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Abstract

Plants release volatiles induced by herbivore feeding that may affect the diversity and composition of plant-associated
arthropod communities. However, the specificity and role of plant volatiles induced during the early phase of attack, i.e. egg
deposition by herbivorous insects, and their consequences on insects of different trophic levels remain poorly explored. In
olfactometer and wind tunnel set-ups, we investigated behavioural responses of a specialist cabbage butterfly (Pieris
brassicae) and two of its parasitic wasps (Trichogramma brassicae and Cotesia glomerata) to volatiles of a wild crucifer
(Brassica nigra) induced by oviposition of the specialist butterfly and an additional generalist moth (Mamestra brassicae).
Gravid butterflies were repelled by volatiles from plants induced by cabbage white butterfly eggs, probably as a means of
avoiding competition, whereas both parasitic wasp species were attracted. In contrast, volatiles from plants induced by
eggs of the generalist moth did neither repel nor attract any of the tested community members. Analysis of the plant’s
volatile metabolomic profile by gas chromatography-mass spectrometry and the structure of the plant-egg interface by
scanning electron microscopy confirmed that the plant responds differently to egg deposition by the two lepidopteran
species. Our findings imply that prior to actual feeding damage, egg deposition can induce specific plant responses that
significantly influence various members of higher trophic levels.
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Introduction

A major challenge in ecology is to understand how phenotypic

plasticity of plant traits affects the complexity and dynamics of

plant-associated communities. Plants are at the base of food webs,

which are defined as networks of feeding connections within an

ecological community [1]. Insect herbivores are the most

abundant and diverse attackers of plants and induce defensive

traits that influence consumers at higher trophic levels [2,3]. Upon

attack by insects, plants emit a blend of volatile organic

compounds that affect interactions with organisms belonging to

the arthropod community of the plant [4–8]. These herbivore-

induced plant volatiles (HIPVs) can consist of hundreds of

compounds, such as terpenoids, green leaf volatiles and benze-

noids and have been shown to act as repellents and/or attractants

for herbivores and their natural enemies [4,5,8]. HIPVs can

provide specific information on the status of the plant to various

community members both below- and aboveground, including

carnivores, herbivores, pollinators, or neighbouring plants [4,9–

12]. Thus, HIPV-mediated effects on different trophic levels imply

an extensive effect of plants in structuring associated communities

[4,10,13].

Although the majority of the about 300,000 described

herbivorous insect species [3] deposit their eggs on plant tissues,

plant responses elicited by egg deposition, i.e. in the initial phase of

herbivore colonization, are still not widely accepted to play a

significant role in plant-insect interactions [14]. Yet, an increasing

number of studies demonstrates that insect egg deposition can

modify (a) the plant’s internal chemistry, with direct consequences

for eggs or subsequently feeding herbivores [15–19] or (b) the

plant’s surface chemistry directly affecting egg survival or

indirectly by arresting egg parasitoids, tiny parasitic wasps that

kill insect eggs [20–28]. Moreover, egg deposition by herbivorous

insects has been shown to change plant volatile emission, i.e.

oviposition-induced plant volatiles (OIPVs), utilized by parasitoids

during host location [29–37]. The emission of OIPVs was initially

found to require cell damage inflicted by the attacking insects

either by wounding caused by the ovipositing female or adult

feeding [6,14,38]. However, recent studies have indicated that

mere egg deposition itself, without wounding, can also enhance or

reduce volatile emission with consequences for insect preferences

[36,37,39].

In the Brassicaceae plant family, egg deposition has been

demonstrated to induce resistance responses at the transcriptional

level that affect herbivores and parasitoid wasps that attack eggs

[27,40–42]. Deposition of eggs by cabbage white butterflies (Pieris

spp.) on black mustard plants, Brassica nigra, triggers the formation

of a necrotic zone at the base of the eggs resembling a

hypersensitive response (HR) or programmed cell death, that

can lead to egg desiccation and mortality [43]. Moreover, it
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provokes gene expression changes similar to pathogen-induced

HR in Arabidopsis [42]. Egg parasitoids of the genus Trichogramma

are arrested on the leaf surface of Brussels sprouts plants (B. oleracea

var. gemmifera) when induced by Pieris brassicae or P. rapae eggs

[27,40,44]. Here, a butterfly anti-sex pheromone released with the

egg-associated secretion was shown to quantitatively change plant

surface chemistry [27,28], most likely epicuticular wax composi-

tion, as has been reported for other Brassicaceae [45,46].

We study oviposition-induced responses in B. nigra, an annual

wild crucifer native to Europe. This plant species contains high

concentrations of glucosinolates as defensive compounds that

reduce herbivore growth and survival [47]. Generalist insects like

the cabbage moth Mamestra brassicae suffer from the toxic

breakdown products of glucosinolates, whereas specialists like the

larval stages of the Large Cabbage White butterfly P. brassicae are

adapted to them [48]. Both herbivores lay eggs in clutches on

cultivated and wild brassicaceous plant species, such as B. nigra,

with M. brassicae moths having a much larger host plant range than

P. brassicae butterflies [49,50]. The generalist wasp Trichogramma

brassicae is known to parasitize eggs of a wide range of lepidopteran

species, including P. brassicae and M. brassicae [51]. Cotesia glomerata

is a fairly specialized gregarious endoparasitoid that attacks young

instars of Pieris spp. in Eurasia.

The aim of this study was to investigate a) the effects of egg

deposition on plant volatile-mediated interactions with insects at

different trophic levels (figure 1) and b) the specificity of the plants’

response to egg deposition by using two different herbivores. We

tested the response of the specialist butterfly P. brassicae and two

parasitoids to volatiles of B. nigra plants induced by egg deposition

by the specialist butterfly and a generalist moth M. brassicae. The

behavioural differences were linked to modifications in the

composition of volatile blends using gas chromatography coupled

with mass spectrometry (GC-MS); cryo-scanning electron micros-

copy was used to study the bonding region between eggs of the two

herbivores and the plant surface.

Results

Formation of Necrotic Tissue and Effects on Eggs and
Egg Parasitoid

At 24 hours after oviposition (hao) by P. brassicae, plants start to

express a necrotic zone below the egg clutches (i.e. hypersensitive

response, HR+) that sometimes led to egg desiccation or egg drop-

off at 72 hao (Figure 1B). All P. brassicae egg-infested plants were,

therefore, examined for HR and separated from non-HR

expressing plants (HR2). On the 10 plants on which eggs were

counted, 91% of the eggs did not develop into larvae on HR+
plants, whereas 99% of the eggs hatched on HR2 plants

(P,0.001, 262 contingency test using Chi2). From these 10

plants, 50% developed HR. In contrast to eggs of P. brassicae, eggs

of the moth M. brassicae did not induce any HR response in

B. nigra; no necrosis was observed after egg deposition (Figure 1C).

Trichogramma brassicae wasps can successfully parasitize and

complete their development inside eggs on plants that have

expressed HR. The proportion of eggs that was parasitized by

T. brassicae was not affected by plant phenotype, i.e. occurrence of

HR (GLM; x2
1 = 0.47, P = 0.49), but was marginally affected by

the age of the eggs, i.e. 24 h or 72 h old (GLM; x2
1 = 3.91,

P = 0.053). Older eggs tended to be less parasitized than younger

ones. The interaction between plant phenotype and egg age was

not significant (GLM; x2
1 = 0.34, P = 0.56). Similarly, there was no

effect of plant phenotype on the number of wasp offspring that

emerged from parasitized host eggs (GLM; x2
1 = 0.01, P = 0.91),

but there was an effect of egg age (GLM; x2
1 = 6.70, P = 0.01).

