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Abstract

Cycles are abundant in most kinds of networks, especially in biological ones. Here, we investigate their role in the evolution
of a chemical reaction system from one self-sustaining composition of molecular species to another and their influence on
the stability of these compositions. While it is accepted that, from a topological standpoint, they enhance network
robustness, the consequence of cycles to the dynamics are not well understood. In a former study, we developed a
necessary criterion for the existence of a fixed point, which is purely based on topological properties of the network. The
structures of interest we identified were a generalization of closed autocatalytic sets, called chemical organizations. Here, we
show that the existence of these chemical organizations and therefore steady states is linked to the existence of cycles.
Importantly, we provide a criterion for a qualitative transition, namely a transition from one self-sustaining set of molecular
species to another via the introduction of a cycle. Because results purely based on topology do not yield sufficient
conditions for dynamic properties, e.g. stability, other tools must be employed, such as analysis via ordinary differential
equations. Hence, we study a special case, namely a particular type of reflexive autocatalytic network. Applications for this
can be found in nature, and we give a detailed account of the mitotic spindle assembly and spindle position checkpoints.
From our analysis, we conclude that the positive feedback provided by these networks’ cycles ensures the existence of a
stable positive fixed point. Additionally, we use a genome-scale network model of the Escherichia coli sugar metabolism to
illustrate our findings. In summary, our results suggest that the qualitative evolution of chemical systems requires the
addition and elimination of cycles.
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Introduction

Many mechanisms are characterized by the presence of cycles,

especially those that play central roles in biological systems.

Specific functions such as regulation, memory and differentiation

have been associated to cycles [1–4]. Furthermore, systems

containing cycles exhibit robustness to environmental changes,

which is a key feature for the evolution of biochemical networks

[5,6]. Cycles vary in appearance from simple feedback loops to

coupled ones [7] or large cycles, these include some signaling

cascades [8], and the Krebs and Calvin cycles [9,10]. Frequently,

simple cycles are considered as network motifs [11] and therefore,

they are analyzed as isolated modules neglecting the role of the

molecular environment. In contrast, it has been proposed that the

topological structure of a subgraph alone cannot determine its

effects over the whole network [7,12]. Moreover, some authors

have found interesting results on feedback loops and have

concluded these as prerequisites for multistability in gene

regulation and mixed networks [1,2], as well as in metabolic

networks [4,13]. However, the existence of cycles as well as their

necessity and contribution to stability in networks remains largely

elusive. Additionally the question of how to analyze large systems,

in which classical approaches like differential equations fail, is

open.

Chemical organization theory (COT) offers a lucid formalism

with novel methods to analyze complex systems and their

dynamics at specific states. It can be particularly useful for

analyzing large scale models and can be applied in a broad range

of disciplines such as political, social, biological and chemical

systems. COT has been developed for the last 20 years [14–16]

and right from the beginning it has focused on two central notions,

namely the existence of closure and self-maintenance. These

notions contribute to the further understanding and characteriza-

tion of relevant systemic properties, since COT developed a

relation between both topological and dynamical aspects of

reaction networks [17].

On the other hand, reflexive autocatalytic food-generated (RAF)

sets theory [18] is another formal framework, which contains some

indications on the necessity of the existence of a cycle [13] for the

stability of living systems. A RAF set is a set of molecules which

can be produced from an initial set of food molecules in a reflexive

autocatalytic way, i.e. every reaction is catalysed by at least one

molecular species. RAF sets and COT share similarities as they are

based on set theory and even coincide in some definitions, e.g.
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closure. The main difference between these formalisms resides on

how dynamics are approached, since RAF sets place catalysis as

the only element concerned with kinetics and occurrence of

reactions. The requirements that every reaction should be

catalysed and all catalysts should come from within the reaction

network is very strong. However it is sensible since many networks

in biology fulfill this condition. In contrast, COT focuses on the

connections between the stationary states and the topological and

stoichiometric properties of the reaction network [13,17] while

making less restrictive hypotheses, especially none on the structure

of the reactions directly. This leads to a greater generality.

We give a definition of cycles in reaction networks based on a

directed graph extracted from the reaction network (Definition 1).

Using this definition, we prove the existence of a cycle to be a

necessary condition of non-trivial stationary states in reaction

networks. This is our main result, formulated as Lemma 1. It also

yields a potential way to create or alter a non-zero stationary state

of a system by adding a cycle to a closed, but not necessarily self-

maintaining, set of molecules. Thereby the system is changed

qualitatively since in the new fixed point a different composition of

molecular species is present.

When employing this COT-based analysis for systems that

contain cycles, we found that there are some interesting properties

that can be easily deduced, including the relation between the

hierarchical structure of the set of chemical organizations and the

existence of cycles. Moreover, in this work we rediscover the

abundance of cycles in biological systems. Considering the

BioModels Database [19], we see that more than 60% of the

models have more than one organization [20], and thus we can

deduce from Lemma 0 that they contain cycles. This insight

encourages us to believe that COT will be able to contribute to the

further understanding of cycles in reaction networks. Hence we

focus on the combination of COT with results about the existence

of cycles (i.e. an overlay of COT and cycles).

We apply our main result to four examples of different nature.

Firstly, we analyze the cycle found in a particular autocatalytic

network, which is a generalization of the system discussed in [13],

and investigate its stability properties further using COT, the

Jacobian and numerical simulations. Secondly and thirdly, in

order to provide some realistic examples for such autocatalytic

networks, we discuss two real biological models of mitotic control

mechanisms in detail. One of these has already been published

[21] and one was newly constructed for this study. These examples

support our ideas and illustrate how they can be used to study

biological systems. Fourthly, we further investigate the conse-

quences of Lemma 1 for a large network, namely the sugar

metabolism model proposed in [22].

