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Abstract

It has been suggested that irreducible sets of states in Probabilistic Boolean Networks correspond to cellular phenotype. In
this study, we identify such sets of states for each phase of the budding yeast cell cycle. We find that these ‘‘ergodic sets’’
underly the cyclin activity levels during each phase of the cell cycle. Our results compare to the observations made in
several laboratory experiments as well as the results of differential equation models. Dynamical studies of this model: (i)
indicate that under stochastic external signals the continuous oscillating waves of cyclin activity and the opposing waves of
CKIs emerge from the logic of a Boolean-based regulatory network without the need for specific biochemical/kinetic
parameters; (ii) suggest that the yeast cell cycle network is robust to the varying behavior of cell size (e.g., cell division under
nitrogen deprived conditions); (iii) suggest the irreversibility of the Start signal is a function of logic of the G1 regulon, and
changing the structure of the regulatory network can render start reversible.
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Introduction

Complex network structures can be found across the biological

spectrum, and growing evidence indicates that these biochemical

networks have evolved to perform complex information processing

tasks in order for the cells to appropriately respond to the often

noisy and contradictory environmental cues [1]. While reduction-

ist techniques focus on the local interactions of biological

components, the systems approach aims at studying properties of

biological processes as a result of all components and their local

interactions working together [2].

A wide spectrum of modeling techniques ranging from

continuous frameworks utilizing differential equations to discrete

(e.g., Boolean) techniques based on qualitative biological relation-

ships exist [3–5]. Each modeling technique is based on different

assumptions and hence comes with different advantages and

disadvantages. Differential equation models can depict the

dynamics of biological systems in great detail, but depend on

a large number of difficult-to-obtain biological (kinetic) parame-

ters. On the other hand, discrete modeling frameworks, namely

Boolean networks, are qualitative and parameter-free, which

makes them more suitable to study the dynamics of large-scale

systems for which these parameters are not available. Further-

more, probabilistic Boolean networks (PBN) enhance the discrete

framework by allowing for uncertainty and stochasticity (e.g.,

[6,7]).

It has been proposed that the irreducible sets of states (i.e.,

ergodic sets) of the corresponding Markov chain in probabilistic

Boolean network models (PBNs) are the stochastic analogue of the

limit cycle in a standard Boolean network, and should thus

represent cellular phenotype [8]. However, often PBNs with

perturbations are studied to include internal noise, rendering the

search for the irreducible sets trivial (as the whole state space

constitutes a single irreducible component). Furthermore, this

makes the determination of the limiting distribution of the

corresponding Markov chain and the interpretation of those

results in light of the biology challenging even for moderately sized

models [9–11].

Using the idea from [1] to introduce stochasticity to Boolean

models via control nodes, herein we determine and examine the

nature of ergodic sets of a regulatory network governing each

phase of the cell cycle of budding yeast, Saccharomyces cerevisiae. The

budding yeast cell cycle has been modeled previously using

Boolean approaches (e.g., [5,12,13]) and probabilistic Boolean

approaches (e.g., [7,14,15]). We expand on previous works by

considering each phase of the cell cycle as an individual evolving

system. The logic of the model used in this study was developed

from the description of the yeast cell cycle interactions given in

[12]. Using this model we show that as suggested in [8], irreducible

sets of states can correspond to cellular phenotype. This approach

enables us to model and visualize richer dynamical properties of

each phase and the cell cycle as a whole. In particular, we show

that under stochastic external signals the continuous oscillating

waves of cyclin activity and the opposing waves of CKIs that form

the cell cycle engine can emerge from the logic of a relatively

simple regulatory network without the need for specific bio-

chemical/kinetic parameters. Furthermore, by considering each

phase of the cell cycle as an individual system represented by an

‘‘ergodic set’’, we are able to more directly and precisely compare

the model dynamics with experimental studies. Specifically, results

of [16] as interpreted graphically at cyclebase.org reveal relatively

precise similarities. We also observe good agreement between our

oscillating cyclin activities and recently published analyses of cyclin

activities using fluorescent microscopy in [17]. The improved

approach to the modeling of the yeast cell cycle enables us to

visualize other qualitative features of the system: the secondary
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activation of a number of G1-cyclins later in the cell cycle [16] and

