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Abstract

The fair division of a surplus is one of the most widely examined problems. This paper focuses on bargaining problems with
fixed disagreement payoffs where risk-neutral agents have reached an agreement that is the Nash-bargaining solution
(NBS). We consider a stochastic environment, in which the overall return consists of multiple pies with uncertain sizes and
we examine how these pies can be allocated with fairness among agents. Specifically, fairness is based on the Aristotle’s
maxim: ‘‘equals should be treated equally and unequals unequally, in proportion to the relevant inequality’’. In this context,
fairness is achieved when all the individual stochastic surplus shares which are allocated to agents are distributed in
proportion to the NBS. We introduce a novel algorithm, which can be used to compute the ratio of each pie that should be
allocated to each agent, in order to ensure fairness within a symmetric or asymmetric NBS.
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Introduction

Over the last decades, effective management of cooperative

structures has been of great interest, due to its application to

various real life situations. Generally, in all kinds of cooperative

structures there is a nonnegative surplus included in the overall

return, which may consist of more than one pie. For instance, in a

supply chain network with multiple production facilities that

produce different products, the manufacturing and distribution

costs as well as the unit profits are dissimilar. Another example is a

water/power/waste management system that commonly includes

the collection and distribution of water/power/waste arising from

different sources. In most cases, these multiple pies should be

shared among a finite set of agents who receive specific payoffs if

they disagree to cooperate, i.e. through the non-cooperative

option. Moreover, since a cooperative venture is formed before the

actual size of each pie is realized, these pies can be assumed as

stochastic variables, i.e. pies with uncertain sizes. In such a

stochastic environment with multiple pies and multiple agents,

main challenge is to ensure fairness, especially when risk-neutral

agents have already reached an agreement for the division of the

overall surplus. The subsequent sections of this paper include the

review of the related literature, the description of the basic

problem, the introduction of a novel computation method and the

discussion of possible applications and future research issues.

Solution Concepts in Cooperative Games
More than 2000 years ago, Aristotle in ‘‘Nicomachean Ethics’’

has established the main principle of fairness. He indicates that

equals must be treated equally and unequals must be treated

unequally, in proportion to relevant similarities and differences

[1,2]. This is a formal principle, which has been applied to all kind

of cooperative structures, e.g. equal treatment and proportionality

are two general principles of European Union Law.

Cooperative game theory is applied to a finite set of agents,

namely grand-coalition, while any subset in which this set can be

divided is called coalition [3], and a coalition with just one agent is

called singleton. A cooperative game for a grand-coalition

N = {1,2,3,…,n}, is either a pair (N, p) and a characteristic

function p : 2N R R, with p(Ø) = 0, which represents the collective

payoff for a set of agents forming a coalition [4], or a pair (N, c) and

a characteristic function c : 2N R R, with c(Ø) = 0 that describes

the cost for a set of agents who cooperate in accomplishing a

specific task [5]. The solution of the game is a vector x RN

representing the allocation of the overall profit p(N) or cost c(N) to

each agent. In general, a nonnegative surplus can be shared with

fairness following the equal or proportional sharing methods [6].

In the literature, several papers aim to provide axiomatic

characterizations of fair solutions, while a different approach of

fairness results in a different solution concept. These are the

solution of von Neumann–Morgenstern [7], the Shapley value [8],

the core [9], and the Nucleolus [10]. Moreover, alternative axioms

are discussed in [6,11,12,13]. However, the most widely applied

solution for the cooperative bargaining problem with fixed

disagreement payoffs is the Nash-bargaining solution (NBS) [14].

The NBS consists of an axiomatic derivation of the solution for a

bargaining game between two agents, who have perfect informa-

tion [15,16] and examine to cooperate and share a specific surplus.

This solution, which can be easily expanded in more than two

agents [17,18], satisfies a set of axioms: linear invariance and

independence of irrelevant alternatives (the solution is preserved

under the monotone transformation of the agents’ utility functions

or the exclusion of non-selected alternatives from the bargaining

set); Pareto-optimality (any change to a different allocation that
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makes one agent better off will make the other agent worse off);

feasibility (the sum of the agents’ allocations does not exceed the

shared pie) and symmetry (identical agents receive equal utility

allocations). Moreover, the asymmetric NBS is applied to cases

with non-identical agents [19,20].

Surplus Sharing Mechanisms and Bargaining in
Stochastic Environment

In recent papers, the fair division of a surplus among risk-averse

agents is examined in [21] and several authors analyze the profit-

sharing [22], revenue-sharing [23], cost-sharing [24] and cost-

revenue sharing [25,26] mechanisms in cooperative structures.

Other surplus division models are applied to supply network

formation [27], to decentralized supply chains [28,29], and to

river water [30] and groundwater [31] sharing cases. However,

taking into consideration that a surplus sharing mechanism should

use risk as driver [32], there is a strong interaction between the

divisions of a surplus with the risk allocated to agents. For instance,

in [33] is developed an analytic model based on the maximization

of the probability that a firm will achieve some given profit target,

and in [34] is developed a risk-based process that can be used to

compute the range including the win-win funding schemes of

partnerships at a predefined level of probability.

As mentioned in [35], the theoretical literature on bargaining in

stochastic environment is limited. In particular, few papers

examine cases where agents are negotiating over a surplus with

uncertain size, i.e. they receive individual surplus shares (called

dividends) with uncertain sizes. One of the mostly used techniques

for handling uncertainty is the Monte Carlo Simulation (MCS),

which takes into account the impact of a set of stochastic variables

(inputs) and defines the possible range of the output values

graphically expressed as the cumulative probability distribution

function [36,37,38,39].

However, a rational investor would like to minimize the

probability of the expected losses [40], or/and to maximize the

probability of the expected gains. This implies that an allocation

with which the probability of being negative an agent’s dividend is

high and the probabilities of being negative the opponents’

dividends are low, cannot be considered as fair. In other words, a

fair surplus division has to be based not only on the expected

values of the agents’ dividends, but also should take into account

their standard deviations. If agents agree in a specific sharing

scheme of the overall surplus within the NBS, then fairness is

achieved when the mean values and the standard deviations of the

agents’ dividends are proportional to the NBS. Proportionality

implies that when the surplus is divided equally, the expected

dividends and their standard deviations should be equal [26].