Methods

We shortly summarize the needed definitions and results from

COT in informal terms, still providing a mathematically precise

version in the Appendix. A tool for the computation of chemical

organizations is freely available on our website http://www.biosys.

uni-jena.de/Services.html.

The pair (M,R) is called reaction network and we call M the set

of molecules (or species) and R the set of reactions. Each reaction

(l,r)[R consists of a left hand side l and right hand side r and will

be denoted also by l?r in concordance with the chemical

vocabulary. A reaction (l,r)[R occurs when the molecules in l are

consumed to produce the molecules in r (what this actually means has

to be made precise for every dynamics separately, e.g. the

application of a reaction in stochastic dynamics is different from

continuous dynamics).

Figure 1 depicts the network (M,R) consisting of the set of

species M~fA,B,C,Dg and the set of reactions

R~fA?2A,AzD?BzD,B?A,CzB?DzBg.
Furthermore we define supp(l,r), the support, and prod(l,r), the

product, of (l,r) to be the set of species occurring on the left hand

side and on the right hand side, respectively. We emphasize that

the support and product are sets, meaning that the multiplicity of

each molecular type in the reaction does not matter. The sets

supp(l,r) and prod(l,r) only collect the species that are present

(i.e. have a multiplicity greater or equal than one) on the left and

right hand side respectively. In our example this means that the

product of the first reaction A?2A is the set fAg and not the

multiset f2Ag. Unfortunately the notion of a support with the

same notation is also used in RAF sets theory [13,18] for all the

molecules on both left hand side and right hand side. Within this

article the usage of supp is consistent with COT.

Let A be a subset of M. We define RA as the set of reactions

applicable to A, or in other words the reactions using only species

from A. Using this terminology we define a subset C to be closed if

by applying reactions from RC we do not get molecules outside C.

In other words, in a reactor containing molecules from C, we will

never find molecules not already in C. The set fAg in the example

is therefore closed. If we only have molecules of type A there is no

reaction producing new species (for the reaction AzD?BzD to

be applicable, for example, we would need molecules of type D as

well). Also we call S semi-self-maintaining if a reaction application

consumes a species, there is a reaction producing this species.

Combining these two definitions we arrive at the notion of a semi-

organization which is a closed and semi-self-maintaining set.

Semi-organizations entail a topological (non-stoichiometric)

notion of stability in reaction networks. On the one hand, the

closure property ensures that a semi-organization will not produce

novel species. On the other hand the semi-self-maintenance

ensures that the species that are consumed within the network are

Figure 1. Example for the definitions of reaction networks and cycles. There are four cycles in this example network, given by
M~fA,B,C,Dg a n d R~fA?2A,AzD?BzD,B?A,CzB?DzBg, s h o w n i n s h a d e d a r e a s . P a n e l s A t o D s h o w c y c l e s
fAg,fA,Bg,fB,Dg,fA,B,Dg respectively. The arrow I refers to a reaction while the arrow �0 indicates the catalytic effect on a reaction.
doi:10.1371/journal.pone.0045772.g001
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also produced. However, although semi-organization is a neces-

sary condition for the occurrence of a fixed point, semi-

organizations does not necessarily ensure permanence, i.e.

consider the reaction network (fA,Bg,fA?B,2B?Ag) with the

semi-organization fA,Bg.
In order to capture more of the notion of fixed states in a

reaction network, we need to consider the stoichiometry of the

reactions, and verify if the network can maintain itself, i.e. produce

all the species at a higher or equal rate to what they are consumed.

The stoichiometric matrix represents the numerical relation between

production and consumption of species in a reaction network, and

it is denoted as NA, where A(M. NA is calculated taking the

difference between the right and left hand sides of each reaction in

RA.

We say A is self-maintaining if and only if all the reactions from

RA can occur at a certain strictly positive rate without decreasing

the concentration of any species of A. A subset of M is a chemical

organization if it is closed and self-maintaining [14,16].

The term organization refers to a more stringent condition than

semi-organization. Indeed, every organization is a semi-organiza-

tion [16]. Moreover, organizations bridge the reaction network

with its dynamical behavior. Given a reaction network and a

kinetic law (e.g. mass action kinetics), it has been proven that the

fixed points of the obtained ordinary differential equation (ODE)

system, relate to the set of organizations as follows. For every fixed

point the set of molecules with concentration higher than zero in

that fixed point is an organization of the reaction network [16,17].

In general, an organization may contain a species that does not

take place in any reaction within this organization. Hence, it is

reasonable to introduce the notion of a reactive set of species. A set A
of species is reactive if and only if for all A[A there exists a

reaction (l,r) in RA such that A[supp(l,r)|prod(l,r). Note that

the dynamical properties of a set of species depends only on its

largest reactive set, as the other species do not react and remain

with constant concentration. Furthermore, the number of

organizations in most reaction networks is considerably larger

than the number of reactive organizations, and hence focusing on

the set of reactive organizations instead of the whole set of

organizations simplifies the understanding of the dynamical

behavior of a reaction network [23]. From now on, we will

consider only reactive sets of species.

Results

Our definition of cycle can be explained using the usual

definition for cycles in directed graphs. Given a reaction network

we can deduce a directed graph in the following way. The nodes of

that graph are the species of the reaction network, and there is an

edge from species A to species B if there is a reaction with A on its

left hand side and B on its right hand side. We say that A is

directly-causally connected to B. The cycles found in this directed

graph are the ones we identify as cycles of the reaction network in

our terminology (see Figure 1). This definition captures a variety of

specific forms of cycles, yet yielding a structural result about

reaction networks.