the renewed reversibility of Start upon the removal of the Cln2-

SBF-Whi5 feedback loop [18]. We also capture the same

robustness to internal perturbations as described in [5], however

we extend this result and conclude that each phase of the yeast cell

cycle (and thus as the cell cycle as a whole) is robust in the face of

the variable behavior of the cell size. Within the model, this results

in the post-Start commitment to the cell cycle and the ability to

complete a single round of division under deprived nutrition

conditions [19].

Results

Modeling the Cell Cycle
The budding yeast cell cycle involves hundreds of species and

interactions [20]. In order to keep the mathematical analyses

manageable, we consider a much smaller network consisting of

some key players (see Methods for a narrative description of the cell

cycle). The logic of our network was constructed based on the

descriptions of the cell cycle interaction as given in section 3.1 of

[12], which is an expansion of the network found in [5]. All nodes,

the species they represent and the logic associated to each node,

are available in The Cell Collective (www.thecellcollective.org).

Figure 1 shows the static interaction graph of the model. The

model used in this study has four external inputs: cell size signal

(CSS) to model cell growth, the Start checkpoint (Start), the

budding (or morphogenic) checkpoint (BuddingCP) and the

spindle assembly checkpoint (SpindleCP). Each of these external

inputs plays a different role. First consider Start, BuddingCP, and

SpindleCP. Each external input is incorporated into the logic of

an internal node(s) so as to mimic the biological behavior of

a checkpoint. Activating one of these external inputs (setting it to 1)

indicates that the corresponding checkpoint has been satisfied. In

pre-Start cells, Cln3 cannot inhibit Whi5 nor can Cln2 be

activated unless the critical size threshold has been reached; hence

Start is integrated into the logic of Whi5 and Cln2 as follows: if

Start~0 then Whi5~1 and Cln2~0 [21–24]. The external input

BuddingCP corresponds to the correct formation of the bud neck

and the localization and subsequent degradation of Swe1 [25–27].

As such, we say that if BuddingCP~0 then Swe1~1. Lastly,

SpindleCP corresponds to the spindle assembly checkpoint which

modulates the activation of Cdc20: if SpindleCP~0 then

Cdc20~0 [28,29].

Finally, CSS is a signal representing cell size. It is known that

cell size regulates the cell cycle via its correlation with Cln3 levels.

The mechanism governing this regulation involves a complex

network of biochemical interactions [30,31], and has been omitted

for simplicity. Unlike the external nodes representing cell cycle

checkpoints, which are binary in nature (either satisfied or not), the

CSS external input is inherently continuous (cell size varies

continuously over time). To represent this continuous signal passed

from the cell and its environment to activate Cln3 at a given

moment, a probability (q) that CSS is active is defined:

p(CSS~1)~q[(0,1). This signal is relative as p(CSS~1)~1
indicates Cln3 is receiving the strongest activation signal.

The cell cycle was modeled as a sequential activation of the

checkpoints. In other words, the pre-start or G1 phase was

modeled by setting all checkpoints to 0. The G1/S phase is

modeled by setting Start to 1. For the G2/M phase, BuddingCP is

set to 1; finally, the M/G1 phase is modeled via the activation of

the SpindleCP checkpoint. Hence, the cell cycle as a whole results

in a sequence of probabilistic Boolean control networks (PBCNs) (see the

Methods section for detailed discussion of PBCNs) as follows:

(CSS,Start,BuddingCP,SpindleCP)~

(q1(t),0,0,0)?(q2(t),1,0,0)?(q3(t),1,1,0)?(q4(t),1,1,1)

Call these PBCN1, PBCN2, PBCN3, PBCN4, where each qi(t) is

the control function governing CSS during each modeled phase.

The question is then: does each PBCN behave in accordance with

the phase assigned to it by the status of its checkpoints? In the next

section, the results of our analyses of the dynamics of these PBCNs

are presented.