Less offspring emerged from 72 h old eggs than from 24 h old

eggs. The effect of egg age was not influenced by the plant’s

phenotype (GLM; x2
1 = 1.15, P = 0.28).

Attraction of Egg Parasitoids
In a dynamic Y-tube olfactometer set-up, the distribution of

naı̈ve T. brassicae wasps did not differ from 50:50 in a control test

with an uninfested plant in both odour containers (t-test:

t11 = 0.27, P = 0.79). The wasps did not discriminate between

clean air and volatiles from uninfested B. nigra plants (t-test:

t11 = 20.10, P = 0.92) or clean air and volatiles from plants

infested with P. brassicae eggs less than 6 hao (t-test: t9 = 20.23,

P = 0.82). However, wasps were attracted to volatiles from B. nigra

plants infested with P. brassicae eggs 24 hao when tested against

clean air, irrespective of HR (t-test: HR2: t9 = 5.1, P = 0.001;

HR+: t9 = 4.2, P = 0.002).

The distribution of naive T. brassicae wasps choosing egg-

induced or non-induced clean plants was marginally affected by

the interaction between plant phenotype and egg age (GLM;

x2
1 = 4.14, P = 0.059, none of the main effects was significant).

Wasps significantly preferred volatiles from plants (HR2) infested

with P. brassicae eggs (24 hao) when tested against clean control

plants (Figure 2; t-test: t9 = 2.54, P = 0.03). However, they did not

discriminate systemically (S) induced volatiles from HR2 plants

from which leaves with 24 h old eggs had been removed before

testing, when tested against uninfested plants (t-test: t9 = 20.45,

P = 0.68). Wasps did not respond to volatiles from HR+ plants 24

hao (Figure 2; t-test: t9 = 0.81, P = 0.44) or HR2 plants 72 hao

neither locally (Figure 2; t-test: t9 = 0.90, P = 0.38) nor systemically

(t-test: t9 = 21.00, P = 0.37) induced. Yet, volatiles from HR+
plants 72 hao significantly attracted wasps locally (Figure 2; t-test:

t11 = 2.47, P = 0.03) and systemically induced (t-test: t9 = 2.78,

P = 0.04).

T. brassicae discriminated between volatiles of M. brassicae egg-

infested B. nigra plants 24–36 hao and clean air (T-test: t11 = 6.61,

P,0.001). However, when the same plants were tested against

volatiles of uninfested plants, the wasps did not display a

preference (Figure 2; t-test: t11 = 0.91, P = 0.38). At 48–60 hao,

the wasps did not discriminate between volatiles emitted by plants

infested with moth eggs and clean air (T-test: t9 = 21.81, P = 0.10).

Attraction of Larval Parasitoids
In a wind tunnel, the distribution of naive C. glomerata female

wasps choosing volatiles of egg-induced or non-induced clean

plants was only affected by the age of the eggs (GLM; x2
1 = 8.19,

P = 0.008) and not by the occurrence of HR (Figure 2; GLM;

x2
1 = 1.99, P = 0.17). At 24 hao, C. glomerata wasps discriminated

between OIVPs and volatiles emitted by non-induced control

plants, regardless of the occurrence of HR (Figure 2; t-test: HR2:

t7 = 4.16, P = 0.004; HR+: t6 = 4.27, P = 0.005), whereas at 96 hao,

the preference for OIPVs was less pronounced and was only

significant in plants that had developed HR+ (Figure 2; t-test:

HR2: t4 = 0.72, P = 0.51; HR+: t8 = 2.93, P = 0.019). However,

the interaction between plant phenotype and egg age was

statistically not significant (GLM; x2
1,0,01, P = 0.95).

Cotesia glomerata did not discriminate between volatiles from

plants infested with eggs of the non-host M. brassicae and uninfested

plants 24–36 hao in a wind tunnel set-up (Figure 2; t-test: t8 = 0,22,

P = 0.83). This wasp was not arrested by, and did not show any

interest in, M. brassicae eggs.

Avoidance Behaviour of Gravid Butterflies
In a flight chamber set-up, the distribution of gravid P. brassicae

butterflies first landing on egg-induced or non-induced clean
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plants was not affected by the age of the eggs (GLM; x2
1 = 0.08,

P = 0.77), the occurrence of HR (GLM; x2
1 = 0.81, P = 0.37) nor

by the interaction of egg age and plant phenotype (Figure; GLM;

x2
1 = 0.01, P = 0.90). Gravid female butterflies tended to first land

on plants without eggs, regardless of the age and phenotype of the

plants (Figure 2). However, P. brassicae butterflies did not

discriminate between moth egg-infested plants and control plants

24–36 hao (Figure 2; t-test: t5 = 21.26, P = 0.27).

Specificity of OIPV Emission
The headspace of uninfested B. nigra plants was compared with

the headspace of P. brassicae egg-infested (24 and 72 hao, HR2

and HR+) and M. brassicae moth egg-infested (24–36 hao, HR2)

plants (Table 1). In total, 50 plant-related compounds were

detected (present in more than 50% of the replicates of at least the

control treatment). A Projection to Latent Structures Discriminant

Analysis (PLS-DA) including volatiles of the five different egg

treatments of B. nigra resulted in a model with two significant

principal components (Figure 3A; 2 PLS-DA principal compo-

nents, R2Xcum = 0.485, R2Ycum = 0.196, Q2cum = 0.159) and

separated the five treatments to a large extent. Figure 3B shows

the contribution of the emitted compounds to the two principal

components. Oviposition by P. brassicae significantly suppressed

the emission of the majority of compounds in HR2 plants at 24 h

(Table 1; 34 compounds suppressed, P,0.03, sign test) and 72 h

(Table 1; 44 compounds suppressed, P = 0.001, sign test)

compared to uninfested plants. Interestingly, HR+ plants carrying

eggs of P. brassicae showed an enhanced emission 24 hao compared

to uninfested plants (Table 1; 33 compounds enhanced, P = 0.05,

sign test), whereas at 72 hao the number of compounds showing

enhanced emission by HR+ plants was lower (Table 1; 20

compounds enhanced, P = 0.20, sign test) and not different to

uninfested plants. In HR2 plants, the emission rate of 22

compounds was significantly reduced at 72 hao (Table 1).