Specifically, in contrast with [41], which indicates the impossibility

of fair risk allocation, in [26] is developed a basic model for the

equal profit and risk allocation among agents who examine to

cooperate by undertaking parts of the system cost individually and

share the remaining costs and revenues. It is proved that when two

pies with uncertain sizes are allocated to non-identical agents,

there is a finite set of possible solutions that depends on the

number of agents. However, this model is limited in cases with two

stochastic pies. Herein, we consider a stochastic environment, in

which the overall return consists of multiple pies with uncertain

sizes and the surplus is not necessarily divided equally, i.e. when

agents negotiate and agree in a specific NBS, this solution can be

either symmetric with equal payoffs or asymmetric with equal or

unequal payoffs [19,20,42]. The main objective of this paper is to

introduce a novel method that can be used to compute the ratio of

each pie that should be allocated to each agent, in order to ensure

fairness within a specific NBS. A complete list of the notations used

in this paper is presented in Table 1 and the proofs of Theorems

and Propositions are shown in Supporting Information Text S1.

Problem Description and Mathematic Formulation
Assumptions. We consider a finite number of agents indexed

by i. Let N = {1,2,3,…,n} denote the grand-coalition of all agents.

The following assumptions are used throughout the paper:

N Assumption 1. There is complete information among agents,

who examine the cooperative option having specific disagreement

payoffs. This implies that if they do not reach an agreement, then

their payoff vector is : (C1,C2, …,Cn). In this case, the participants’

objectives are partially cooperative, as they aim at reaching an

agreement and partially conflicting, because each agent has its

own utility function regarding the negotiation outcome [43].

N Assumption 2. The different gains and losses that are yielded

through cooperation forming a finite set of pies J = {1,2,3,…,m}

that is called pie-set. These pies are divisible and should be shared

among agents. However, since the grand-coalition is formed

before the actual size of each pie is realized, all pies are assumed to

be stochastic variables [44]. Specifically, all pies indexed by j

follow normal probability distribution functions with specific mean

values and variances: P j mj ,sj2
� �

, where sj.0 for all pies, mj.0

for pies representing gains and mj,0 for pies representing losses.

N Assumption 3. Agents are rational, i.e. each agent should get

at least as much as it could obtain through the non-cooperative

option. Clearly, the cooperation yields a nonnegative surplus S.

That is, the N’s overall return
Pm
j~1

P j is equal to the sum of agents’

disagreement payoffs
Pn
i~1

Ci plus the surplus S [6]:
Pm
j~1

P j~

Pn
i~1

CizSuS~
Pm
j~1

P j�
Pn
i~1

Ci

N Assumption 4. All agents are risk-neutrals, i.e. they are

indifferent between the m pies, since they consider only the overall

expected return when making investment decisions [38]. In

particular, they negotiate over the division of the surplus that is

yielded through cooperation and the bargaining outcome is the

NBS, which is a vector: U1,U2,:::,Unð Þ representing the expected

individual surplus shares (dividends) which are allocated to agents.

This is the unique solution that maximizes a function equal to the

product of the agents’ utility net gains from cooperation, measured

relative to the exogenous disagreement outcome [17,18,45].

Axioms. The allocation of the surplus S that is yielded

through cooperation fulfils the following axiom:

N Coalitionally rational [46]: This axiom is satisfied when the

expected return (sum of expected gains minus the relative losses) is

greater than the sum of agents’ disagreement payoffs, i.e. the S’s

mean value, denoted by mN, should be positive:

mN~
Xm

j~1

mj-
Xn

i~1

Ciw0 ð1Þ

Since all agents are risk-neutrals, they negotiate over the S’s mean

value considering their expected dividends (mi). The bargaining

outcome is an allocation, i.e. a vector U RN representing the

Fair Division of Multi-Pies to Multi-Agents
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ratio of the mN that is divided in agent i N:

mi~mN (Ui) ð2Þ

All agents are assumed to be rational and thus the allocation U

RN fulfils the following axiom:

N Individually rational: Agent i get at least as much as it could obtain

through the non-cooperative option, according to the following

inequality:

Uiw0 ð3Þ

N Linear Invariance and Independence of Irrelevant Alternatives: Since the

bargaining outcome is assumed to be the NBS, it has to be linear

invariance and independent of irrelevant alternatives. Let F be the

feasible set of allocations. If F ‘is obtained from F by multiplying all

agents’ utilities by ai, then the solution of the new game is obtained

by multiplying each agent’s coordinate in the first solution by ai.

Moreover, the solution remains the same for each subset of F that

includes the specific solution.

N Feasibility and Pareto-Optimality: In order to fulfill the feasibility and

Pareto-optimality axioms, the allocation should be efficient, i.e. the

sum of expected dividends equals the expected surplus:

Xn

i~1

mi~mNu
Xn

i~1

Ui~1 ð4Þ

Eq (4) ensures feasibility, as the sum of allocations does not exceed

the overall surplus. Moreover, inequality (3) and Eq (4) ensure

Pareto-optimality, because for any other allocation U’? U, with

which at least one agent i is better off: Ui’.Ui, and from Eq (2):

mi’.mi, there will be at least one agent k worse off: Uk’,Uk, and

from Eq (2): mk’,mk. Hence, there are no Pareto improvements

which can be made in U and the negotiation result is Pareto-

Optimal.

Letp
j
idenote the ratio of pie j J which is allocated to agent i N.

It is clear that agent’s i expected dividend is: mi~
Pm
j~1

mjp
j
i

� �
-Ci,

while her expected overall return is:
Pm
j~1

mjp
j
i

� �
~mizCi. Due to

the fact that an inefficient allocation of at least one pie j will leave

space for renegotiation, we consider the efficient allocation of all pies

j J,:

Xn

i~1

p
j
i~1 ð5Þ

N Symmetry: On one hand, if all agents are identical (equal

disagreement payoffs and symmetric utility functions), then they

will agree in the equal allocation of the overall surplus, according

to Eq (6):

U1~U2~U3~:::~Un u
2ð Þ

m1~m2~m3~:::~mn ð6Þ

On the other hand, if agents are non-identical, then the bargaining

Table 1. List of notations.