Cyclin Activity Profiles Correspond to Ergodic Sets
To demonstrate how PBCNs can be used to visualize and

analyze the dynamics of biological systems, we first show that

ergodic sets correspond to cell phenotypes; i.e., cyclin activity

patterns of the individual cell cycle phases, in our case. Each PBCN

was analyzed, and ergodic sets were calculated. The question we

then asked: Do the cyclin activity functions of the individual

ergodic sets (and hence the modeled cell cycle phases) correspond

to the cyclin activity profiles during the cell cycle as seen in the

laboratory? In other words, does our model represent the

biological reality? In fact, the results of our analyses (discussed

below) indicate that the presented model accurately captures many

of the features of the species’ expected behavior (i.e., their activity

levels) during each cell cycle phase. In Figure 2 the ergodic sets

associated with each PBCN and the corresponding activity

functions of key cyclins as a function of q~CSS are summarized.

For each of the PBCNs exactly one ergodic set was found (ES1-4,

Figure 2A). For (ES1) the cyclin activity functions (column 1 in

Panel C) is consistent with pre-start G1 cells. The cyclin activity

functions of ergodic sets for PBCN2 and PBCN3 are consistent with

the G1/S and G2/M phase of the cell cycle, respectively (columns

2 and 3 in Figure 2A and B). Finally, during the last stage, the

cyclin activity functions of PBCN4 is consistent with M/G1 phase

when CSS is decreasing. That is, the cyclin dependent kinases

(e.g., Cln1{3, Clb2, etc.) deactivate while the cyclin kinase

inhibitors (e.g., Sic1 and Cdh1) reactivate. Thus we see that in fact

each PBCN does behave according the phase assigned to it by the

status of its checkpoints.

In order to model the dynamics of the cell cycle as a whole we

must consider how CSS is changing over time. Choosing an

appropriate qi(t) for i~1,2,3,4 as the control functions for CSS
for each corresponding phase we may see the behavior of each

species across the cell cycle as a whole. As time is arbitrary in our

model, we chose qi(t) to have the ith quarter of the unit interval as

its domain, and thus the modeled cell cycle to take one unit of

time. To organize the transition from one phase to the next we

suppose that if one concatenates those functions into a single

function q(t)~qi(t) if t[½i{1
4
, i
4
� the overall behavior of CSS should

mimic cell size; i.e., it should grow for the majority of the cell cycle

and drop at the end. Furthermore, we assume that Cln3 peaks

when it is receiving the maximum signal. It has been shown that

the level of Cln3 rises and falls over the cell cycle and peaks

sometime during M phase [16,32]. Thus we let qi(t)~
4
3
t with

domain ½i{1
4
, i
4
� for i~1,2,3 and q4(t)~{4tz4 with domain

½3
4
,1�. (Note that the dynamical properties of the model are highly

robust to variations of the function, and thus our choice of the

control functions, as discussed in the Robustness section. ).

Consequently for each species, a piecewise function that governs

its activity across the cell cycle was constructed by composing each

node’s activity function with qi(t) during each corresponding

phase of the cell cycle. In Figure 3, one can see the control

Ergodic Sets for BYCC

PLOS ONE | www.plosone.org 2 October 2012 | Volume 7 | Issue 10 | e45780



function for CSS over the whole cell cycle on the left and the

corresponding activity of selected cyclins across the whole cell

cycle on the right. It is clear that we are able to reproduce the

general structure of the cell cycle. Cyclin kinase inhibitors are

active in G1, followed by their deactivation and the activation of

the G1 cyclins Clb5 and Cln2. Then the G1 cyclins deactivate and

Clb2 activates. Finally Clb2 deactivation correlates with Cdc20

activation as the cell progresses through M phase, and the

reactivation of the CKIs. (See Methods for a narrative description of

the cell cycle.) Direct comparison of the shape of the calculated

activity profiles to experimental studies in [16] (via cyclebase.org)