Different forms of the sesquiterpene silphiperfolene (7-a-H-

silphiperfol-5-ene, presilphiperfol-7-ene, 7-b-H-silphiperfol-5-ene

and silphiperfol-6-ene) were identified for the first time in a Brassica

species. The total emission of the four silphiperfolenes increased

significantly 24 h after P. brassicae oviposition (HR2: P = 0.05,

HR+: P = 0.02, Mann-Whitney U-test) as well as the emission of

the monoterpene (E)-b-ocimene (HR2: P = 0.01, HR+: P = 0.03,

figure 3, table 1). At 72 h after P. brassicae oviposition, there was a

significant increase in emission of the monoterpene isomenthone

Figure 1. Studied insect community of B. nigra. (A) Tritrophic system consisting of the Brassicaceae-specialist Pieris brassicae and the generalist
moth Mamestra brassicae lay eggs in clusters on B. nigra. The egg parasitoid Trichogramma brassicae attacks eggs of both. The larval parasitoid
Cotesia glomerata attacks young caterpillar stages of P. brassicae. (B) P. brassicae clutch on B. nigra expressing a strong necrotic zone, i.e.
hypersensitive response (HR) (Photo credits: D. Lucas-Barbosa), (C) M. brassicae egg clutch on B. nigra without necrosis (Photo credits: Nina E.
Fatouros, www.bugsinthepicture.com), (D) C. glomerata wasp on P. brassicae eggs parasitizing a neonate that just hatched (Photo credits: N. E.
Fatouros, www.bugsinthepicture.com).
doi:10.1371/journal.pone.0043607.g001
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(P = 0.01) and the sesquiterpene a-funebrene (P = 0.02) in HR+
plants (Figure 3, table 1).

Oviposition by M. brassicae moths significantly suppressed the

emission of the majority of compounds compared to uninfested

plants (Table 1; 43 compounds suppressed, P,0.001, sign test).

The emission of terpenes did not change after M. brassicae moth

oviposition; however, there was a significant reduction in the

emission of three compounds, i.e. 1,2-dimethyldisulfide (P = 0.02),

and 2-phenylethyl isothiocyanate and pyrazine (Table 1; both:

P = 0.05).

Specificity of Changes in Plant Surface Structure
Pieris brassicae butterflies and M. brassicae moths carefully deposit

their eggs on B. nigra plants without any visible damage to the

surface in the vicinity of the eggs (Figure 4A–B). Egg cement is

produced by the accessory reproductive gland and attaches the

eggs of P. brassicae and M. brassicae to the substrate (Figure 4C–D).

After freezing, we observed that moth eggs detached more easily

from the plant surface than eggs of P. brassicae. Egg secretion of

P. brassicae partly peeled off after egg removal, covering the surface

of HR2 B. nigra with a thick layer. Epidermal cell morphology

and stomata are not visible under the egg cement of P. brassicae

Figure 2. Proportions (±SD) of female insects choosing oviposition-induced plant volatiles (OIPVs) of B. nigra plants. Plants were
infested with eggs of P. brassicae or M. brassicae. Columns represent arcsine of the proportion of choice for OIPVs by gravid P. brassicae females
tested in a flight chamber (dark grey), T. brassicae egg parasitoids tested in a Y-tube olfactometer (light grey), and C. glomerata larval parasitoids
tested in a windtunnel (white). All experiments were conducted in a two-choice situation between plants infested with eggs of different ages (24 h,
72 h, 96 h), and clean plants. The dashed line indicates arcsine (0.5) = no preference. Numbers below the columns represent the percentage of
female insects making a choice. *P,0.05, one-sample t-test. Each treatment combination was replicated with at least four plant pairs. Different
phenotypes: Hypersensitive response (HR), HR2: no necrotic zone observed, HR+: necrotic zone.
doi:10.1371/journal.pone.0043607.g002
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Table 1. Volatile emissiona by Brassica nigra HR+ (+) or HR2 (2) plants in response to eggs of Pieris brassicae (PB) and Mamestra
brassicae (MB) sampled at 24 or 72 h after oviposition.

Treatment R Uninfested 24PB2 24PB+ 72PB2 72PB+ 24MB2

ID Compound Q (N = 25) (N = 5) (N = 5) (N = 5) (N = 5) (N = 5)

Aliphatic

1 2-Methylpropanal 11.5662.2 7.9761.5 17.9364.8 3.5760.8* 6.6361.0 4.4761.3

2 2-Methyl-2-propenal 23.7864.6 12.1960.5* 34.6369.7 5.3661.3 8.0661.2 9.2661.5

3 Ethyl acetate 134.44625.9 2.9260.9 21.8168.0 3.6961.2 4.2961.5 12.75610.4

4 2-Methyl-1-propanol 4.4160.8 3.8261.2 6.4962.8 1.4260.4 4.1861.5 1.4860.4

6 2-Butenal 10.7062.1 7.2861.1 17.9365.9 3.2560.6* 4.2360.6 3.8560.4

7 3-Methylbutanal 12.3362.4 8.1661.8 17.4463.1 5.6361.8 6.6461.4 4.4560.6

8 2-Methylbutanal 8.3761.6 5.4662.1 11.0862.9 4.8562.4 4.5061.1 2.8960.3

9 1-Methoxy-2-propanol 134.94626.0 192.25681.7 244.20678.9 41.31610.6 87.75653.5 63.17614.1

10 1-Penten-3-ol 189.90636.5 64.1369.9 396.156115.0 34.91615.8* 253.936134.9 187.68661.9

11 2-Pentanone 43.8168.4 47.31619.5 39.54611.6 8.0662.0* 15.2062.9 18.2065.5

12 3-Pentanone 53.60610.3 36.34622.2 68.65629.7 8.2562.0* 78.72643.8 37.48612.4

15 4-Methyl-2-pentanone 7.0861.4 3.9261.3 6.5761.9 1.3460.3 2.2360.3 2.4161.1

17 (E)-2-Pentenal 2.5360.5 1.1060.3 3.1561.4 0.3160.2* 1.2860.5 1.6760.7

18 2,4-Pentanedione 55.07610.6 112.50689.9 45.09614.0 2.4561.2 16.1067.7 11.7663.6

19 4-Methyl-3-penten-2-one 68.92613.3 64.25635.2 37.5967.7 8.6762.5* 23.77611.2 15.8465.8

20 (Z)-3-Hexen-1-ol 215.11641.4 44.56612.6 179.94674.5 18.0566.4* 43.50618.3 174.646109.8

23 6-Methyl-2-heptanone 29.3165.6 17.2162.5 34.1064.7 6.6360.7* 15.8362.8 16.3662.8

24 (Z)-3-Hexen-1-yl acetate 573.696110.4 105.04618.8 422.096111.9 45.69612.3* 171.72665.4 478.746173.1