Description Symbol

Finite set of n agents (grand-coalition) N~ 1,2,3,:::::,nf g
Finite set of m stochastic variables (pie-set) J~ 1,2,3,:::::,mf g
Disagreement payoff of agent i (if agents do not reach an agreement, then their
payoff vector is : (C1,C2, …,Cn)

Ci , i[N, i:e: i~1,2,:::,n

Stochastic (random) variable j with a normal probability distribution: (where s j.0, m j.0 for
pies representing gains and m j,0 for pies representing losses)

P j mj ,sj2
� �

Grand-coalition’s overall return Pm
j~1

P j

Surplus to be divided
S~

Pm
j~1

P j -
Pn
i~1

Ci

Ratio of pie j which is allocated to agent i p
j
i

Efficient allocation of all pies Pn
i~1

p
j
i~1, Vj[J

Stochastic individual surplus share (dividend) allocated to agent i
P i~ mi ,si

2
� �

~
Pm
j~1

(P jp
j
i )-Ci

Expected value of the dividend allocated to agent i
mi~ Uið Þ mNð Þ~

Pm
j~1

mjp
j
i

� �
-Ci

Standard deviation of i ’s dividend s i

Nash-bargaining solution U RN U1,U2,:::,Unð Þ, 0vUiv1

Set of coalitions including agent i, which arise through a specific partition set of the
grand-coalition N into two nonempty coalitions for n-1 times.

pi

Ratio of subset of pies {1,.,g}, which are allocated to agent i p
1,::,gf g

i ~ P
k[pi

p
1,::,gf g

k

Characteristic function P½ �n|m P j
� �

m|1
- Ci½ �n|1~S Ui½ �n|1~ P i½ �n|1

doi:10.1371/journal.pone.0044535.t001
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outcome will be the asymmetric NBS [19]. In the asymmetric

NBS, the surplus can be divided either equally fulfilling Eq. (6)

[42], or unequally with Ui ? Uk for at least two agents i, k N.

The axiom of fair division. In cases where multiple pies

should be shared among multiple agents within a symmetric or

asymmetric NBS, main challenge is to ensure fairness for the

division of the overall surplus [47]. Let Pi denote the individual

stochastic surplus share, which is allocated to agent i. This is given

from Eq (7):

P i~
Xm

j~1

P jp
j
i

� �
-Ci ð7Þ

Taking into consideration that all pies j J are normally

distributed and the agents’ disagreement payoffs Ci are real

numbers, we conclude that the stochastic dividends which are

allocated to agents follow normal probability distribution func-

tions: P i~ mi,si
2

� �
. Moreover, a solution satisfying U consists of

the ratiosp
j
i for all i N and j J. In particular, a solution can be

illustrated in a [P]nXm matrix, in which the 1,2,.,n rows denote the

agents and the 1,2,.,m columns denote the pies, i.e. each

elementp
j
irepresents the ratio of pie j which is allocated to agent i:

P½ �n|m~ p
j
i

h i
n|m

~½

p1
1 p2

1 ::: pm
1

p1
2 p2

2 :::: pm
2

::: ::: ::: :::

p1
n p2

n :::: pm
n

� ð8Þ

In this case, the characteristic function of the dividends

allocated to all agents within a symmetric or asymmetric NBS

can be expressed in Eq (9):

P i½ �n|1~ P½ �n|m P j
� �

m|1
- Ci½ �n|1 ð9Þ

However, fairness is achieved when all these dividends are

distributed in proportion to the NBS: U1,:::,Unð Þ, i.e. the expected

values of the dividends which are allocated to agents should satisfy:

mi~
Xm

j~1

mjp
j
i

� �
-Ci~mN (Ui) ð10Þ

and the dividends’ standard deviations, denoted by si, should be

also proportional to the mean values, according to Eq (11):

m1

s1
~

m2

s2
~

m3

s3
~:::~

mn

sn

ð11Þ

In other words, fairness is achieved when the dividends

P i~(mi,si
2) which are allocated to all agents are distributed in

proportion to the NBS, fulfilling Eq (12):

mi

mk

~
si

sk

~
Ui

Uk

, Vi, k[N ð12Þ

Results

Even though most papers dealing with cooperative games use a

bottom-up approach examining which coalition of agents can be

formed, or how sub-coalitional gains can be allocated in order to

secure a sustainable agreement, herein we follow a top-down

approach.

Computing Solutions for Fair Surplus Division
A novel approach to compute the ratio of each pie that should

be allocated to each agent, in order to ensure that the surplus is

divided in proportion to the NBS, is presented in Figure 1. As can

be seen, the general method introduced with this paper includes

two basic stages, which are following analyzed:

Stage 1: Partition the pie-set J into two nonempty subsets:

JA, JB, and the grand-coalition N into two nonempty

coalitions NA NB. Initially, we consider that we have to use

the above Eqs (1) to (10), in order to estimate the (n6m) unknowns

of a [P]nXm matrix that satisfy the axiom of fairness. However,

through the partition of the pie-set J = {1,2,.,m} into two subsets:

JA = {1,…,g}, and JB = {g+1,…,m}, with 1# g,m, the character-

istic function is presented in Eq (13):

½ p 1,::,gf g
i p

gz1,::,mf g
i

�n|2½

Pg
j~1

P j

Pm
j~gz1

P j

�2|1- Ci½ �n|1~ P i½ �n|1 ð13Þ

wherep
1,::,gf g

i denote the ratio of the subset JA = {1,…,g} allocated

to agent i, andp
gz1,::,mf g

i denote the ratio of the subset

JB = {g+1,…,m} allocated to agent i. This implies that the ratios

of pie 1, pie 2, …, and pie g, which are allocated to agent i are

equal to: p
1,::,gf g

i , and the ratios of pie g+1, pie g+2, …, and pie m,

which are also allocated to agent i are equal to: p
gz1,::,mf g

i .

Moreover, through the partition of the grand-coalition N into

two coalitions: NA = {1,…, h}, NB = {h+1,…,n}, with 1# h,n, we

have 4 unknowns, which are the ratios of each subset:

JA = {1,…,g} and JB = {g+1,…,m} allocated to each coalition:

NA = {1,…, h} and NB = {h+1,…,n}:

Figure 1. A general method for fair surplus division.
doi:10.1371/journal.pone.0044535.g001
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P½ �2|2~½
p

1,::,gf g
1,::,hf g p

gz1,::mf g
1,::,hf g

p
1,::,gf g
hz1,::nf g p

gz1,::mf g
hz1,::nf g

�2|2 ð14Þ

Specifically, through the partitions of the pie-set and the grand-

coalition into a pair of two nonempty subsets and two nonempty

coalitions, the characteristic function (9) is expressed in Eq (15):

½
p

1,::,gf g
1,::,hf g p

gz1,::mf g
1,::,hf g

p
1,::,gf g
hz1,::nf g p

gz1,::mf g
hz1,::nf g

�2|2½

Pg
j~1

P j

Pm
j~gz1

P j

�2|1

�½

Ph
i~1

Ci

Pn
i~hz1

Ci

�2|1~½
Pf1,::,hg

Pfhz1,::,ng
�2|1

ð15Þ

Further, we derive the following Theorem 1.