revealed a strong correspondence (Figure 4). Exceptions to this

correspondence with results from [16] were the dynamics of

Cdc14 and Cdh1. Our model predicts that Cdc14 is activated late

in the M phase (while inactive during the previous phases). This

behavior appears however to be consistent with another study that

suggested that Cdc14 activation occurs in late mitosis [33]. Also,

while the activation profile of Cdh1 predicted by our model

doesn’t agree with the results in [16], it appears to be consistent

with the activation profile described in Figure 2 in [4] (as well as all

other species common to each model). Thus not only does our

model’s results compare to laboratory results but also to the results

of a differential equation model. Note that the activity levels of

Whi5, Sic1, Cln2, Clb2, and Cdc20 also qualitatively correspond

to the combination of activity and localization measured in the cell

(see Figure 3 in [17]). Together, these data suggest that, in fact,

ergodic sets can model cell phenotypes. Furthermore, as visualized

in Figure 3 and Figure 4, a secondary peak of the G1 Cyclins (Cln2
and Clb5 in particular) was found as the cell transitions from

PBCN3 to PBCN4. In fact, this phenomenon was also observed in

the laboratory [16]. This is also a feature of the cyclin activity

profiles of the respective ergodic sets. Notice also that this peak is

not purely a result of the function that we chose for CSS. While

the shape of the peak may change, its existence is intrinsic to the

Figure 1. Regulatory Graph for Budding Yeast.
doi:10.1371/journal.pone.0045780.g001
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logic of the network; that is, so long as CSS does not drop instantly

to zero when the spindle assembly checkpoint has been satisfied,

there will be some sharp rise and fall of Cln2 and Clb5.

Start, Irreversibility, and Commitment to the Cell Cycle
The irreversible nature of the Start signal was explored in [18]

by investigating the positive feedback loop that exists between

Cln2, SBFo (‘‘SMBF ’’ in our model) and Whi5 (see Figure 1). As

can be seen in Figure 3B, the bi-stability of Cln2 is clearly

represented in the transition from the G1 ergodic set (ES1) where

Cln2 is inactive to the S-phase ergodic set (ES2) where Cln2 is

active. Notice that in PBCN1, the Whi5-Cln2-SMBF feedback

loop cannot be initiated, as Whi5 is active and Cln2 is inactive

until the Start signal has been received. On the other hand, in the

post-Start phase (i.e., PBCN2), Whi5 is now inhibiting itself as

a result of the Start-activated feedback loop. This suggests that the

feedback loop is inherent to the irreversibility of Start.

In the aforementioned work [18], the authors showed that

removing Cln2 from the feedback loop allows the reactivation of

Whi5 following an exogenous pulse of Cln2, rendering Start

reversible. To perform an analogous inquiry on our model, and to

investigate the role of the feedback loop, we eliminated Cln2 as an

upstream regulator of Whi5 and re-analyzed PBCN2. A single

ergodic set was found, whose cyclin activity profile is pictured in

Figure 5A. The functions from the activity profiles of ES1 and

ES2, that govern Cln2 when the feedback loop is present are

constant functions, and thus have no dependence on CSS. In

contrast, Cln2o and Whi5 activities are now a function of CSS
(Figure 5A). In other words, if the CSS stimulus is removed from

Cln3, Cln2 becomes inactive and Whi5 reactivates, indicating

a return to G1 phase and a renewed possibility of G1 arrest due to

mating pheromone [34]. The transition to S phase is now

reversible. Though the context of our model and what was done in

[18] are different, the result is the same – the irreversibility of the

G1/S transition is dependent on the positive feedback loop.

That the functions for the cyclins in the G1, S, and G2 phases

are constant has another implication for our model. Specifically,

once the Start signal has been received, the typical (oscillating)

activity profiles of the key cyclins will ensue even when stimulus of

Cln3 by cell size is incoherent, so long as the checkpoints are

satisfied. In other words, once the cell receives the Start signal, it

commits to a round of cell division.