Definition 1
Two species A,B[M are directly-causally connected, if there exist a

reaction (l,r)[R with A[supp(l,r) and B[prod(l,r), i.e. A is on the left

hand side of a rule and B on its right hand side. We write AB. We say that

the network contains a cycle if there is a subset of species

fM1, . . . ,Mkg(M such that MiMiz1 for i~1, . . . ,k{1 and

MkM1. We write M1M2 � � �MkM1 and say that

fM1, . . . ,Mkg(M is a cycle.

We can now formulate our main theoretical result:

Lemma 1
Given a reaction network and a reactive semi-self-maintaining set S that

strictly contains a closed set C, i.e. CS, then S{C contains a cycle.

Proof. Let B~S{C~fB1, . . . ,Bkg for some k§1 as CS.

We will prove first that at least one reaction in RS consumes

species from B. Suppose that no species in B is consumed by any

reaction in RS. As S is reactive, then each species B[B must be

produced by some reaction (l,r)[RS. However, as no species in B
is consumed, we have that either supp(l,r)~1 or supp(l,r)(C.

This contradicts the hypothesis that C is closed, since elements

from C would produce an element which is not in C. Hence, at

least one species, say Bi, is consumed within RS.

As S is semi-self-maintaining, Bi is produced by a reaction

(l,r)[RS. Moreover, supp(l,r) must contain at least one species

Bj[B since C is closed. There are two possible cases.

N First case: Bj~Bi. By definition BiBi and we have a (trivial)

cycle.

N Second case: Bj=Bi. By definition we have BjBi.

Since the same argument applies for Bj as well, by a recursion

argument we prove that there exists a cycle (see Figure 2 for a

schematic representation).

Lemma 1 connects the existence of reactive semi-self-maintain-

ing sets with the existence of cycles. It states that every reactive

semi-self-maintaining set that strictly contains a closed set must

contain a cycle made from molecules not contained in the closed

set. Why do we require that there is a closed set? Let us consider

the example R~f?A,A?B,B?g. The set fA,Bg is self-

maintaining, but does not contain a cycle. Note that it does not

strictly contain any closed subset, because the closure of the empty

set is fA,Bg. Since the closure of the empty set is contained in all

closed sets we can say that a reactive semi-self-maintaining set

whose molecules cannot be made from the inflow must contain a

cycle.

Note that every organization is semi-self-maintaining and

closed. Thus, equating in Lemma 0 the closed set C with an

organization O1 and the reactive semi-self-maintaining set S with

a reactive organization O2 we arrive at the following corollary.

Corollary
Given a reaction network and two different reactive organizations O1 above

O2, i.e. O2O1, then O1 contains at least one more cycle than O2.

From Corollary 1 follows that any reactive organization, except

the ones produced from the inflow of the network, contains at least

one cycle. Or in other words only the smallest might not contain a

Figure 2. Situation in the recursion argument of the proof of
Lemma 1.
doi:10.1371/journal.pone.0045772.g002

Cycles

PLOS ONE | www.plosone.org 3 October 2012 | Volume 7 | Issue 10 | e45772



cycle, like in the previous example. The shifting or moving from

one reactive organization and therefore from one potentially stable

constellation of molecules to another was already described in

[24]. According to Lemma 0 this movement must involve the

addition or removal of at least one cycle. In particular this can be

achieved in two ways. Combining the species of two organizations

with disjoint cycles is the first possibility. The second is adding one

or more species to an organization to create new cycle. As an

example we refer to Section ‘‘A Particular Autocatalytic Network’’

The reverse operations lead to the ‘‘destruction’’ of organizations.

Thus, any qualitative transition from a stable state to another with

a different composition of reacting molecular species must

encompass the removal or addition of a cycle.

Note that Corollary 1 is also true for overproducible organizations,

i.e. organizations where each species can be produced at a strictly

positive rate, because overproducible organizations are reactive

sets.

Moreover, from Corollary 1 we can also infer that every

organization is uniquely identified by its set of cycles, and if the set

of cycles of an organization O1 contains the set of cycles of another

organization O2, then O2(O1. This implies that the hierarchy of

the set of organizations [16] can be mapped to a hierarchy of the

set of cycles.

Considering RAF set theory, not every RAO set is necessarily a

reactive set. The other hypothesis is satisfied by all RAOs though,

since for every catalyst C[O the subset fCg is closed. Therefore

Lemma 0 and the cycle theorem proven in [13] are complemen-

tary results.

Theoretical and Biological Applications
A Particular Autocatalytic Network. In this section we

apply Lemma 1 and show how our algebraic analysis can be

complemented by a dynamical analysis. We introduce a proto-

typical model (Figure 3) that captures properties of reaction

networks found in origin of life and protocell research [25]. This

model is a generalization of the RAF model by Contreras et al

[13]. It incorporates a basic metabolism built from enzymatic

reactions and includes some environment variables for the

transport, production and decomposition of the species. Hence

the environment, even if in a relatively simple way, is considered.

Furthermore we consider five variants of our generalization (case

1). Since in biological applications there are often also reversible

reaction given, i.e. due to thermodynamics, the network in case 3

incorporates reversible reactions for all the reaction given in the

network. However not all reactions in biological models need to be

reversible [19]. Hence we also consider a model in which one of

the reactions is not reversible (case 5). In order to examine the

effect of the positive feedback given by the cycle we took, without

loss of generality, one reaction out of the set of possible reactions

from the networks in cases 1, 3, 5. This constitutes the networks 2,

4, 6 respectively.

Figure 4 illustrates how our main result, Lemma 1, can be

applied to analyze the particular autocatalytic network model

Figure 3. This network has three reactive organizations (Figure 4B).

The smallest organization does not contain any molecule and thus

also no cycles. According to the main result Lemma 1 all other

reactive organizations must contain cycles. First, the organization

fM,Ting emerges by adding the trivial cycle fTing (Figure 4B).