28 Methyl 2-ethylhexanoate 2.8160.5 1.4760.7 3.6961.1 1.2960.5* 1.9860.7 0.8760.5

38 Undecan-2-one 13.6162.6 11.2061.0 20.1864.3 3.9460.6* 8.5461.6 7.9360.8

Aromatic

30 o-Cresol 36.7667.1 33.26615.6 49.8867.9 7.5161.2* 17.5062.7 18.0563.4

33 2-Phenylacetonitrile (benzyl cyanide) 8.9161.7 4.8260.6 10.2764.4 1.9160.3* 4.3960.8 3.3160.9

47 Lilial 18.9563.6 5.1060.6 20.9563.6 2.7160.5* 20.1269.6 14.4868.4

49 2-Ethylhexyl salicylate 5.7661.1 4.9263.4 15.3166.3 1.7361.4 5.7463.0 10.8564.8

Terpenoids

22 a-Pinene 55.24610.6 22.7867.1 109.40644.9 11.7463.3 12.4764.4 24.32612.7

25 3-Carene 48.1669.3 17.9668.9 75.99622.3 5.7261.5* 13.7364.7 25.93613.3

26 (S)-Limonene 68.75613.2 29.85611.9 76.41625.6 14.1965.4 10.7063.8 39.98632.5

27 a -Phellandrene 10.1562.0 10.1964.8 11.5263.0 1.8360.8* 11.7567.0 10.9962.6

29 (E)-b-Ocimene 5.9761.1 22.6966.6* 82.28642.2* 4.5562.1 5.4262.0 3.6862.0

32 p-Mentha-1,5,8-triene 8.9161.7 3.6060.9 14.7563.2 1.6360.7* 3.0160.7 4.3661.3

34 Isopulegon 2.7560.5 1.2060.3 4.0461.0 0.5560.1* 1.2060.2 1.4260.4

35 p-Menthan-3-one 4.6260.9 1.6760.7 4.0261.9 27.09625.8 23.60621.9 2.5361.6

36 Isomenthone 2.5060.5 2.3660.3 3.3060.2 10.65610.0 10.7968.8* 1.4460.7

Treatment R Uninfested 24PB2 24PB+ 72PB2 72PB+ 24MB2

ID Compound Q (N = 25) (N = 5) (N = 5) (N = 5) (N = 5) (N = 5)

37 Menthol 25.6464.9 14.9564.4 31.3267.1 47.74642.9 53.01640.8 14.6462.8

39 7-a-H-Silphiperfol-5-ene 88.22617.0 151.09661.2 363.176116.3 – 13.70613.5 15.88615.9

40 Presilphiperfol-7-ene 13.3662.6 15.1367.6 83.12634.4 0.0660.1 6.8166.8 0.6160.6

41 7-b-H-Silphiperfol-5-ene 32.1666.2 46.07617.4 143.24655.6 – 4.8264.8 5.1165.1

43 Silphiperfol-6-ene 10.0961.9 17.1469.2 40.07615.8 – 2.4262.4 1.8161.8

44 a-Funebrene 10.8062.1 29.44623.7 8.4268.4 4.8162.1 11.2664.5* 18.37610.6

45 Longifolen 13.1062.5 6.6662.1 17.4163.1 4.0261.3 20.06613.4 6.7162.2

48 Guaiazulene 10.0461.9 5.5761.7 11.4063.2 2.2960.7* 3.1761.4 5.0061.1

Egg-Induced Plant Volatiles Affect Community

PLOS ONE | www.plosone.org 5 August 2012 | Volume 7 | Issue 8 | e43607



(Figure 4C). Part of the thin egg secretion of M. brassicae moths

seems to be peeled off after egg removal or is missing. The cell

layer below the egg cement seems to be intact and stomata are half

opened (Figure 4D). In HR+ plants, necrotic tissue develops within

72 h and is only induced by P. brassicae eggs. Here, egg removal

leads to detachment of surface layers of dead cells together with

the egg secretion (Figure 4E). Interestingly, stomata are open

adjacent to cells at the boundary of the necrotic zone, supposedly

in the programmed cell death phase (Figure 4F).

Discussion

Our study revealed that plant volatiles induced in the early

phase of colonization by insect herbivores, before actual feeding

starts, mediate interactions between a range of insect community

members at different trophic levels: egg and larval parasitoids are

attracted and the specialist herbivore prefers plants that are free of

eggs. Moreover, we show that the plant and associated insects

respond differently to egg deposition by two herbivores, the

specialist butterfly P. brassicae and the generalist moth M. brassicae.

Oviposition by the abundant specialist pine sawflies Diprion pini

and Neodiprion sertifer on Pinus sylvestris induced the emission of pine

volatiles that attracted the specialized egg parasitoid Chrysonotomyia

ruforum, whereas eggs of the less abundant pine sawfly Gilpinia

pallida did not induce such a response [32].

OIPVs may provide an effective defence against the attacking

herbivore: egg parasitoids kill a certain proportion of the host eggs;

and the remaining proportion of eggs yields caterpillars that may

be attacked by larval parasitoids. Gravid butterfly females avoid

plants infested by eggs of conspecifics by using OIPVs. Herbivore-

induced plant volatiles have been shown to mediate interactions

with other herbivores [52,53], but to the best of our knowledge this

has not been reported for OIPVs. In combination with limited

feeding damage, odours of plants carrying few eggs were shown to

be avoided by gravid elm leaf beetles [54]. Recently, Bruce et al.

[39] showed that the spotted stemborer Chilo partellus avoided

oviposition on egg-induced African forage grass (Brachiaria

brizantha), but the role played by visual and contact cues here

was not determined.

Furthermore, we here show that parasitism of P. brassicae eggs by

T. brassicae wasps on HR+ and HR2 plants was equally successful,

which means that there is no conflict between the induced

hypersensitive response and the performance and attraction of the

egg parasitoid. While eggs of P. brassicae induce HR in about 50%

of the observed B. nigra plants, eggs of M. brassicae moths did not

induce the formation of necrotic tissue. Eggs of cabbage white

butterflies, moths and beetles have been shown to induce the

formation of necrotic tissue leading to increased egg mortality on

different plant species, including the wild crucifer Sinapis arvensis

(F. G. Pashalidou, personal observations), potato [22] and Physalis

plants [20]. A whole-genome transcriptomic study with Arabidopsis

confirmed that oviposition by Pieris sp. triggers a defensive

response with strong similarities to microbial-induced HR, i.e.

up-regulation of pathogenesis-related genes, callose accumulation,

and production of reactive oxygen species [42].

For successful settlement of an herbivorous insect, it is crucial

that eggs are deposited with a proper adherence. How firmly eggs

are attached to the leaf surface may affect different cells that are

able to perceive information about when an egg has been laid [38].

Epicuticular waxes lead to hydrophobic surfaces which can

prevent insect egg attachment [55]. Pieris brassicae is specialized

to deposit eggs on leaf surfaces typical of species in the

Brassicaceae plant family. A water-soluble yellow phenolic

compound of the egg cement probably moistens the surface and

increases the strength of adhesion [56]. Generalist herbivores such

as M. brassicae moths are expected to be less adapted to certain

plant surfaces; their eggs seem less firmly attached to the

hydrophobic B. nigra surface. From the plant’s plants perspective,

we expect less selection pressure on B. nigra to respond to eggs of

the less abundant generalist M. brassicae because their larvae

perform poorly on wild crucifers containing high levels of

secondary compounds, i.e., glucosinolates [57], and tend to leave

such plants quickly after emergence (J.A. Harvey and F.G.