Robustness
Robustness of biological systems is critical to the proper function

of processes such as the cell cycle. Within our modeling regime

Figure 2. Analysis of each PBCN. A) Ergodic sets (consisting of network states) for the individual PBCNs corresponding to individual cell cycle
phases. Each PBCN was constructed by changing the combination of satisfied checkpoints; the ‘‘activity’’ of the Cell Size Signal (CSS) external node is
defined by a probability q. Ergodic sets are visualized as nodes corresponding to network states (represented by their binary number +1) connected
by arrows illustrating the flow of these states. Red arrows correspond to q~1, blue arrows correspond to q= 0. Discussion of the individual ergodic
sets and their biological meaning can be found in the main text. B) Activity profiles (‘‘signatures’’) of cyclins during each modeled cell cycle phase. C)
Plots of cyclin activity functions as found by computing stationary distribution analytically using Maple 15, as discussed in the main text.
doi:10.1371/journal.pone.0045780.g002
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noise is interpreted as the systems’ sensitivity to the control

function, and the robustness of the ergodic sets to random

perturbations, respectively. To consider the system’s sensitivity to

the control function, we considered the activity functions of the

ergodic sets. As noted in the previous section, the activity functions

governing most of the key species in the system are constant, and

hence independent of CSS during the first three phases of the cell

cycle. In particular, Cln2, Clb5, and Clb2, which drive bud

formation, DNA replication, and mitosis, respectively, have their

activities governed by constant functions. This indicates that so

long as the checkpoints are appropriately activated (i.e., the

environment is stable enough for the successful completion of the

current phase), the modeled cell will progress through the cell cycle

independently of CSS (i.e., cell size). Therefore our model is

robust to the variable behavior of the cell growth.

Furthermore, this is also consistent with the findings in [19] that

a cell deprived of nitrogen will proceed through one round of

division and arrest in G1. We modeled this scenario by removing

the cell size signal (CSS) right after Start has been satisfied.

Consistent with [35], as a control function we chose q1(t)~(4=3)t

for t[½0,1=4� and qi(t)~1=100 for t[( i{1
4
, i
4
�, i~1,2,3. The

dynamics of modeled cyclins are depicted in Figure 5B. During the

first three phases, the activities of the species are the same as the

normal cell cycle (Figure 2). The activities of the species during the

last phase are also consistent with a cell in the G1 phase. That is,

the modeled cell has completed a round of division and arrested in

G1. This may suggest that the phenomenon of completing a cell

cycle without appreciable growth is a consequence of the

robustness of the cell cycle to variable external environments,

and is inherent to the logic of the biological regulatory network

governing the yeast cell cycle.

In addition to being able to represent cellular phenotypes, the

calculated ergodic sets (and the number thereof) in the previous

section have another implication. Similar to attractors in Boolean

network, ergodic sets can provide insights into the robustness of

the modeled biological systems.

A standard approach to analyze robustness is to consider the

basins of attractions of each attractor and interpret its relative size

as a measure of stability (e.g., [5]). The concept of a basin of

attraction for an ergodic set in a PBCN is not well defined; this is

due to the fact that a random walk initiated from a single state in

the state space may arrive at different ergodic sets. However, each

of the PBCNs have a single ergodic set which means that any

perturbation will eventually return to the ergodic set (and can be

modeled by its associated cyclin activity functions). As such, we see

that the modeled G1, G1/S, G2/M and M/G1 phases of the cell

cycle are highly robust in the face of perturbations. Together, our

results suggest that each phase of the modeled cell cycle is robust as

well as the cell cycle as a whole.

Discussion

Results presented herein are twofold. First, as suggested in [8],

we show that it is possible to model cellular phenotype as ergodic

sets in the context of probabilistic Boolean control networks. In

contrast to previous works utilizing Boolean models, our approach

centers around understanding not only the cell cycle as a whole,

but also its individual phases. Specifically, we modeled the cell

cycle as a sequence of models, each representing an individual

phase in the cycle. This approach has significant implications as to

how the dynamics of the modeled cell cycle are interpreted and are

compared with experimental studies. Specifically, in previous

works the yeast cell cycle was modeled as a single system where the

phases were represented as transient states leading to a (fixed

point) attractor corresponding to the G1 phase [5], or as

consecutive states in a cyclic attractor [12,13]. Considering each

phase as an evolving system of its own enabled us to capture

continuous dynamics of key species during each phase and

compare them to laboratory studies. Modeling each phase

separately and transitioning between models via the activation of

checkpoints is also consistent with the biological observations that

it is not only kinase activity that causes phase transitions, but the

completion of each phases task [36].