Second, the largest organization contains a cycle with the catalysts

fC1,C2g (Figure 4B). The catalytic effect is necessary for the

organizations to exist. If we remove the cycle’s catalytic effect, the

largest organization vanishes, as can be seen in the reactive

organizations of the network with the cycle ( case 1, Figure 4B)

compared the ones of the network without the cycle ( case 2,

Figure 4D). Due to the special structure of the model considered

here we are able to provide a further analysis of dynamical aspects

using ODEs.

Figure 3. Particular autocatalytic network. (A) Original network presented in [13] and (B) a generalization, used for our analysis.
M,Tin,Tout,W ,C1,C2, . . . ,Cn represent species. Arrows indicate reactions between the species, arrows ending with a circle denote catalysis (to reduce
its complexity, in Panel (B) the catalysts but not the arrows are shown). The parameters kin and kout represent reaction rates. Observe that M and W
are the external supplies and waste species, Tin and Tout represent transport molecules, whereas C1,C2, . . . ,Cn conform a cycle, i.e. C1C2 � � �CnC1 .
doi:10.1371/journal.pone.0045772.g003
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Figure 4. Hasse diagrams of organizations for the n~2 case of the particular autocatalytic network with and without reversible
reactions. A and C show the Hasse diagrams of the organizations with feedback (closed cycle) and without feedback (open cycle) respectively for
the particular autocatalytic network without reversible reactions. When adding reversible reactions, we have panels E and G which show the Hasse
diagrams of the organizations with feedback (closed cycle) and without feedback (open cycle) respectively. In B, D, F and H we show only reactive
organizations of the panels A, C, E and G respectively (see Section ‘‘Methods’’). For example fMg is an organization in both cases, feedback and no
feedback, but M alone does not react to anything. Hence it is not a reactive organization.
doi:10.1371/journal.pone.0045772.g004

Cycles
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Figure 5. Simulations of all particular autocatalytic network variants (n~2) with and without feedback. We chose initial conditions as
follows: M~0:3, Tin~1, Tout~1, w~0, C1~1, C2~1. All forward reaction coefficients are set to 1 while reversible rates are set to 0.1. We tested the
effect of different relative reversible rates and we found that they have no influence on the systems (see Appendix ‘‘Fixed Point and Stability Analysis
for the Particular Autocatalytic Network’’ ) for details.
doi:10.1371/journal.pone.0045772.g005
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In order to define the particular autocatalytic network under

consideration, we use the molecular species

M~fM,Tin,Tout,W ,C1,C2,C3, . . . ,Cn{1,Cng

and the set of reactions

R~ Tin ?
kin

MzTin,WzTout ?
kout

Tout,MzC1?TinzC1,

�

MzCn?ToutzCn,TinzCn?WzCn,ToutzC1?WzC1,

MzCn?C1zCn,MzC1?C2zC1,MzC2?C3zC2,

. . . ,MzCn{1?CnzCn{1,C1zCn?WzCn,

C2zC1?WzC1,C3zC2?WzC2, . . . ,

CnzCn{1?WzCn{1g:

The set of reverse reactions is

Rrev~fC1 ?
a

M,C2 ?
a

M,C3 ?
a

M, . . . ,Cn ?
a

Mg:

We decided to use reaction rates equal to 1 in most of the reactions

in order to have a simple and usable model. Also the main

influence of reaction rates should be given by the catalysts as

suggested in RAF set theory. The parameter a gives control over

the strength of the reverse reactions and kin and kout govern the

inflow and degradation, respectively.

We will focus on the following reaction networks:

1. (M,R) – generalized cycle

2. (M,R\fMzCn?C1zCng) – generalized open cycle (the

feedback is missing)

3. (M,R|Rrev) – generalized cycle with reversible reactions

4. (M,R|Rrev\fMzCn?C1zCng) – generalized open cycle

with reversible reactions (the feedback is missing)

5. (M,R|Rrev\fC1?Mg) – generalized cycle with all reactions

reversible except of one

Figure 6. The Template model of the mitotic spindle assembly checkpoint (SAC) mechanism. (A) Pictorial representation of the SAC
mechanism. (B) The biochemical reaction of the Template model which is the interface of SAC mechanism. We added the species Tin , Tout and W to
this core model so that we end up with the particular autocatalytic network Figure 3A, where the species M , M1, C1 and C2 refer to O-Mad2, Cdc20,
O-Mad2* and Cdc20:Mad2 respectively. (C) Numerical simulations of ordinary differential equations where all species concentrations are presented.
All species reach steady state after about 30 seconds. (D) Same as in (C) after removing the positive feedback from Cdc20:C-Mad2 to activate O-Mad2
(refers to Mad2*).
doi:10.1371/journal.pone.0045772.g006
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6. (M,R|Rrev\fMzCn?C1zCn,C1?Mg) – generalized

open cycle with all reactions reversible (the feedback is missing)

except of one

It is possible to compute the fixed points and to analyze their

stability analytically in the first case. The analysis with the help of

chemical organizations yields that there cannot be a positive fixed

point in the cases 2, 4, 6. The other cases 3, 5 can only be treated

numerically (analytical solution was not found using Mathematica

[26]) but yield similar results and are more realistic for biological

applications.

In summary we see that the three reaction networks 1, 3, 5 with

a cycle have a stable positive fixed point whereas the networks 2, 4,

6 without the feedback via the cycle do not exhibit a positive fixed

point at all. So the feedback of the cycle ensures the existence and

stability of a fixed point. Numerical simulations of all particular

autocatalytic network variants are shown in Figure 5. A detailed

account is provided in the Appendix.