Theorem 1. For each pair of two coalitions and two subsets that can

arise from the partition of the grand-coalition N = {1,.,n} into: NA = {1,.,-

h}and NB = {h+1,.,n}, (NA U NB = N; NA > NB = Ø) and the

partition of the pie-set J = {1,.,m} into: JA = {1,.,g} and JB = {g+1,.,m},

(JA U JB = J; JA > JB = Ø), there is a unique [P] 262 matrix:

½
p

1,::,gf g
1,::,hf g p

gz1,::mf g
1,::,hf g

p
1,::,gf g
hz1,::nf g p

gz1,::mf g
hz1,::nf g

�2|2, which ensures fairness within the NBS

satisfying Eq (12):

mf1,::,hg
mfhz1,::,ng

~
sf1,::,hg

sfhz1,::,ng
~

Ph
i~1

Ui

Pn
i~hz1

Ui

:

Stage 2: Continuous partitions of the agents’ coalitions

for n-1 times. From Theorem 1, it is clear that through the

partition of the coalition NA = {1,.,h} into two nonempty coalitions

{1,., f} and {f+1,…,h}, 1# f,h, Eq (15) gives:

½
p

1,::,gf g
1,::,ff g p

gz1,::mf g
1,::,ff g

p
1,::,gf g
f z1,::hf g p

gz1,::mf g
f z1,::hf g

�2|2½
p

1,::,gf g
1,::,hf g

Pg
j~1

P j

p
gz1,::mf g
1,::,hf g

Pm
j~gz1

P j

�2|1

�½

Pf
i~1

Ci

Ph
i~f z1

Ci

�2|1~½
Pf1,::,f g

Pff z1,::,hg
�2|1

ð16Þ

which has a unique [P] 262 matrix: ½
p

1,::,gf g
1,::,ff g p

gz1,::mf g
1,::,ff g

p
1,::,gf g
f z1,::hf g p

gz1,::mf g
f z1,::hf g

�
2|2

satisfying Eq (12) and p
1,::,gf g
1,::,ff gzp

1,::,gf g
f z1,::hf g~p

gz1,::mf g
1,::,ff g z

p
gz1,::mf g
f z1,::hf g~1.

Similarly, through the partition of the coalition NB = {h+1,.,n} in

another pair of nonempty coalitions {h+1,., k} and {k+1,…,n},

h+1# k,n, Eq (15) gives:

½
p

1,::,gf g
hz1,::,kf g p

gz1,::mf g
hz1,::,kf g

p
1,::,gf g
kz1,::nf g p

gz1,::mf g
kz1,::nf g

�2|2½
p

1,::,gf g
hz1,::,nf g

Pg
j~1

P j

p
gz1,::,mf g
hz1,::,nf g

Pm
j~gz1

P j

�2|1

�½

Pk
i~hz1

Ci

Pn
i~kz1

Ci

�2|1~½
Pfhz1,::,kg

Pfkz1,::,ng
�2|1

ð17Þ

which also has a unique [P] 262 matrix: ½
p

1,::,gf g
hz1,::,kf g p

gz1,::mf g
hz1,::,kf g

p
1,::,gf g
kz1,::nf g p

gz1,::mf g
kz1,::nf g

�
2|2

satisfying Eq (12) and p
1,::,gf g
hz1,::,kf gzp

1,::,gf g
kz1,::nf g~p

gz1,::mf g
hz1,::,kf gz

p
gz1,::mf g
kz1,::nf g~1.

In particular, the partitioning of coalitions into two nonempty

coalitions is continued, until eventually all agents form singletons: {1},

{2}, {3},…, {n}, i.e. for n-1 times. Through this process, if we compute

the unique [P] 262 matrix for each coalition, we can compute the ratio

of each subset {1,.,g} and {g+1,.,m} which is allocated to each agent.

Let pi denote the set of coalitions including agent i, which arise from

a specific set of partitions of the grand-coalition N into two nonempty

coalitions for n-1 times. For instance, through the continuous partitions

of the N = {1,2,3,4,5} within a specific partition set, into: {1} and

{2,3,4,5}, and the further partition into {3} and {2,4,5}, and the

further partition into {2} and {4,5} and the further partition into {4}

and {5}, the sets of coalitions piincluding agents are:

p1~ff1gg

p2~ff2,3,4,5g,f2,4,5g,f2gg

p3~ff2,3,4,5g,f3gg

p4~ff2,3,4,5g,f2,4,5g,f4,5g,f4gg

p5~ff2,3,4,5g,f2,4,5g,f4,5g,f5gg

That is, the ratio of each subset of pies ({1,.,g} and {g+1,.,m}),

which is allocated to agent i, equals the product of ratios of the

coalitions, in which i is included, e.g. for agent 5:

p
1,::,gf g

5 ~ P
k[p5

p
f1,::,gg
k ~(p

1,::,gf g
2,3,4,5f g)(p

1,::,gf g
2,4,5f g)(p

1,::,gf g
4,5f g )(p

1,::,gf g
5f g )

p
gz1,::,mf g

5 ~ P
k[p5

p
fgz1,::,mg
k ~(p

gz1,::,mf g
2,3,4,5f g )

(p
gz1,::,mf g
2,4,5f g )(p

gz1,::,mf g
4,5f g )(p

gz1,::,mf g
5f g )

However, the ratio for agent i in each subset of pies {1,…,g} and

{g+1,…,m}, equals her ratios in all pies of the specific subset:

p
1,::,gf g

i ~p1
i ~p2

i ~:::~p
g
i and p

gz1,::,mf g
i ~p

gz1
i ~p

gz2
i ~:::~pm

i .

In other words, through the partition of the pie-set J into two

nonempty subsets, and the continuous partitions of all coalitions into a

pair of nonempty coalitions for n-1 times (until all agents form

Fair Division of Multi-Pies to Multi-Agents
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singletons), we can compute the ratios p
j
i of all pies j = 1,2,.,m which are

allocated to all agents i = 1,2,.,n. That is, we can compute a specific

matrix [P] n6m, which ensures that the agents’ dividends P i~(mi,si
2)

are distributed in proportion to the NBS:
mi

mk

~
si

sk

~
Ui

Uk

, Vi, k[N

Basic Features
In this section, we present some basic features of the proposed

method.

Number of possible partitions of the pie-set. Let g(m)

denote the possible combinations for the partition of the pie-set J

into two nonempty subsets. We derive the following Proposition 1.

Proposition 1. The number of possible partitions of a pie-set J into

two nonempty subsets is given from the piecewise Eq (18):

g(m)~
m!