Pashalidou, personal observations). Egg deposition by Spodoptera

frugiperda moths was shown to suppress HIPV emission in maize

while eggs were in close contact with the plant cuticle,

accompanied with accessory gland secretion. A possible explana-

tion for the HIPV suppression was that the S. frugiperda egg masses

are dense and cover parts of the photosynthetic tissue, thus

Table 1. Cont.

Treatment R Uninfested 24PB2 24PB+ 72PB2 72PB+ 24MB2

ID Compound Q (N = 25) (N = 5) (N = 5) (N = 5) (N = 5) (N = 5)

50 Cembrene 16.9063.3 14.0768.7 54.27616.6 1.2860.8 15.7363.5 9.7861.5

N and/or S containing

16 1,2-Dimethyldisulfide 66.36612.8 39.8668.1 420.676341.7 33.40620.2 19.9662.1 22.9065,2*

21 Allyl isothiocyanate 393.18675.7 63.65638.0 782.076391.7 53.90620.8* 147.79650.1 641.326565.5

46 2-Phenylethyl isothiocyanate 13.8662.7 3.0661.0 20.2367.8 1.0660.4* 10.8162.9 3.9260.9*

Cyclic/Heterocyclic

5 Tetrahydrofuran 2.4960.5 1.9660.2 4.6661.3 1.3760.4 1.0760.2 1.6560.8

13 Methylcyclohexane 11.5662.2 5.2060.8 19.6468.4 3.7961.7 4.0861.2 6.7362.3

14 Pyrazine 9.1561.8 7.3262.4 12.0362.5 3.5861.4 3.2861.0 3.3860.5*

31 2,2,6-Trimethyl-4-methylene-2H-pyran 21.3564.1 55.11647.3 12.3662.9 3.4361.9 6.2062.3 9.6965.5

42 4-(3-Cyclohexen-1-yl)-3-buten-2-one 4.6560.9 5.5861.8 9.7364.0 1.5160.8 1.1960.7 4.6061.2

aVolatile emissions are given in mean peak area 6 SEM/g fresh weight of foliage divided by 105 with the number of replicates between brackets.
*values with asterisk indicate significant differences in emission quantities between oviposition-induced B. nigra and uninfested control for each treatment (Mann-
Whitney U-test).
doi:10.1371/journal.pone.0043607.t001
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inhibiting the volatile emission [58]. Indeed, oviposition was

shown to reduce photosynthesis, which several workers have

suggested is caused by the coverage of photosynthetic tissue and/

or physiological mechanisms, i.e. reduced CO2 diffusion in the

mesophyll or water deficiency [59,60]. Unlike with M. brassicae

eggs, stomata were closed underneath the eggs of P. brassicae and

gas/water exchange probably inhibited in B. nigra (Figure 4C–D).

However, although eggs of M. brassicae are covering a slightly

larger part of the leaf surface than P. brassicae eggs (Figure 1B–C), it

is unlikely that this would lead to significant differences in the

volatile emission demonstrated here. The observed attraction to

volatiles from M. brassicae egg-infested plants by T. brassicae at 24

hao when tested against clean air is probably caused by the moths’

sex pheromone adsorbed to the plant surface, previously shown to

attract Trichogramma wasps 24 h after release [61].

Chemical analysis of volatile blends revealed reduced emissions

for the majority of chemical compounds in the plant treatments

with eggs. Usually, insect herbivory leads to an increase in the

emission of plant volatiles that attract carnivorous natural enemies

[9,62]. A reduced emission induced by egg deposition has recently

been demonstrated in other plant species as well [39,58]. Only

HR+ plants 24 h after P. brassicae oviposition showed an increased

emission, probably due to the initiation of necrosis. A significant

induction of some terpenoids might contribute to the specificity of

P. brassicae egg-induced volatile blends that are attractive or

repellent to the tested insects. For example, the emission of (E)-b-

ocimene was enhanced in B. nigra 24 h after P. brassicae oviposition.

Figure 3. Projection to Latent Structures Discriminant Analysis (PLS-DA) on the volatile compounds emitted by egg-infested B.
nigra. HR+ (+) or HR2 (2) plants were infested by eggs of Pieris brassicae (PB) or Mamestra brassicae (MB) sampled 24 or 72 h after oviposition. (A)
Score plot visualizing the grouping pattern of the samples according to the first two PLS components with the explained variance in brackets. The
ellipse defines Hotelling’s T2 confidence region (95%). (B) Loading plot of the first two principal components shows the contribution of each of the
compounds to the two PLS-DA components. Markers of the 5 different treatments shown in the score plot are given. Hypersensitive response type,
(2): no necrotic zone observed, (+): with necrotic zone. Compound numbers: (1) 2-Methylpropanal, (2) 2-methyl-2-Propenal, (3) Ethyl acetate, (4) 2-
Methyl-1-propanol, (5) Tetrahydrofuran, (6) 2-Butenal, (7) 3-Methylbutanal, (8) 2-Methylbutanal, (9) 1-Methoxy-2-propanol, (10) 1-Pentene-3-ol, (11) 2-
Pentanone, (12) 3-Pentanone, (13) Methylcyclohexane, (14) Pyrazine, (15) 4-Methyl-2-pentanone (16) 1,2-Dimethyldisulfide, (17) (E)-2-Pentenal, (18)
2,4-Pentanedione, (19) 4-Methyl-3-pentene-2-one, (20) (Z)-3-Hexen-1-ol, (21) Allyl isothiocyanate, (22) a-Pinene, (23) 6-Methyl-2-heptanone, (24) (Z)-3-
Hexen-1-yl acetate, (25) 3-Carene, (26) (S)-Limonene, (27) a-Phellandrene, (28) Methyl-2-ethylhexanoate, (29) (E)-b-Ocimene, (30) o-Cresol, (31) 2,2,6-
Trimethyl-4-methylene-2H-pyran, (32) p-Mentha-1,5,8-triene, (33) 2-Phenylacetonitrile, (34) Isopulegon, (35) p-Menthan-3-one, (36) Isomenthone,
(37) Menthol, (38) Undecan-2-one, (39) 7-a-H-Silphiperfol-5-ene, (40) Presilphiperfol-7-ene, (41) 7-b-H-Silphiperfol-5-ene, (42) 4-(3-
cyclohexen-1-yl)-3-Buten-2-one, (43) Silphiperfol-6-ene, (44) a-Funebrene, (45) Longifolen, (46) 2-Phenylethyl isothiocyanate, (47) Lilial, (48)
Guaiazulene, (49) 2-Ethylhexyl salicylate, (50) Cembrene. Significantly increased terpenoids in volatile blends of P. brassicae egg-infested plants
compared to uninfested plants are in bold (*P,0.05, Mann-Whitney U-test).
doi:10.1371/journal.pone.0043607.g003
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Figure 4. Cryo-SEM micrographs of B. nigra leaf surfaces and adhering herbivore eggs and egg – leaf contact regions. (A–E) abaxial
site of B. nigra leaves. (A) Eggs of P. brassicae 72 hao with surrounding leaf surface of HR+ B. nigra and trichomes. (B) Eggs of M. brassicae (48–60 h
old) with surrounding leaf surface of HR2 B. nigra. (C) Contact region after P. brassicae egg removal (72 hao) on HR2 B. nigra consisting of accessory
reproductive gland (ARG) secretion functioning as cement (arrow). (D) Contact region after M. brassicae egg removal consisting of a part of ARG
cement and healthy leaf cells with open stomata (arrow). (E) Necrotic zone on HR+ B. nigra leaf induced by P. brassicae eggs 72 hao, with some eggs
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This monoterpene has been shown to be highly inducible by