Mitotic Spindle Assembly Checkpoint Network

Model. The mitotic Spindle Assembly Checkpoint (SAC)

ensures accurate chromosome segregation by restraining cell-cycle

progression from entering anaphase until all chromosomes have

made proper bipolar attachments to the mitotic spindle

(Figure 6A). It is thought that unattached or misaligned

kinetochores catalyze the formation of a ‘‘wait-anaphase’’ signal

which then diffuses to counter the activation of the ubiquitin ligase

APC by its coactivator Cdc20. Activation of APC by Cdc20

triggers chromosome segregation by ubiquitination of securin and

cyclin B. Dysfunction of the SAC leads to aneuploidy [27,28] and

its reliable function is important for tumor suppression [29,30].

Figure 7. The spindle position checkpoint in budding yeast (SPOC). (A) Pictorial representation of the SPOC mechanism. (B) A rather
simplified model for SPOC mechanism. In response to mis-orientations, Bfa1 is activated through Kin4 kinase. Active Bfa1 preventing mitotic exist and
enhance SM signaling. The later regulate Kin4 activations. We added the species Tin , Tout and W to this mechanism so that we end up with the
generalized particular autocatalytic network Figure 3B, where the species M , M1, C1, C2 and C3 refer to Kin4, Bfa1, Kin4*, Bfa1* and SM respectively.
(C) Biochemical reactions in (B) have been translated to mathematical language of ODEs and simulated without positive feedback. Almost all species
are famishing after 40 seconds. (D) same as in (C) with positive feedback presented.
doi:10.1371/journal.pone.0045772.g007

Cycles
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The Cdc20-binding protein Mad2 was suggested as playing

crucial and major part in the ‘‘wait-anaphase’’ signal, as it is

stabilized in a conformation with increased affinity to Cdc20

specifically at unattached kinetochores. This module was called the

‘‘Template’’ model [31]. According to this model, Mad2 in its

open conformation (O-Mad2) is recruited to unattached kineto-

chores by Mad1-bound Mad2 in its close conformation (C-Mad2)

to form the ternary complex Mad1:C-Mad2:O-Mad2*. In this

complex O-Mad2* is the ‘‘activated’’ Mad2, i.e. it is stabilized in a

conformation which can interact with Cdc20 to form Cdc20:C-

Mad2. It has been proposed [32] that there exists an autocatalytic

amplification (or a cycle, according to our definition) of Cdc20:C-

Mad2 formation by which in addition to the activation via

kinetochore-bound Mad1:C-Mad2, O-Mad2 can likewise be

activated by Cdc20:C-Mad2 (Figure 6B).

The dynamics of the full Template model both in-silico and in-

vitro have been recently discoursed in detail by several mathemat-

ical models [33–35]. In this study, we first reduce the Template

model to solely two reversible reactions with an autocatalytic

amplification which is suggested in [31]. This was observed in vitro

[35] and has been widely discussed in [36,37]. Subsequently, we

incorporate it into the particular autocatalytic network model

presented in Section ‘‘A Particular Autocatalytic Network’’ by

adding species and reactions forming production and degradation

pathways for all species (compare Figure 6B with Figure 3A). This

is justified since we know that all proteins are synthesized during

the cell-cycle and at least some are degraded [38]. In contrast, all

models in the literature [21,33–35,39,40] did not consider the

production and degradation of Mad2 and Cdc20. We used

arbitrary values of the kinetic parameters and avoid using

published or optimized kinetic data from Budding yeast [35] or

humans [31,34] because our approach indicates that the kinetic

parameters for the small cycles play no role (see last section of

Appendix) and our model is a reduction of the published models

where the current reactions have unknow values. We stopped the

simulations after one minute which was enough to reach the steady

state for the system (Figure 6C and Figure 6D). This time can be

thought of as the period required for attaching a single kinetochore

to the microtubule (e.g. in humans during mitosis, we have 92

kinetochores). The simulation analysis is in the same concert as our

theory where the model has no positive fixed point in the absence

of a positive feedback provided by a cycle (Figure 6D) while in the

presence of the cycle the system has a stable positive fixed point

(Figure 6C). Only the positive fixed points are relevant for our

given biological application, since we want all the species to be

maintained. Hence our simple model of SAC supports the idea

that the autocatalytic amplification (or cycle) is necessary for the

topology of the Template model.

Spindle Position Checkpoint Network Model. Spindle

orientation with respect to the polarity axis is crucial during

asymmetric cell division [41–45]. The budding yeast S. cerevisiae is

a unicellular organism which undergoes asymmetric cell division

and has been widely used to study polarized cell growth and

asymmetric cell division [46]. If the spindle fails to align properly,

a remarkable surveillance mechanism called the spindle position

checkpoint (SPOC) (Figure 7A), delays cells from exiting mitosis

until correct spindle orientation is achieved [46–49]. SPOC keeps

the activity of the Bfa1-Bub2 GAP complex under tight control.

Upon spindle misalignment, the kinase Kin4 phosphorylates Bfa1,

preventing its inhibitory phosphorylation by another kinase called

Cdc5. Kin4 is therefore crucial for maintaining the GAP complex

active [46,50,51]. Here, we build a simple mathematical model for

SPOC active state. Analogously to the SAC model, we incorpo-

rated the cycle (Figure 7B) into the structure of the particular

autocatalytic network (Figure 3B). Our aim is to see the effect of

the positive feedback given by the cycle when we include a

production and a degradation pathway for all species. The

simulations show that the closed cycle (the signal SM that targets

the kinase Kin4) leads to a stable positive fixed point whereas the

open cycle does not (compare Figure 7D and Figure 7C).

Genome-Scale Network. In an earlier study the organiza-

tions of four versions of a genome-scale metabolic reaction

network model (M,R) of Escherichia coli [22] were already

computed [23]. The fourth of the scenarios consists of 762 species

and 1939 reactions, where reversible reactions are counted as two

single reactions. It exhibits four reactive organizations O0, O1, O2

and O3 of which the biggest one O3 contains 547 species.