(m{1)!
z
Xm{1

2

l~2

m!

(m{l)!l!
, m~odd

g(m)~
m!

(m{1)!
z
Xm2{1

l~2

m!

(m{l)!l!
z

m!

(
m

2
!)2

1

2
, m~even

ð18Þ

Finite possible [P] n6m matrices for fair surplus

division. However, in each partition of the grand-coalition N

into two nonempty coalitions according to the first stage of the

proposed method, or any other partition of the agents’ coalitions

into two nonempty coalitions according to the second stage, there

is no coalition that can be profitably blocked. This implies that

there is no constraint considered and any agent can be placed

either in the first or the second coalition of each partition, in which

the order of agents does not matter. Let f(n) denote the possible

combinations for the continuous partitions of coalitions for n-1

times (until all agents form singletons: {1},…,{n}. Taking into

consideration that for each partition into two nonempty coalitions

there is a unique [P] 262 matrix, we derive Theorem 2.

Theorem 2. The number of possible [P] n6m matrices that ensure

fairness for the surplus division within a NBS, is finite and equals the product

of the possible partitions of the pie-set into two subsets with the possible

partitions of all coalitions of agents into two nonempty coalitions for n-1 times:

possible ½P�nXm~f (n)g(m) ð19Þ

where:

f (n)~
n!

(n{1)!
f (n�1)z

Xn{1
2

k~2

n!

(n{k)!k!
f (n�k)f (k), n~odd

f (n)~
n!

(n{1)!
f (n�1)z

Xn2�1

k~2

n!

(n{k)!k!
f (n�k)f (k)z

n!

(
n

2
!)2

f (
n

2
!)2 1

2
, n~even

ð19:1Þ

g(m)~
m!

(m{1)!
z
Xm{1

2

l~2

m!

(m{l)!l!
, m~odd

g(m)~
m!

(m{1)!
z
Xm2{1

l~2

m!

(m{l)!l!
z

m!

(
m

2
!)2

1

2
, m~even

ð19:2Þ

Possible [P] n6m matrices for 2# n, m #10. The precise

number of possible [P] n6m matrices for 2# m, n #10, is illustrated

in Table 2. As can be seen, this Table presents the numbers of

possible matrices for all combinations of: m, n = 2,3,4,., 10. For

instance, when there are 7 stochastic pies to be allocated to 5

agents, there are 6615 matrices [P] 567 satisfying Eq (12), and

when there are 5 stochastic pies to be allocated to 7 agents, there

are 155925 matrices [P] 765 satisfying Eq (12).

Computation Algorithm
In this section we introduce an algorithm, which can be used to

compute a [P] n6m matrix that ensures fairness for the division of

the overall surplus. This algorithm consists of seven basic steps,

which are presented below:

(1) Step 1: Randomly partition the pie-set J into two subsets:

{1,…,g} and {g+1,…,m} with 1# g,m.

(2) Step 2: Randomly partition the grand-coalition N into two

coalitions: {1,…,h} and {h+1,…,n} with 1# h,n.

(3) Step 3: Develop a MCS model, in which the Ci, P j are inputs

and the P{1,.,h}, P{h+1,.,n} the outputs, according to the

following Eqs (20) and (21):

P 1,::,hf g~p
1,::,gf g
1,::,hf g

Xg

j~1

P jzp
gz1,::mf g
1,::,hf g

Xm

j~gz1

P j-
Xh

i~1

Ci ð20Þ

P hz1,::nf g~p
1,::,gf g
hz1,::nf g

Xg

j~1

P jzp
gz1,::mf g
hz1,::nf g

Xm

j~gz1

P j-
Xn

i~hz1

Ci ð21Þ

(4) Step 4: Select a specific value of p
1,::,gf g
1,::,hf g~1-p

1,::,gf g
hz1,::,nf g, and

estimate the p
gz1,::,mf g
1,::,hf g ~1-p

gz1,::,mf g
hz1,::,nf g , in order to fulfill:

m 1,::,hf g~mN

Xh

i~1

Ui~p
1,::,gf g
1,::,hf g

Xg

j~1

mjz

p
gz1,::mf g
1,::,hf g

Xm

j~gz1

mj�
Xh

i~1

Ci

ð22Þ
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m hz1,::nf g~mN

Xn

i~hz1

Ui~p
1,::,gf g
hz1,::nf g

Xg

j~1

mjzp
gz1,::mf g
hz1,::nf g

Xm

j~gz1

mj

�
Xn

i~hz1

Ci

ð23Þ

For the (p
1,::,gf g
1,::,hf g,p

1,::,gf g
hz1,::,nf g,p

gz1,::,mf g
1,::,hf g ,p

gz1,::,mf g
hz1,::,nf g ) that fulfils Eqs

(22), (23) run the MCS and estimate s{1,.,h}, s{h+1,.,n}. If the

following Eq (24) is fulfilled then go the next Step, otherwise

examine alternative values of p
1,::,gf g
1,::,hf g (simply by increasing/

decreasing its initial value), until you find the unique elements of a

[P] 262 matrix: (p
1,::,gf g
1,::,hf g,p

1,::,gf g
hz1,::,nf g,p

gz1,::,mf g
1,::,hf g ,p

gz1,::,mf g
hz1,::,nf g ), which

fulfils Eq (24):

m 1,::,hf g
m hz1,::nf g

~
s 1,::,hf g
s hz1,::nf g

~

Ph
i~1

Ui

Pn
i~hz1

Ui

ð24Þ

(5) Step 5: Use the (p
1,::,gf g
1,::,hf g,p

1,::,gf g
hz1,::,nf g,p

gz1,::,mf g
1,::,hf g ,p

gz1,::,mf g
hz1,::,nf g ), and

return to Step 2, i.e. randomly partition both the {1,…,h} and

{h+1,…,n} coalitions into two pairs of nonempty coalitions:

{1,…,f}, {f+1,…,h} and {h+1,…,k}, {k+1,…,n}, respectively,

and compute the unique ratios: (p
1,::,gf g
1,::,ff g,p

1,::,gf g
f z1,::,hf g,p

gz1,::,mf g
1,::,ff g ,

p
gz1,::,mf g
f z1,::,hf g ) and (p

1,::,gf g
hz1,::,kf g,p

1,::,gf g
kz1,::,nf g,p

gz1,::,mf g
hz1,::,kf g ,p

gz1,::,mf g
kz1,::,nf g ).

Specifically, the 2 to 5 Steps should be followed for n-1 times.