Figure 3. The cell cycle in relative time. The left hand side depicts the control function for CSS along with the points in time where checkpoints
are activated. The right hand side depicts the concatenated activity profiles of the corresponding ergodic sets composed with CSS control function.
All species appear during each phase, though several my take on the same value, including 0.
doi:10.1371/journal.pone.0045780.g003
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Figure 4. Comparison between our analytically calculated results (red) and the experimental results in [16] (green) via
cyclebase.org. Each node in the network may represent several species. In the case that a node represents more than one species its calculated
activity profile is compared to the experimental activation of the species to which it most clearly correlates. For example, the node Yhp1 in our model
represents the species YHP1 and YOX1. We thus compare the calculated profile of the node Yhp1 to YOX1, as they appear to have the best
correspondence. Numbered peaks and valleys identify our interpretation of the correlation between plots. The species corresponding to each node
can be found at thecellcollective.org.
doi:10.1371/journal.pone.0045780.g004
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Similar to [5,12,13] we find that each phase of the cell cycle and

thus the cell cycle as a whole is robust as measured by basin size,

i.e. the existence of a single ergodic set for each phase. Stability of

the yeast cell cycle has also been considered in the framework of

probabilistic Boolean networks, concluding the cell cycle attractor

is robust to internal noise [7,15,37]. However, this approach is

incompatible with our goal of exploring the relevance of ergodic

sets as it renders the entire state space a single ergodic set.

Modeling extracellular signals as continuous variables (i.e., cell

size) allowed us show the stability of the yeast cell cycle network

under different choices of control functions, a question precluded

by previous modeling techniques. Lastly, taking the perspective of

qualitative activity introduced in [1] we are able to directly

incorporate the role of cell size into our model. The further

correlation of cell size with time also allows us to escape the

discrete time of other Boolean network models.

Evidence is increasing that biological processes possess complex

properties that emerge from the dynamics of the system working as

a whole (e.g., [1,30,38–41]). To better understand these emergent

properties, large-scale computational models of the complex

biological interactions will be needed. The size of the budding

yeast cell cycle network in this work is relatively small and makes

the analytic calculations manageable. Larger and more compre-

hensive models will be key in systems biology. For example,

understanding how the cell controls checkpoints via additional

regulatory network pathways, and how to incorporate this

understanding into current models is of paramount importance.

Thus the question of how to approach large networks is important

in extending these results to truly life-size scales. To deal with such

scales simulation techniques and software (such as The Cell

Collective; http://www.thecellcollective.org) will be an important

part of extending these results to large models.

Methods

Budding Yeast Cell Cycle
Newborn cells begin in the G1 phase of the cell cycle, where