For this study we developed a Java tool (available at http://

www.biosys.uni-jena.de/Services.html ). to find cycles. Our theory

predicts the existence of at least one additional or changed cycle if

we look at the difference between two reactive organizations. The

results are summarized in Tables 1, 2 and 3. In the following we

only describe our analysis for the newly appearing cycles in the

largest (O3) compared to the second largest reactive organization

(O2) in detail. There is one large cycle Cyc23
1 and a small one

Cyc23
0 consisting of only two species. In the following we only

consider the large cycle since the small one has no apparent

influence on the system as a whole. The large cycle consists of 523

different species and there are 913 different reactions constituting

it.

In order to measure how important the cycle is for the system to

be able to maintain a high amount of different species, namely for

a potential fixed point to exist, we performed the following

Table 1. Number of species of the reactive organizations.

O0 O1 O2 O3

species 31 487 532 547

We number the reactive organizations by size in ascending order from 0 to 3.
doi:10.1371/journal.pone.0045772.t001

Table 2. Number of species and reactions in the genome-
scale network and the cycles.

M Cyc01
1 Cyc01

0 Cyc12
1 Cyc12

0 Cyc23
1 Cyc23

0

species 762 463 2 599 2 523 2

reactions 1939 837 2 899 2 913 2

M denotes the full network, Cycnm
1 the bigger of the two newly appearing

cycles between On and Om , Cycnm
0 the smaller one.

doi:10.1371/journal.pone.0045772.t002

Table 3. Critical and non-critical reactions in the large cycle
compared to the ones outside the cycle.

Cyc01
1 M\Cyc01

1 Cyc12
1 M\Cyc12

1 Cyc23
1 M\Cyc23

1

total reactions 837 1102 899 1040 913 1026

critical reactions 353 13 386 11 400 11

non-critical
reactions

484 1089 513 1029 513 1015

doi:10.1371/journal.pone.0045772.t003
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experiment. For each reaction in the cycle we check whether the

largest organization still exists in the network with the reaction

switched off. The same procedure is applied to the reactions not

part of the cycle.

In summary, we can say that 400 of the 913 reactions being part

of the cycle were identified as crucial for the presence of the largest

organization. If one of these reactions is switched off the largest

organization cannot be found. In case of the reactions outside the

cycle, only 11 of 1026 of reactions are crucial for the existence of

the organization. This indicates that the structure of the cycle is

important for the existence of the stable composition of species

formed by the largest organization.

The runtime of our measurement is neglectable compared to

the problem of finding the reactive organizations in such large

networks [52]. After a preparatory step to construct a graph from

the reaction network, we use Tarjan’s algorithm for detecting the

strongly connected components of a graph [53] to find our cycles.

Both steps have a runtime of O(DMDzDRD). In order to check

whether a set of molecules O remains an organization when a

reaction is switched off, we need to solve a linear programming

problem of size O(DODzDROD{1). This is done using lpsolve [54].

Discussion

The occurrence of specific motifs and their functionality in

networks have been studied largely in biological, ecological and

social systems [11]. Moreover, there are many works that present

results, linking reaction networks with cyclic structures and the

capacity to generate stationary states [1,2,4]. These studies either

focus on isolated specific motifs or on the effect of feedback loops

on a system’s behavior. Here however, we focus on the role of

cycles in systems that undergo a change in the composition of

molecular species. In Lemma 1 we showed that one possibility to

achieve a qualitative transition, namely from a closed (not

necessarily self-maintaining) set to an organization, is to add a

cycle.

On the one hand, this transition can be interpreted as a way of

creating an autopoietic system from a non-autopoietic one. A

chemical reaction system in which the present molecules are not

able to react such that new species occur (as stated in our definition

of closure) may not be sufficient to have an autopoietic property.

In origins of life research one is interested in the transition from

non-living to living chemical systems. Our results suggest that the

addition of a cycle is a necessary condition. Furthermore the

evolution from one autopoietic system to another one then

includes the additions, changes and/or deletions of cycles.

On the other hand, a change of composition of molecular

species in a reaction network also gives rise to new behavior and in

particular to new fixed points or a change in the stability of already

existing ones. In terms of COT, altering the present molecular

species means a movement between organizations. The results on

cycles suggest two ways of how a system moves from one

organization to another and therefore potentially between stable

states. Namely, a cycle can be added or eliminated (see Results

section). The results presented here (Lemma 1 and its Corollary 1)

provide a framework to study how the inner and outer

perturbations lead to qualitative changes in the composition of a

chemical system. We emphasize, that this is not only a change of

state going from stable state to another one, but a change in the

molecular species present at the stable state. As shown in the

example on the E. coli sugar metabolism model this analysis can

even be employed in cases where ODEs fail to predict properties.

In particular, it indicates how to identify reactions and species

responsible for the stability of the dynamical behavior of the

network. Furthermore, organizations can be decomposed in

groups of self-maintaining clusters, that are connected through

catalysts and overproducible molecules [55] and hence give more

insight into the systems’ dynamical structure.

An examination of qualitative properties like fixed points and

stability of cycles has not been a subject in the mentioned studies.

