well as the private information of

the agents. Our model can be directly extended to introduce

heterogeneous and private costs for the analysis of such scenarios.

In online scenarios one may easily create multiple identities.

Thus, it is particularly important to consider mechanisms that are

resilient to coalitions of lying nodes. Since coalitions may easily

control an entire referral path, verification from nodes outside the

path is likely to be required. This question has been tackled with

‘‘uniform’’ rather than split contracts in [40]. Moreover, for split-

contracts, some lessons may be drawn from the results on false-

name-proof mechanisms for multi-level marketing [22].

It is also interesting to weaken some of our other modeling

assumptions. For example, if we no longer assume that the

probability that a node holds the answer (or lies) is uniform, the

mechanism should encourage the recruitment of individuals more

likely to possess the answer, perhaps based on the knowledge that

agents have about the abilities and reliability of their peers. An

even more selective recruitment is likely to arise if the cost of

recruiting others is non-zero.

Our model makes the assumption that the split contract (e.g.,
1

2
-

split) is selected by the mechanism and cannot be modified by

other nodes. This contrasts with the models of [11,19], where each

node chooses which contract to offer to its children, and the

resulting equilibrium contract is analyzed. An important direction

for further study, therefore, is to perform equilibrium analysis in

our model, when nodes not only choose who to recruit and

whether to verify, but also what split to offer.

Finally, an important extension of our work is to explore the

dynamics of strategic behavior in the context of repeated

interaction. In particular, a threat of non-monetary punishment

may be sufficient to encourage verification. For example, in

permanent systems such as Amazon Mechanical Turk, Wikipedia

or Bitcoin, the penalty may be imposed in the form of decreased

reputation, which diminishes future earning potential or the

influence a user exercises [41].
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