they start growing. It isn’t until the cell reaches a critical size that

a round of division begins [42]. This transition point is referred to

as Start, and is irreversible; that is, once the Start signal is received,

the cell is no longer susceptible to G1 arrest due to mating

pheromone, and the cell has committed to a round of division,

[18,42,43]. The activity profile of the biochemical network

underlying the cell cycle during the initial G1 phase is

characterized by the increasing activity of the Cln3 cyclin in

response to the cell’s increasing size, and the activity of the cyclin

kinase inhibitor (CKI) Sic1 [42]. The transition to S phase occurs

once the critical size has been reached, i.e. Start has occurred, and

Cln1, 2 has become active and Sic1 has been inactivated. The

inactivity of Sic1 allows the activation of Clb5. Having transi-

tioned to S phase, the cells characteristic cyclin activity pattern is

the activity of Cln1, 2 and Clb5 and the inactivity of Sic1. During

S phase, Cln1, 2 allow bud and spindle-pole body formation, while

the activity of Clb5 allows DNA replication [18,23]. In G2 phase,

Clb2 (the primary mitotic cyclin) accumulates [44], and Swe1 is

degraded in the newly formed bud neck [25–27]. In fact, bud

formation (along with other nuclear events) constitutes another

quality control point: a morphogenic checkpoint [27]. The activity

of Clb2 is sustained into early M phase [44,45]. Thus one may say

that active Clb2 (and inactive Sic1) characterizes the G2/M phase

of the cell cycle. Further progression through M phase is governed

by another checkpoint: the spindle assembly checkpoint. Once the

chromosomes are correctly aligned on the mitotic spindle, Cdc20,

a co-factor of the ubiquitin ligase anaphase-promoting complex/

cyclosome (APC/C), is released from inhibition. The cell then will

progress through the rest of M phase and divide into a mother and

daughter cell in G1 phase, awaiting another round of division.

Figure 5. Irreversibility and commitment to cell cycle. A) Cln2 becomes inactive and Whi5 reactivates when CSS stimulation is removed. Thus
breaking Whi5-SMBF-Cln2 feedback loop makes Start reversible. B) Modeled cell cycle under nitrogen deprivation. CSS is linear during the G1 phase
and drops to.01 there after.
doi:10.1371/journal.pone.0045780.g005
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Thus, the activation and deactivation of Cdc20 and the

corresponding recovery of the Sic1 and Cdh1 and characterize

the M/G1 phase of the cell cycle [29,46]. It is this oscillating

activity of cyclin-dependent kinases that ‘‘act as the master

regulator for cell cycle progression’’ [47].

The complete model is freely available for download and further

modifications in The Cell Collective software at http://www.

thecellcollective.org; [48].

Modeling Framework
As noted in the Introduction section, the modeling framework

herein was suggested by [1]. The essential perspective of this

framework is to suppose that at every moment of time, our

biological system is being modeled by the stationary distribution of

an irreducible Markov chain, whose states are an irreducible

subset of the state space for a probabilistic Boolean network (which

itself is a reducible Markov chain).

Consider a collection of n nodes fx1, . . . xng, representing

biological entities, each taking a value in f0,1g, and n{m Boolean

functions fi : f0,1gn?f0,1g, i~1, . . . ,n{m, where the function fi

is the logical rule governing xmzi. Call the nodes xmz1, . . . ,xn
internal nodes and call nodes x1, . . . xm external inputs, as they are

not governed by a Boolean function. Decompose the state space of

the original n nodes as the direct sum f0,1gm+f0,1gn{m
so that

for v+w[f0,1gm+f0,1gn{m
v represents the state of the external

inputs and w represents the state of the internal nodes. Notice that

for each v[f0,1gm we may define Fv : f0,1gn{m?f0,1gn{m
by

Fv(w)~(f1(v+w), . . . ,fn{m(v+w)) (we suppress the notation for

the standard inclusion of the direct sum). Thus we have defined

a family of 2m Boolean networks consisting of the internal nodes,

one for each vector in f0,1gm.

Suppose that to each external input xi we associate a function

qi(t) taking values in (0,1) with t[D, some arbitrary domain

representing time. Call qi(t) a control function. We suppose that

this probability represents the qualitative activation of the species

represented by xi at time t. Let t[D be fixed and consider the

probability distribution nt on f0,1gm given by

nt(v)~Pm
i~1 qi(t)