Also COT can only disprove the existence of a fixed point but not

prove it. Therefore we need to use classical methods (like the

Jacobian). This task can be performed for concrete classes of

networks only. We took advantage of an already existing

prototypical autocatalytic network containing a cycle of length 2
studied in [13]. One possible generalization without altering the

original structure too much is the cycle of length n used here. We

also included certain reverse reactions which often occur. On the

one hand, we chose the simplest generalization (many more are

thinkable), on the other hand this variant still matches closely to

biological applications. The positive feedback provided by the

cycle is crucial for the existence of a positive fixed point and its

stability in all cycle variants we have discussed. We emphasize that

in the particular autocatalytic network discussed, a positive and

not a negative feedback leads to the stability property of the fixed

point. This is due to the fact that the molecular species are all

degrading. Therefore there needs to be a positive feedback to

replace the vanished molecules. In our study a cycle provides the

structure for the network to reproduce all the molecules and not

only one type by a single positive feedback.

There are many biological applications that have similar cycles

to those presented in this study, e.g. MAPK (mitogen-activated

protein kinase) cascades and cell-cycle control models. We have

used two examples of mitotic control mechanisms, namely the

Spindle Assembly (SAC) and Position (SPOC) Checkpoints. Both

checkpoints have high importance in cancer research [46,56]. We

took advantage of the well studied models on SAC [33–35] while

for SPOC, we built a very simple model that is able to grasp the

basic SPOC mechanism. Our analysis of these two models is

consistent with our theory and shows that the feedback guarantees

a positive stable fixed point. Additionally, the published models did

neglect all productions and degradations reactions for all proteins

and complexes. These reactions could be important for the effect

on the model’s prediction. For instance in a SAC model,

neglecting these reactions led to an underestimate of the effect of

the feedback loop at least with respect to the stability of the system

[34].

As future work we aim at the inclusion of non-stoichiometric

information, such as the kinetic rate relations or relative molecular

concentrations. These might allow us to establish concrete results

about the existence and stability of fixed points, and of other

stationary regimes of higher dimension, such as periodic orbits and

limit cycles [17]. Indeed, a novel molecular species (or a set of

them) introduced to a reaction network can reinforce or

breakdown the stability of a chemical system.
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Appendix

Chemical Organization Theory
Let M be a set and R be a subset of Pmult(M)|Pmult(M)

where Pmult(M) denotes the set of multisets over M. The pair

(M,R) is called reaction network and we call M the set of molecules

(or species) and R the set of reactions.

Like in chemistry, for (l,r)[R we also write l?r or

X
M[M

lMM?
X

M[M
rMM

where we denote by lM ,rM[N0 the multiplicity of M in l,r
respectively. A reaction (l,r)[R occurs when the molecules in l are

consumed to produce the molecules in r (what this actually means has

to be made precise for every dynamics separately, e.g. the

application of a reaction in stochastic dynamics is different from

continuous dynamics).

Furthermore we define the support and the product of (l,r) by

supp(l,r) : ~fM[M D lMw0g,

prod(l,r) : ~fM[M D rMw0g:

Let A be a subset of M. We define RA, the set of reactions

applicable to A, by setting

RA : ~f(l,r)[R D supp(l,r)(Ag:

Abusing notation we use a reaction (l,r)[R as an index as well

and define the stoichiometric matrix NA[RDAD|DRA D for A by

(NA)A,(l,r)~rA{lA, A[A,(l,r)[RA:

C being closed means that by applying reactions fromRC we do

not get molecules outside C. Formally speaking, a subset C ofM is

closed if for all reactions (l,r)[RC we have prod(l,r)(C, i.e. if

(C,RC) is a reaction network [14].

S being semi-self-maintaining means that if a reaction

application consumes a species, there is a reaction producing this

species. More formally, a subset S ofM is semi-self-maintaining if for

every A[S and (l,r)[RS with lA{rAw0 there is a (l’,r’)[RS with

r’A{l’Aw0.

A subset of M is a semi-organization if it is closed and semi-self-

maintaining.

Semi-organizations entail a topological (non-stoichiometric)

notion of stability in reaction networks. On the one hand, the

closure property ensures that a semi-organization will not produce

novel species. On the other hand the semi-self-maintenance

ensures that the species that are consumed within the network are

also produced. However, although semi-organization is a neces-

sary condition for the occurrence of a fixed point, semi-

organizations cannot be maintained over time in general, i.e.

consider the reaction network (fA,Bg,fA?B,2B?Ag) with the

semi-organization fA,Bg.
In order to capture more of the notion of fixed states in a

reaction network, we need to consider the stoichiometry of the

reactions, and verify if the network can maintain itself, i.e. produce

all the species at a higher or equal rate to what they are consumed.

A subset S ofM is self-maintaining if there is a vector v[RDRS D with

strictly positive entries such that NSv[RDSD has only non-negative

entries [16]. S being self-maintaining means that all the reactions

from RS can occur at a certain strictly positive rate without

decreasing the concentration of any species of S.

A subset of M is a chemical organization if it is closed and self-

maintaining [14,16].

The term organization refers to a more stringent condition than

semi-organization. Indeed, every organization is a semi-organiza-

tion [16]. Moreover, organizations bridge the reaction network

with its dynamical behavior. Given a reaction network and a

kinetic law (e.g. mass action kinetics), it has been proven that the

fixed points of the obtained ordinary differential equation (ODE)

system, relate to the set of organizations as follows. For every fixed

point the set of molecules with concentration higher than zero in

that fixed point is an organization of the reaction network [16,17].

Fixed Point and Stability Analysis for the Particular
Autocatalytic Network

The stoichiometric matrix NM of the system (M,R) with the

generalized cycle (case 1) defined in Section ‘‘A Particular

Autocatalytic Network’’ is

NM~

1 0 {1 {1 0 0 {1 {1 {1 � � � {1 0 0 0 � � � 0

0 0 1 0 {1 0 0 0 0 � � � 0 0 0 0 � � � 0

0 0 0 1 0 {1 0 0 0 � � � 0 0 0 0 � � � 0

0 {1 0 0 1 1 0 0 0 � � � 0 1 1 1 � � � 1

0 0 0 0 0 0 1 0 0 � � � 0 {1 0 0 � � � 0

0 0 0 0 0 0 0 1 0 � � � 0 0 {1 0 � � � 0

0 0 0 0 0 0 0 0 1 � � � 0 0 0 {1 � � � 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.
P

..