herbivory [5,8,63]. In their study on African grass, Bruce et al.

[39] demonstrated similar effects: oviposition by C. partellus reduces

the plant volatile emission of the main compound, the green-leaf

volatile (Z)-3-hexenyl acetate, and increases the emission of minor

compounds, i.e. terpenoids, causing an increased attraction of the

larval parasitoid Cotesia sesamiae. The same wasps were shown to be

attracted also to synthetic terpenoids [36].

Whether the attraction to OIPVs by different parasitoid species

and avoidance by herbivores is adaptive for the plant and

eventually leads to enhanced plant fitness remains to be proven.

Kessler & Heil [64] argued that HIPV-mediated reduction in

herbivory may not result in increased plant fitness because most

natural enemies do not immediately kill the herbivore, plants have

a high tolerance to herbivory, and HIPV are part of a network

with many more functions. However, the results of our study

suggest a benefit for B. nigra resulting from the release of OIPVs.

Idiobiont parasitoids that immediately kill the host such as

Trichogramma spp. are likely to have a greater impact on plant

fitness than parasitism by koinobiont parasitoids, which allow the

parasitized host to continue to feed. Trichogramma wasps have been

demonstrated to be significant mortality factors for eggs of Pieris

species in the field. In an on-going field survey of a Dutch B. nigra

population, 30–40% of the collected Pieris eggs were found to be

parasitized by Trichogramma spp. (N.E. Fatouros, unpublished data)

[65]. Feeding by Pieris caterpillars can have detrimental effects on

flowering brassicaceous plant species: P. brassicae caterpillars have

been shown to move to and preferentially feed on the flowers of

B. nigra plants a few days after hatching [66,67]. Moreover, the

multifunctional effects of OIPVs released by B. nigra on different

members of the insect community demonstrated here is beneficial

to the plant: direct (egg-killing HR and avoidance by female

butterflies) and indirect (parasitoid attraction) defence traits against

Pieris butterflies work in concert which seems to lead to high Pieris

egg mortality rates under natural conditions (N.E. Fatouros,

unpublished data) [65].

Both parasitoid species studied here discriminated between

volatiles induced by eggs of their host P. brassicae and uninfested

B. nigra plants, but not between plant volatiles induced by eggs of

the moth M. brassicae and uninfested B. nigra. For C. glomerata,

M. brassicae cannot serve as a host and, therefore, it may be

adaptive for the wasps to discriminate between host- and non-host

induced plant volatile blends. Studies on brassicaceous plant

species demonstrated that naı̈ve C. glomerata failed to discriminate

between HIPV blends from host and non-host insects [68] or from

different host instars [69]. Volatiles emitted by B. oleracea plants

damaged by different herbivores were shown to be very similar

[9,12]. So far, a single study revealed that parasitoids can innately

use HIPV blends to discriminate between host and non-host

herbivores [70]. Approaching host-infested plants in an early stage

of host development might help Cotesia wasps to find host patches

and avoid to fly to patches of older host larvae, which are

unsuitable for development [71]. Recent studies on different maize

varieties and a grass species induced by eggs of the stemborer moth

C. partellus confirmed an attraction to OIPVs by a larval parasitoid

[36,37,39].

Our data reveal an effect of an induced plant response on

members of the insect community at different trophic levels during

the pre-feeding phase of herbivore colonization. The synergistic

effect of OIPVs attracting different parasitoid species and causing

avoidance by herbivores might lead to an effective reduction of

fitness loss caused by a common insect herbivore of brassicaceous

plant species. Our findings thus suggest that studies on plant

defences induced by herbivores should consider the first phase of

herbivore attack before feeding damage has occurred, because of it

significant impact on multi-trophic interactions. As a follow-up, we

are currently investigating the role of OIPVs under natural

conditions to fully understand the consequences of plant-mediated

effects of insect egg deposition for the structure and dynamics of

arthropod communities.

Materials and Methods

Plants and Insects
Black mustard plants (B. nigra L.) were grown in a greenhouse

(1865uC, 50–70% r.h., L16:D8). Seeds originated from the

Centre for Genetic Resources (CGN, Wageningen, The Nether-

lands). This accession (feral population, collected in 1975 from the

Peloponesus, Greece) had been multiplied by exposing them to

pollinators in a common garden experiment in the surroundings of

Wageningen, The Netherlands [66]. Plants of 3 to 5 weeks old

were used in the experiments. All used insects were collected in the

surroundings of Wageningen, The Netherlands. No specific

permits were required for their collection. The collection sites

were not privately owned or protected in any way and field

samplings did not involve endangered or protected species. Mated

females of P. brassicae (Lepidoptera: Pieridae) were obtained by

pairing a virgin male and a virgin female butterfly one day after

eclosion. Two days after mating, P. brassicae females were used in

the experiments. Female M. brassicae L. (Lepidoptera: Noctuidae)

moths were placed together with a B. nigra plant in a cage to allow

egg deposition. Both herbivorous insects were reared on Brussels

sprouts plants (B. oleracea var. gemmifera cv. Cyrus) in a climate room

(2161uC, 50–70% rh, L16:D8). Trichogramma brassicae Bezdenko

(Hymenoptera: Trichogrammatidae) was reared in eggs of the

moth Ephestia kuehniella (Koppert, Berkel en Rodenrijs, The

Netherlands) in a climate chamber (2561uC, 50–70% rh,

L16:D8). Only mated, 2–5 days old, wasps were used in the

experiments. The larval parasitoid Cotesia glomerata L. (Hymenop-

tera: Braconidae) was reared in P. brassicae caterpillars, feeding on

Brussels sprouts plants in a greenhouse (see above). Only mated,

2–8 days old female wasps were used in the experiments. None of

the wasps used in the experiments have had previous contact with

any plant material or host residues and the wasps are referred to as

naı̈ve.