(6) Step 6: Calculate the ratio of each subset {1,…,g} and

{g+1,…,m} allocated to each agent, through the product of

the ratios of the agent-coalitions in which the agent is

included. Moreover, due to the fact that each agent’s ratios

are equal in all pies of each subset, illustrate the [P] n6m

matrix.

(7) Step 7: In order to verify the results, develop another MCS

model, in which the computed [P] n6m, the [P j] m61, and the

[Ci] n61 matrices are inputs, and the [P i] n61 is the output

according to Eq (9):

P½ �n|m P j
� �

m|1
- Ci½ �n|1~ P i½ �n|1 ð9Þ

Run the simulation and estimate: m1,m2,m3,:::,mn,

ands1,s2,s3,:::,sn, in order to verify that the dividends are

allocated to all agents with fairness:
mi

mk

~
si

sk

~
Ui

Uk

, Vi, k[N

Discussion

Numerical Example
In this section we present a numerical example with the

application of the proposed computation algorithm. We consider 4

risk-neutral agents forming a grand-coalition N = {1, 2, 3, 4}. All

agents are rational and agree to cooperate having different

disagreement payoffs, i.e. through the non-cooperative option they

receive: C1 = 26106, C2 = 56106, C3 = 36106, and C4 = 26106.

We examine a general case with non-identical agents and the

asymmetric NBS, considering that the symmetric NBS can be

included as a special case where agents’ utility functions are

symmetric and the disagreement payoffs are equal:

C1 = C2 = C3 = C4. There are 5 different pies representing the

N’s gains through cooperation, i.e. the pie-set is: J = {1, 2, 3, 4, 5}.

Since the grand-coalition is formed before these gains are realized,

each pie indexed by j follows a normal probability distribution

function with specific mean value (m j) and standard deviation (s j),

as presented in Table 3. All agents are risk-neutrals implying that

they are indifferent between the m pies, as they consider only their

expected dividends. Specifically, they negotiate over the expected

value of the surplus (mN), which is yielded through cooperation.

This value is computed with Eq (1):

mN~
X5

j~1

mj-
X4

i~1

Ci~(145-12)x106~133x106
w0 ð1Þ

The bargaining outcome is a vector U RN representing the

ratio of the mN that is allocated to agent i. The subsequent sections

examine two cases within the asymmetric NBS, which is the payoff

Table 2. Number of possible [P] n6m matrices for fair surplus division.

Number of pies

m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10

Number
of Agents

n = 2 1 3 7 15 31 63 127 255 511

n = 3 3 9 21 45 93 189 381 765 1533

n = 4 15 45 105 225 465 945 1905 3825 7665

n = 5 105 315 735 1575 3255 6615 13335 26775 53655

n = 6 945 2835 6615 14175 29295 59535 120015 240975 482895

n = 7 10395 31185 72765 155925 322245 654885 1320165 2650725 5311845

n = 8 135135 405405 945945 2027025 4189185 8513505 17162145 34459425 69053985

n = 9 2027025 6081075 14189175 30405375 62837775 127702575 257432175 516891375 1035809775

n = 10 34429425 103378275 241215975 516891375 1068242175 2170943775 4376346975 8787153375 17608766175

doi:10.1371/journal.pone.0044535.t002
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that maximizes a weighted product of players’ gains over their

disagreement payoff.
Asymmetric NBS with unequal divisions. The first case is

the asymmetric NBS where the surplus is divided unequally

among agents. We assume that this solution is: U = (U1, U2, U3,

U4) = (0.12, 0.25, 0.30, 0.33). Since all pies included in Table 3

should be allocated to all agents with fairness, we want to compute

the ratio of each pie that should be allocated to each agent, in

order to ensure that the agents’ dividends [Pi] 461 are distributed

in proportion to the NBS, i.e. to compute a [P] 465 matrix, which

satisfies Eq (12):
mi

mk

~
si

sk

~
Ui

Uk

, Vi, k~1,2,3,4

We use the computation algorithm presented in the previous

section, i.e. the random partition of the pie-set into two subsets and

the continuous random partitions of the agent-coalitions for n-1

times, as illustrated in Figure 2.

(1) Step 1: Randomly partition of the pie-set J into two subsets:

{1}, and {2, 3, 4, 5}.

(2) Step 2: Randomly partition of the grand-coalition N into two

coalitions: {1}, and {2, 3, 4}.

(3) Step 3: A MCS model is developed, in which the Ci, P j are

inputs and the P{1}, P{2,3,4} are the outputs, according to the

following Eqs (25), (26):

P 1f g~p
1f g
1f gP

1zp
2,3,4,5f g
1f g

X5

j~2

P j�C1 ð25Þ

P 2,3,4f g~p
1f g
2,3,4f gP

1zp
2,3,4,5f g
2,3,4f g

X5

j~2

P j�
X4

i~2

Ci ð26Þ

(4) Step 4: Initially, we select a specific value: p
1f g
1f g~0:12. For this

value, the: p
1f g
2,3,4f g~1-0:12~0:88, while from Eqs (22), (23),

we compute: p
2,3,4,5f g
1f g ~0:12431 and the p

2,3,4,5f g
2,3,4f g ~1-0:12431

~0:87569:

m 1f g~mNU1~15:96x(106)~p
1f g
1f gm

1zp
2,3,4,5f g
1f g

P5
j~2

mj-C1 ð27Þ

m 2,3,4f g~mN (U2zU3zU4)~117:04x(106)

~p
1f g
2,3,4f gm

1zp
2,3,4,5f g
2,3,4f g

X5

j~2

mj�(C2zC3zC4)
ð28Þ

For the scenario p
1f g
1f g~0:12,p

1f g
2,3,4f g~0:88,p

2,3,4,5f g
1f g ~0:12431,

�

p
2,3,4,5f g
2,3,4f g ~0:87569Þ, we run the MCS and we get: s{1} = 6232764,

s{2,3,4} = 873019. It is clear that this scenario does not satisfy Eq

(24), because:

s 1f g
s 2,3,4f g

~
623734

873019
=

U1

P4
i~2

Ui

~
0:12

0:88
~

m 1f g
m 2,3,4f g

~
15:96|106

117:04|106

Further, we examine alternative scenarios arising from different

values of p
1f g
1f g, and we compute the unique ratios that satisfy Eq

(24):