. ..
. ..

. ..
.

P
..
.

0 0 0 0 0 0 0 0 0 � � � 0 0 0 0 � � � 0

0 0 0 0 0 0 0 0 0 � � � 1 0 0 0 � � � {1

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;

:

It is possible to guess a suitable vector to show the self-

maintenance property of the whole system. For

v~(nz2,1,1,1,1, . . . ,1) we get NMv~(0,0,0,nz1,0,0,0, . . . ,0).
Hence the reaction network is an organization.

In a similar fashion we see that the full network is not an

organization in the cases 2, 4, 6 since the row 7 is missing and

species C1 can no longer be maintained. In case of the cycle with

reversible reactions (cases 3, 5) we also find the network to be an

organization with the help of a similar argument. More precisely,

the stoichiometric matrix needs to be enlarged by the reverse

reactions and the flux vector slightly adjusted (see Figure 4 for

typical Hasse diagrams of these cases).

For the determination of fixed points and their stability we

employ the ODEs given by mass action kinetics for the reaction

networks. The reaction rate constants we did not explicitly define

are assumed to be all equal to 1.

The ODEs can be written down for all six cases at once using

the parameter s which is equal to 1 if the cycle is closed (cases 1, 3,

5) and equal to 0 if open (cases 2, 4, 6). We also use the constant a

for the rate of the reverse reactions.

1. s~1, ai~0 – generalized cycle

2. s~0, ai~0 – generalized open cycle (the feedback is missing)

Cycles

PLOS ONE | www.plosone.org 11 October 2012 | Volume 7 | Issue 10 | e45772



3. s~1, ai~a – generalized cycle with reversible reactions

4. s~0, ai~a – generalized open cycle with reversible reactions

(the feedback is missing)

5. s~1, a1~0, ai~a – generalized cycle with all reactions

reversible except of one

6. s~0, a1~0, ai~a – generalized open cycle with all reactions

reversible (the feedback is missing) except of one

The last section already showed that there is no fixed point in

the cases 2, 4, 6. Only case 1 can be treated analytically. For the

cases 3, 5 numerical simulations can be done.

The ODEs for our reaction network are given by

_MM~kinTin{M 2C1z
Xn{1

i~2

Ciz(sz1):Cn

 !
z
Xn

i~1

aiCi

_TTin~MC1{TinCn

_TTout~MCn{ToutC1

_WW~{koutWToutzTinCnzToutC1zC1Cnz
Xn{1

i~1

CiCiz1

_CC1~(s:M{C1)Cn{a1C1

_CC2~(M{C2)C1{a2C2

_CC3~(M{C3)C2{a3C3

..

.

_CCn{1~(M{Cn{1)Cn{2{an{1Cn{1

_CCn~(M{Cn)Cn{1{anCn:

Its Jacobian matrix is

J~

J1,1 kin 0 0 {2M {M {M . . . {M {2M

C1 {Cn 0 0 M 0 0 . . . 0 {Tin

Cn 0 {C1 0 {Tout 0 0 . . . 0 M

0 Cn J4,3 {kout J4,4 C3 C4 . . . Cn J4,n

Cn 0 0 0 {Cn 0 0 . . . 0 M{C1

C1 0 0 0 M{C2 {C1 0 . . . 0 0

C2 0 0 0 0 M{C3 {C2 . . . 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

.
P

..

. ..
.

Cn{2 0 0 0 0 0 0 . . . {Cn{2 0

Cn{1 0 0 0 0 0 0 . . . M{Cn {Cn{1

0
BBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCA

,

where J1,1~{(2C1z
Pn{1

i~2 Ciz2Cn), J4,3~{koutWzC1Tout,

J4,n~ToutzCnzC2, and J4,n~TinzC1zCn{1.

For case 1 we look for positive steady states and set the system to

0. We immediately get the following relations:

M~
kin

(nz2)

C1~ . . . ~Cn~M

Tin~M

Tout~M

W~
kin

kout

:

To determine the stability we use the Jacobian matrix which is in

the fixed point given by

1

(nz2)
kin

{(nz2) nz2 0 0 {2 {1 {1 . . . {1 {2

1 {1 0 0 1 0 0 . . . 0 {1

1 0 {1 0 {1 0 0 . . . 0 1

0 1 {(nz1) {kout 3 1 1 . . . 1 3

1 0 0 0 {1 0 0 . . . 0 0

1 0 0 0 0 {1 0 . . . 0 0

1 0 0 0 0 0 {1 . . . 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

.
P

..

. ..
.

1 0 0 0 0 0 0 . . . {1 0

1 0 0 0 0 0 0 . . . 0 {1

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

:

After tedious computations we can find that the eigenvalues of the

Jacobian are as follows

kin {1,{
1

nz2
, . . . ,{

1

nz2
,{

kout

nz2

� �
:

This means that the fixed point we found is stable. For the

remaining cases 3, 5 we employ a parameter scan and numerically

(with Mathematica [26]) compute fixed points and their stability.

For the case n~2 we used the following pairs of parameter values

kin~10f{1,{0:4,0,0:2,0:8,1:4,2g,

kout~10f{1,{0:4,0,0:2,0:8,1:4,2g,

a~f{1,{0:8,{0:6,{0:4,{0:2,0,0:2,0:4,0:6,0:8,1g:

We could verify that in these cases the results were as expected.

Apparently the effects of the parameters are neglectable. All

numerical simulations of cycle variants as ODEs (n~2) show the

same expected results (Figure 5).
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