Plant Treatments
For bioassays with egg-infested plants, test plants were placed

into a cage with more than 100 P. brassicae adults (female: male

ratio 1:1) to allow deposition of eggs onto the plants. Plants were

exposed for no more than 15 min to the butterflies, to obtain 2–3

egg clutches. After this exposure time, egg-infested plants were

tested immediately or kept in a greenhouse compartment

(2162uC, 70% r.h., L16:D8) either overnight (24 h) or for 48 to

72 h following egg deposition. Thus, the duration of induction in

response to egg deposition was less than 6 to 96 h. Around 120

hao eggs started to hatch. Plants used as controls were kept under

the same conditions as the treated plants but had not been in

removed. ARG-derived cement is removed together with parts of the cell layer (arrow) and open stomata at the border between dead and living cells.
(F) Adaxial site of necrotic zone of HR+ B. nigra with open stomata (arrow) between healthy cells and necrotic zone on right side. Hypersensitive
response type, HR2: no necrotic zone observed, HR+: with necrotic zone. Scale bars are given in lower right corners.
doi:10.1371/journal.pone.0043607.g004

Egg-Induced Plant Volatiles Affect Community

PLOS ONE | www.plosone.org 9 August 2012 | Volume 7 | Issue 8 | e43607



contact with P. brassicae or any other insect. To test for a systemic

induction of volatiles, butterflies were allowed to oviposit on the

lower leaves and the upper leaves were covered with a mesh bag

that prevented oviposition. Bags were removed afterwards. Prior

to bioassays, leaves with eggs were removed. Leaves at similar stem

positions were removed from control plants. Plants with 2–5

M. brassicae egg clutches were obtained by exposing plants to

M. brassicae females during the scotophase. These plants were

incubated for an additional one or two days in a greenhouse

compartment. Thus, eggs were 24–36 or 48–60 h old when the

plants were used in the bioassay.

Egg-induced Necrosis
All egg-induced plants were checked for the formation of

necrotic tissue, referred to as hypersensitive response (HR) 24 h

and 72 h after oviposition. The strength of HR was recorded and

the plants were categorized into HR2 (no necrotic zone observed)

and HR+ (necrotic zone +/2 eggs fallen off). Plants were kept

under greenhouse conditions (2262uC, 70% r.h., L16: D8). From

10 plants, the number of plants with necrosis was noted and the

number of eggs was counted directly after oviposition and after

5 days.

Egg Parasitoid Performance
To investigate whether the performance of T. brassicae in eggs

deposited on plants that respond with HR is affected, we infested

at least five different plants with P. brassicae eggs and offered them

24 h or 72 h after oviposition to T. brassicae. Previous research

showed that Trichogramma wasps were able to parasitize P. brassicae

eggs 0–72 hao [26]. An egg-carrying leaf of an HR+ or HR2

plant was excised and a piece of it carrying 8 eggs (about 2 cm2)

was offered to a 2–3 days old inexperienced female T. brassicae

wasp in a glass tube. After 48 h, wasps as well as hatching eggs

were discarded. Successful parasitism was checked after 7 days

and emerging offspring were counted 12 days after oviposition. In

total, 15 female wasps were tested for each treatment.

Dynamic Y-tube Olfactometer
Bioassays with T. brassicae wasps were conducted in a dynamic

airflow Y-tube olfactometer, a modified version of the six-arm

olfactometer developed by Turlings et al. [72] (Figure 5). This

olfactometer was adapted for small wasps like Trichogramma sp.;

wasps were released in groups collected in so-called insect

trapping bulbs (Figure 5). Pressurized air was filtered through

activated charcoal and approximately 150 mg of Tenax-TA 25/

30 mesh (Grace-Alltech) before entering the system. Subsequent-

ly, air was humidified by passing through a bottle containing

50 mL of tap water. A flow meter-controlled (Brooks Instrument

B.V., Veenendaal, NL) airflow of 400 mL min21 was admitted

into the system. The airflow was split into two and each subflow

was led into a glass container (45 mm high, 200 mm diameter)

holding an odour source through an inlet situated on the lid.

These containers were sealed airtight using a Viton O-ring and a

metal clamp. Air from each odour container was subsequently

Figure 5. Overview of the Y-tube olfactometer with simultaneous volatile trapping. Wasps were released in groups and collected in insect
trapping collection bulbs. Volatiles were trapped simultaneously or after a bioassay with Tenax TA tubes. Illustration credits: I. Figueroa.
doi:10.1371/journal.pone.0043607.g005
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led into one of the arms of a glass Y-tube olfactometer (stem

9 cm, arms 8 cm, ID 1 cm). All glass parts were connected using

Teflon tubing. The airflow was set at 100 mL min21 in each arm

using flow meters. Experiments were carried out between 10:00

and 16:00 h in the laboratory at 2162uC using a T5-growth

light with a spectrum that is close to sunlight. Light bulbs (4624

W) were situated above the olfactometer and the containers with

the odour sources. Just before placing a plant in the odour

containers, the pot of the plant was removed and the roots and

soil were tightly covered with aluminium foil.

Ten adult females of T. brassicae were released simultaneously

and their preference for one of the two odour sources was

recorded. Wasps, which were attracted to light, were trapped in

two round trapping bulbs connected to the Y-tube near the end of

each arm. After 30 minutes, the wasps collected in each of the

trapping bulbs were counted. When a wasp did not make a choice

within 30 minutes, it was recorded as a ‘‘no response’’ and

excluded from the statistical analysis. In total, 100–120 wasps were

tested with 5–6 different plants per odour source combination with

two replicates per experimental day. Each wasp was used only

once. To exclude any bias, the position of the odour sources was

exchanged after every trial.

Flight Chamber Experiments
Butterfly odour preferences were tested in a two-choice situation

in a flight tent as described by Gols et al. [70]. A female butterfly

was released 80 cm away from the uninfested and egg-infested

plant, which were placed 55 cm apart. Eggs were removed just

prior to testing. After releasing the butterfly, first landing and

oviposition was recorded, after which the observation was ended

and the female and her eggs were removed immediately. Females

that did not respond within 15 min were recorded as ‘‘no

response’’ and excluded from the analysis. Plants were switched

after 3 consecutive butterfly observations with a total of max. 10

responding females per set of plants. Plants had been infested with

eggs for either 24 h or 72 h (for P. brassicae) or 24–36 h (for

M. brassicae). Per treatment, 43–85 butterflies were tested and 4–6

sets of plants were used.

Wind Tunnel Experiments
Attraction of C. glomerata wasps was conducted in a wind tunnel

set-up described in detail by Geervliet et al. [73]. Females were

released individually 70 cm down-wind from the two plants, one

egg-infested plant and an uninfested control plant. The plant on

which the female landed for the first time within 10 min following

release was recorded. Non-responding wasps, i.e. those females

that did not land within 10 min were counted but excluded from

the statistical analysis. Each wasp was used only once. During

bioassays, plants were switched after every second wasp tested.

The number of tested wasps ranged between 60 and 105 wasps per

treatment, tested on at least 5 different days with 5 new sets of

plants.