p
1f g
1f g~0:109,p

1f g
2,3,4f g~0:891,p

2,3,4,5f g
1f g ~0:1256,p

2,3,4,5f g
2,3,4f g ~0:8744

� �

(5) Step 5: We return to Step 2 and use the ratios: p
1f g
2,3,4f g

�

~0:891,p
2,3,4,5f g
2,3,4f g ~0:8744Þ in the random partition of the {2, 3,

4} coalition into two coalitions: {2,3} and {4}. According to this

partition, we compute the unique ratios: p
1f g
2,3f g~0:59

�

,p
1f g
4f g~0:41,p

2,3,4,5f g
2,3f g ~0:64451,p

2,3,4,5f g
4f g ~0:35549Þ. Further,

we return to Step 2 and we use the ratios p
1f g
2,3f g

�

~0:59,p
2,3,4,5f g
2,3f g ~0:64451Þ in the partition of the coalition {2,

3} into {2} and {3}, in order to calculate the unique ratios:

p
1f g
2f g~ 0:40, p

1f g
3f g ~ 0:60, p

2,3,4,5f g
2f g ~ 0:47903, p

2,3,4,5f g
3f g ~

�

0:52097Þ
(6) Step 6: We estimate for each agent the ratios in each subsets of

pies: {1}, and {2, 3, 4, 5}, through the product of the ratios of

the agent-coalitions in which the agent is included:

N p1
1~p

1f g
1f g~0:109and p

2,3,4,5f g
1 ~p

2,3,4,5f g
1f g ~0:12557

N p1
2 ~ p 1f g

2,3,4f g

� �
p 1f g

2,3f g

� �
p 1f g

2f g

� �
~ 0:891ð Þ 0:59ð Þ 0:40ð Þ~

0:210276

N p 2,3,4,5f g
2 ~ p 2,3,4,5f g

2,3,4f g

� �
p 2,3,4,5f g

2,3f g

� �
p 2,3,4,5f g

2f g

� �

~ 0:87442ð Þ 0:64451ð Þ 0:47903ð Þ~0:269968

N p1
3 ~ p 1f g

2,3,4f g

� �
p 1f g

2,3f g

� �
p 1f g

3f g

� �
~ 0:891ð Þ 0:59ð Þ 0:60ð Þ~

0:315414-

p 2,3,4,5f g
3 ~ p 2,3,4,5f g

2,3,4f g

� �
p 2,3,4,5f g

2,3f g

� �
p 2,3,4,5f g

3f g

� �

~ 0:87442ð Þ 0:64451ð Þ 0:52097ð Þ~0:293605

N p1
4 ~ p 1f g

2,3,4f g

� �
p 1f g

4f g

� �
~ 0:891ð Þ 0:41ð Þ~0:36531

p 2,3,4,5f g
4 ~ p 2,3,4,5f g

2,3,4f g

� �
p 2,3,4,5f g

4f g

� �

~ 0:87442ð Þ 0:35549ð Þ~0:310847

Moreover, due to the fact that each agent’s ratios are

equal in all pies of each subset, we estimate:

p2
1~p3

1~p4
1~p5

1~p
2,3,4,5gf

1 ~0:12557

p2
2~p3

2~p4
2~p5

2~p
2,3,4,5gf

2 ~0:269968

p2
3~p3

3~p4
3~p5

3~p
2,3,4,5gf

3 ~0:293605

p2
4~p3

4~p4
4~p5

4~p
2,3,4,5gf

4 ~0:310849

and we illustrate the [P] 465 matrix:

Table 3. Normal probability distributions of pies
(values6106).

Pies j = 1 j = 2 j = 3 j = 4 j = 5

Mean values: m j 15.0 20.0 50.0 10.0 50.0

Standard deviations: s j 4.0 2.5 2.0 4.0 2.0

doi:10.1371/journal.pone.0044535.t003

N
N
N
N
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½

0:109000 0:125577 0:125577 0:125577 0:125577

0:210276 0:269968 0:269968 0:269968 0:269968

0:315414 0:293605 0:293605 0:293605 0:293605

0:365310 0:310849 0:310849 0:310849 0:310849

�4x5ð29Þ

(7) Step 7: In order to verify the results, we develop another MCS

model, where the estimated [P] 465, the [P j] 561, and the [C i] 461

matrices are inputs, while the [P i] 461 is the output according to

Eq (9):

P½ �4|5 P j
� �

5|1
- Ci½ �4|1~ P i½ �4|1 ð9Þ

We run the simulation that gives the following results:

m1~15960000,m2~33250000,m3~39900000,m4~43890000a-

and s1~809490,s2~1691896,s3~2029945,s4~2227604.

These results verify that the overall surplus is divided with fairness,

as the dividends allocated to all agents are distributed in

proportion to the NBS:

m1

m2

~
s1

s2

~
U1

U2

~
0:12

0:25
,

m1

m3

~
s1

s3

~
U1

U3

~
0:12

0:30
,

m1

m4

~
s1

s4
~

U1

U4
~

0:12

0:33
,

m2

m3

~
s2

s3
~

U2

U3
~

0:25

0:30
,

m2

m4

~
s2

s4
~

U2

U4
~

0:25

0:33
,

m3

m4

~
s3

s4
~

U3

U4
~

0:30

0:33

ð30Þ

Other solutions for asymmetric NBS with unequal

divisions. As can be seen in Table 2, in the specific case

(where five pies: m = 5 are allocated to four agents: n = 4), there are

225 different [P] 465 matrices that ensure fairness within the NBS.

For instance, if we follow a different partition set, as illustrated in

Figure 3, i.e. the same partitions of the agent-coalitions into a pair

for n-1 = 3 times, and a different partition of the pie-set

J = {1,2,3,4,5} into two other subsets: {2,3} and {1,4,5}, then

we calculate another [P] 465 matrix:

½

0:116733 0:131500 0:131500 0:116733 0:116733

0:239665 0:289645 0:289645 0:239665 0:239665

0:301665 0:289645 0:289645 0:301665 0:301665

0:341937 0:289211 0:289211 0:341937 0:341937

�4x5ð31Þ

However, if we use this matrix along with the [P j] 561,[C i] 461

as inputs and the [Pi] 461 as output in another MCS model, then

the simulation gives: m1~15960000,m2~33250000,m3~

39900000,m4~43890000 and s1~807509,s2~1690426,s3~

2010668,s4~2226370, verifying that Eq (12) is also fulfilled with

this [P] 465 matrix.