vi (1{qi(t))
1{vi . Using this construct PBNt,

a probabilistic Boolean network where the probability that Fv is

chosen to update the network is nt(v). Abusing notation so that Fv

Figure 6. An example calculation. A) A diagram of a sample network with one external input. The logic of the internal nodes is represented with
Boolean truth tables. B) The state space associated with the network. Nodes are labeled by (bz1) where b is the binary number corresponding to the
activity of (N1,N2,N3,N4). Supposing that the probability that EI is active is q, the state space is traversed on dashed arrows with probability q and
solid arrows with probability 1{q. Nodes labeled with an underline constitute the ergodic set. C) On the left is the probabilistic transition matrix that
governs the system once it has reached the ergodic set. With the matrix is associated a unit modulus eigenvector that provides the invariant
distribution for the system. D) Each state of the ergodic set gives the activities of the internal nodes. Taking the sum of these binary vectors weighted
by the invariant distribution gives the likelihood that a particular node is active. Thus on the right of this expression is the activity function of each
node in the ergodic set. Note that the activity function is continuous for q[(0,1). E) In the left graph, the activity function of each node is plotted as
a function of q. In the middle graph, an arbitrary function for q (or the activity level of EI ) is plotted as a function of time. In the graph on the right
side, the activities of the network nodes is plotted as a function of the composite function for EI in time (as designed in the middle graph).
doi:10.1371/journal.pone.0045780.g006
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also stands for the state transition matrix of the associated Boolean

network, the state transition matrix of the corresponding Markov

chain is A
0

t~
P

v[f0,1gm nt(v)Fv. It is important to point out that we

may not assume that this Markov chain is irreducible, as we are

not considering any arbitrary perturbations of nodes. However,

within the state space f0,1gn{m
there are recurrent communicat-

ing classes of states, and any random walk corresponding to this

Markov chain will arrive at one of these sets.

Suppose then that W~fw1, . . . ,wkg5f0,1gn{m
is a recurrent

communicating class. Restricting the state transition matrix to W,

let At~A
0

tDW . At is an irreducible Markov chain. As we have no

guarantee that the resulting transition matrix is aperiodic we

consider pt, the stationary distribution on W associated to the

Markov chain At. We define the activity profile of the W at time t,
a recurrent communicating class of the original Markov chain, by

Pt~
Pk

i~1 pt(wi) � wi. We then interpret the ith entry of Pt as the

qualitative activation of the species represented by node xi at time

t. It is important to note that the recurrent communicating classes

of PBNt are the same for all times t[D. (Thus, as above, we do not

need to index W by t.) This can be seen by understanding that the

recurrent communicating classes are determined by the semigroup

generated by the maps fFvDv[f0,1gmg, and not by the probabil-

ities associated to each Fv [49]. This is why we take care to assume

that each qi(t) takes values in (0,1)o since if at some time t,
qi(t)~0 or 1, then the semigroup associated to the Markov chain

has changed and thus the recurrent communicating classes at that

moment may be different. We will refer to this infinite family of

PBNs, fPBNtDt[Dg, associated to the semigroup

S~fFvDv[f0,1gmg as a probabilistic Boolean control network.

Calculating Pt is aided by the fact that it can computed in two

steps. First we consider each qi as a formal variable instead as

a function of t. The matrix A is still stochastic, but its entries are

now 0’s, 1’s or polynomials in qi,i~1, . . . ,m. As such application

of the Perron-Frobenious theorem allows us to compute the

stationary distribution for this irreducible Markov chain as

a function which is continuous for all qi[(0,1). We call these the

activity functions for each ergodic set. We then compose these

functions with the control function for each qi rendering the

stationary distribution a function of t. Thus we have continuous

functions of t that give activity profile for the ergodic set at time t.
This procedure is demonstrated in a smaller example in Figure 6.

We used GAP (Groups, Algorithms, Programming) along with the

package Monoid written by James Mitchell in order to compute

the recurrent communicating classes for each PBCN. Maple 15

was used to compute the associated stationary distributions. For

further mathematical details see [49] and [50].

Model Construction via The Cell Collective
The Cell Collective (www.thecellcollective.org; [48]), is a collab-

orative modeling platform for large-scale biological systems. The

platform allows users to construct and simulate large-scale

computational models of various biological processes based on

qualitative interaction information. The platform’s Bio-Logic

Builder was used to create this yeast cell cycle models truth tables

by specifying the biological qualitative data (adopted from [12]).

The Cell Collective’s Knowledge Base component was also used to

catalog and annotate all biochemical/biological information for

the yeast cell cycle.
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