Headspace Collection of Volatiles
When testing the response of T. brassicae wasps to B. nigra

volatiles using the Y-tube olfactometer (see above), we simulta-

neously or afterwards collected volatiles from the headspace of the

same plant (s) (Figure 5). Volatiles were collected by sucking air

with odours out of a glass jar at a rate of 80 mL min21 for 4 h

through a stainless steel cartridge filled with 200 mg Tenax TA

(20/35 mesh; CAMSCO, USA). A pump (PAS-500 SPECTREX,

US) was directly connected to the cartridge steel tube with Tenax

TA onto the outlet for sucking the air out of the glass jar. In total, 5

plant pairs (control vs. treatment) were sampled per treatment on 5

different days. Aerial parts of the plant were weighed after volatile

collection (balance Mettler-Toledo B.V., NL).

Chemical Analysis
Thermo Trace Ultra gas chromatography (GC) coupled with

Thermo Trace DSQ quadruple mass spectrometer (MS) (Thermo

Fisher Scientific Waltham, USA) were used for separation and

detection of plant volatiles. Prior to release of volatiles, Tenax TA

cartridges were dry-purged under a stream of nitrogen at 20 ml

min21 for 10 min at ambient temperature in order to remove

moisture. The collected volatiles were released thermally from the

Tenax TA in an Ultra 50:50 thermal desorption unit (Markes,

Llantrisant, UK) at 250uC for 10 min under a helium flow of

20 ml21 while re-collecting the volatiles in a thermally cooled

universal solvent trap at 10uC using Unity (Markes, Llantrisant,

UK). Once the desorption process was completed, the cold trap

was heated fast at 40uC s21 to 280uC and was kept for 5 min at

280uC, while the volatiles were released to a ZB-5MSi capillary

column with dimensions 30 m L60.25 mm I.D.61.00 mm F.T.

(Phenomenex, Torrance, CA, USA), in a split mode at a split ratio

of 5:1 for further separation. The GC oven was operated at an

initial temperature of 40uC and was immediately raised at 8uC
min21 to 280uC and held there for 4 min under a helium flow of

1 mL min21 in constant flow mode. The DSQ MS was operated

in scan mode with a mass range of 35–350 amu at 5.38 scans s21

and ionization was performed in EI mode at 70 eV. MS transfer

line and ion source were set at 275 and 250uC, respectively.

Identification of compounds was based on comparison of mass

spectra with those in the NIST 2005 and Wageningen Mass

Spectral Database of Natural Products MS libraries. Experimen-

tally obtained linear retention indices (LRI) were also used as

additional criterion for confirming the identity of compounds.

Relative quantitation (peak areas of individual compounds) was

carried out using a single (target) ion, in selected ion monitoring

(SIM) mode. These individual peak areas of each compound were

corrected for the aerial fresh weight of each plant sample and were

used for further characterization of the different plant groups using

statistical analysis.

Cryo-SEM Imaging
Abaxial and adaxial sites of fresh leaves with P. brassicae or

M. brassicae eggs were fresh-frozen and analysed by field emission

scanning microscopy (Magellan 400, FEI, Eindhoven, the Nether-

lands). Leaves were glued on a brass Leica sample holder by

carbon glue (Leit- C, Neubauer Chemicalien, Germany), flash-

frozen in liquid nitrogen and simultaneously fitted in a cryo-

sample loading system (VCT 100). The Leica sample holder was

transferred to a non-dedicated cryo-preparation system (MED

020/VCT 100, Leica, Vienna, Austria) onto a sample stage at

293uC. In this cryo-preparation chamber samples were freeze

dried for 2 minutes at 293uC at 1.361026 millibar to remove

water vapor contamination from the surface of the sample. The

sample was sputter-coated with a layer of 15 nm Tungsten at the

same temperature. The samples were transferred in high vacuum

into a field emission scanning microscope (Magellan 400, FEI,

Eindhoven, the Netherlands) on the sample stage at 2122uC at

461027 millibar. The analysis was performed with SE at 1 and 2

kV, 13 pA. All images were recorded digitally.

The interface between the B. nigra surface and (1) 72 h old

P. brassicae eggs (HR2 and HR+) and (2) 48–60 h old M. brassicae

eggs (HR2) was comparatively studied (a) in contact and (b) with

eggs detached after being frozen.
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Statistical Analysis
To analyse whether the distribution of behavioural choices of

butterflies and wasps was affected by egg age and plant phenotype,

a generalized linear model (GLM) with a logit link function and a

binomial distribution for errors was used. The response of a

number of animals tested with one set of plants served as

experimental unit in the analyses. For each phenotype - -egg age -

-animal species-combination at least five newly prepared plant

combinations were used. The responses were analysed separately

for the three animal species. When overdispersion was detected in

the variance parameter, we corrected for this by allowing the

variance functions of the binomial distribution to have a

multiplicative overdispersion factor by dividing the square root

of the deviance of the model by the degrees of freedom.

To determine whether there was a preference for an odour

source within a treatment combination, we used one sample t-test

on the proportion of wasps preferring egg induced volatiles in each

replicate. Data were arcsine-transformed and tested against

arcsine (0.5), i.e. no preference for either odour source. Non-

responding wasp were excluded from the analyses (both GLM and

t-tests).

Percentages of P. brassicae eggs hatching on HR+ and HR2

plants were compared with a chi-square test using a 262

contingency table. Performance of T. brassicae on HR+/2 plants

in relation to egg age was also analysed using a GLM. The

proportions of P. brassicae eggs that were parasitized by T. brassicae

were analysed using the same GLM approach as for the

behavioural responses. The offspring numbers were compared

with a logarithm link function and a Poisson distribution for the

errors.

Volatile compounds, measured as peak area divided by the fresh

weight of a plant’s foliage were analysed using the software

program SIMCA P+12.0 (Umetrics AB, Umeå, Sweden). A PLS-

DA was used to determine whether samples belonging to specific

groups (here treatments) could be separated based on quantitative

differences in volatile emissions [74]. A Y-data matrix of dummy

variables was included, which assigns a sample to its respective

class. The PLS-DA extension of the SIMCA P+12.0 program used

for this analysis approximates the point ‘swarm’ in X (matrix with

volatile compounds) and Y in PLS components in such a way that

maximum covariation between the components in X and Y is

achieved. The results of the analysis were visualised in score plots,

which reveal the sample structure according to the model

components, and loading plots, which display the contribution of

the volatile emission to these components, as well as the

relationships among the variables. PLS-DAs were performed on

full data sets including all volatile compounds and on restricted

data sets containing compounds of which the VIP (Variable

Importance in the Projection) values were greater than 1. Data

were log-transformed, mean-centred, and scaled to unit variance

before they were subjected to the analysis.

A Mann-Whitney-U-test was used to test differences in peak

area per compound between treated and control plants. A sign test

was used to determine whether the number of compounds emitted

in larger or smaller amounts differed from a 50:50 distribution.
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