Eq (12) can be also satisfied with the set of partitions presented

in Figure 4. Specifically, through the partition of J = {1,2,3,4,5}

into {1}, {2,3,4,5} subsets and the partition of N = {1,2,3,4} into

{3,4}, {1,2}, and the further partitions into {4}, {3} and {1}, {2},

respectively, we get the following[P] 465 matrix:

½

0:108765 0:125614 0:125614 0:125614 0:125614

0:206325 0:270424 0:270424 0:270424 0:270424

0:321950 0:292852 0:292852 0:292852 0:292852

0:363050 0:311110 0:311110 0:311110 0:311110

�4x5ð32Þ

with which the MCS gives:

m1~15960000,m2~33250000,m3~39900000,m4~43890000,

and s1~812940,s2~1694398,s3~2053277,s4~2234464.

Conclusively, it can be seen from Eqs (29), (31) and (32) that these

[P] 465 matrices are different, however provide equal results since the

Figure 2. First set of partitions.
doi:10.1371/journal.pone.0044535.g002
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dividends allocated to all agents are distributed in proportion to the

bargaining outcome U that is the asymmetric NBS with unequal

divisions.

Asymmetric NBS with equal divisions. In the second case,

the bargaining outcome is the asymmetric NBS where the surplus

is divided equally according to Eq (6): U1 = U2 = U3 = U4 = 0.25. If

we follow the same set of partitions presented in Figure 2, i.e.

partition of J into two subsets: {1}, {2, 3, 4, 5} and partition of N

into {1}, {2, 3, 4}, and the further partition into {4}, {2, 3}, and

the further partition into {2}, {3}, then we compute the following

[P] 465 matrix:

½

0:269000 0:240115 0:240115 0:240115 0:240115

0:207008 0:270345 0:270345 0:270345 0:270345

0:253522 0:249594 0:249594 0:249594 0:249594

0:270470 0:239946 0:239946 0:239946 0:239946

�4x5ð33Þ

Moreover, if we develop another MCS model, where the estimated

[P] 465, the [P j] 561 and the [C i] 461 matrices are inputs and the [P i]

461 is the output in Eq (9), then the simulation gives:

m1~m2~m3~m4~33250000, and s1~s2~s3~s4~1691000.

Clearly, this matrix ensures fairness within the asymmetric NBS with

equal divisions, as it fulfils Eq (12):

m1

m2

~
s1

s2

~
U1

U2

~
m1

m3

~
s1

s3

~
U1

U3

~
m1

m4

~
s1

s4

~
U1

U4

~

m2

m3

~
s2

s3
~

U2

U3
~

m2

m4

~
s2

s4
~

U2

U4
~

m3

m4

~
s3

s4
~

U3

U4
~

0:25

0:25
~1

Applications
In the previous numerical example, a generalized case of a

cooperative venture was considered, in which agents with different

Figure 3. Second set of partitions.
doi:10.1371/journal.pone.0044535.g003

Figure 4. Third set of partitions.
doi:10.1371/journal.pone.0044535.g004
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disagreement payoffs agreed in a specific allocation of the overall

surplus. However, there are various real life situations, to which

the computation algorithm presented here can be applied.

Specifically, it can be applied to all situations that can be

formulated within Eq (9):

P½ �n|m P j
� �

m|1
- Ci½ �n|1~ P i½ �n|1 ð9Þ

Indicatively, we present the following cases:

N Let’s consider a water allocation problem, in which n authorities

(agents) with fixed disagreement payoffs of water (C1,…,Cn),

negotiate over the division of the water collected from different

sources (pies), e.g. from rivers, rainwater tanks, wastewater

treatment plants, etc. If these pies follow normal probability

distributions and all agents are risk-neutrals and agree in a specific

NBS (either symmetric or asymmetric), then the method presented

here can be effectively applied. In particular, agents can compute a

[P] n6m matrix, which represents the ratio of the water from each

source that should be distributed in each area, in order to ensure

fairness within the NBS.

N Another example is a solid waste management problem, where

the managers (agents) of n waste incineration plants, who have

fixed disagreement payoffs of waste (C1,…,Cn), negotiate over the

division of the volume of solid waste (pies) arising from different

areas. Specifically, if these pies follow normal probability

distributions and the risk-neutral agents (who want to maximize

the volume of waste treated in their plants, in order to maximize

their profits) agree in a specific NBS, then the proposed algorithm

can be applied for computation to the volume of waste that should

be distributed in each plant from each area.

N Additionally, the computation algorithm can be applied to

supply chain networks where n risk-neutral agents (manufacturers

or/and suppliers or/and retailers), having fixed disagreement

monetary payoffs (C1,…,Cn), negotiate over the division of the

revenues and costs that are yielded through cooperation. In this

case, the pies represent the operation revenues, e.g. from different

products’ selling, and the respective costs, e.g. infrastructure,

advertising, distribution and storage costs, etc. Specifically, since

the demand is not realized when the network is formed, these pies

can be assumed as stochastic variables that follow normal

probability distributions. If agents negotiate and agree in a specific

NBS (either symmetric or asymmetric) for the division of the

overall profits (surplus) of the network, then the proposed

algorithm can be applied for computation to the ratio of each

pie that should be allocated to each agent.

Methods

We compute the possible [P] n6m matrices that are presented in

Table 2 by using the Wolfram Research Mathematica Version 7.0

software. For the development of MCS models within the

computation algorithm, we suggest using specialized software, in

order to get accurate results.

Conclusions
Over the last decades, one of the most widely examined

problems is the fair division of a surplus among agents. Herein, we

focus on cases where multiple stochastic pies should be shared

among agents with fixed disagreement payoffs, according to a

specific NBS for the division of the overall surplus. Particularly, we

consider that fairness is achieved when the stochastic dividends

which are allocated to agents are distributed in proportion to the

NBS. We introduce a novel method that can be applied to various

situations, in order to compute the ratio of each pie that should be

allocated to each agent. It is proved that there are finite possible

solutions depending on the partitions of the pie-set into two subsets

and the continuous partitions of the grand-coalition into two

coalitions, until eventually all agents form singletons. We have

assumed in this paper that all agents are risk-neutrals and the

stochastic pies are divisible and follow normal probability

distribution functions. Without making these assumptions, the

development of respective algorithms in cases where agents with

different risk preferences (risk-averse/neutral/seeking) are not

indifferent between the m pies, or the stochastic pies are indivisible

or follow asymmetric probability distributions, e.g. lognormal, can

be subjects for future research. Future papers can also focus on the

application of other solution concepts, such as the Shapley value,

the core, and the Nucleolus to stochastic environments, where the

size of the pie over which agents are negotiating may vary

stochastically. Conclusively, the computation algorithm intro-

duced with this paper can be a useful tool for decision-making

under uncertainty, as it helps agents to estimate solutions that

ensure fairness within a symmetric or asymmetric NBS.
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