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Abstract

Extracellular matrix deposition and tissue scarring characterize the process of fibrosis. Transforming growth factor beta
(TGFb) and Insulin-like growth factor binding protein-3 (IGFBP-3) have been implicated in the pathogenesis of fibrosis in
various tissues by inducing mesenchymal cell proliferation and extracellular matrix deposition. We identified Syndecan-2
(SDC2) as a gene induced by TGFb in an IGFBP-3-dependent manner. TGFb induction of SDC2 mRNA and protein required
IGFBP-3. IGFBP-3 independently induced production of SDC2 in primary fibroblasts. Using an ex-vivo model of human skin in
organ culture expressing IGFBP-3, we demonstrate that IGFBP-3 induces SDC2 ex vivo in human tissue. We also identified
Mitogen-activated protein kinase-interacting kinase (Mknk2) as a gene induced by IGFBP-3. IGFBP-3 triggered Mknk2
phosphorylation resulting in its activation. Mknk2 independently induced SDC2 in human skin. Since IGFBP-3 is over-
expressed in fibrotic tissues, we examined SDC2 levels in skin and lung tissues of patients with systemic sclerosis (SSc) and
lung tissues of patients with idiopathic pulmonary fibrosis (IPF). SDC2 levels were increased in fibrotic dermal and lung
tissues of patients with SSc and in lung tissues of patients with IPF. This is the first report describing elevated levels of SDC2
in fibrosis. Increased SDC2 expression is due, at least in part, to the activity of two pro-fibrotic factors, TGFb and IGFBP-3.
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Introduction

The process of fibrosis is characterized by activation and

proliferation of fibroblasts, and excessive deposition of extracellu-

lar matrix (ECM) that produces abnormal scarring of tissues

leading to organ failure. The balance between pro-fibrotic and

anti-fibrotic factors plays an important role in the development of

fibrosis. Transforming growth factor beta (TGFb) is one of the

most studied pro-fibrotic factors. It has been implicated in the

pathogenesis of liver, kidney, lung and skin fibrosis [1]. TGFb
induces mesenchymal cell proliferation, increased ECM produc-

tion and a fibrotic response in various tissues [2].

We and others have shown that TGFb induces Insulin like

growth factor binding protein-3 (IGFBP-3) mRNA and protein

expression [3], [4], [5], [6], [7], [8]. In previous studies, we

demonstrated a time-dependent increase in IGFBP-3 secretion in

response to TGFb stimulation of primary lung fibroblasts [8].

IGFBPs are carrier proteins that can exert their function through

Insulin-like growth factors (IGF). IGFBP-3 also has IGF-indepen-

dent effects that involve interaction with TGFb receptors and

direct translocation into the nucleus [9], [10]. IGFBP-3 levels are

increased in the bronchoalveolar lavage (BAL), lung tissue, and

primary fibroblasts of patients with idiopathic pulmonary fibrosis

(IPF) [8], [11]. We have shown that IGFBP-3 contributes to ECM

deposition in primary fibroblasts and increases dermal and

collagen bundle thickness in a human ex vivo skin explant model

[8], [12], [13].

Using microarray analysis (unpublished data), we identified

Syndecan-2 (SDC2) as a TGFb-induced gene requiring IGFBP-3

expression. TGFb has been shown to induce heparan sulfate

proteoglycan (HSPG) production independently of its effects on

proliferation. TGFb also up-regulates proteoglycan production in

the bleomycin model of lung fibrosis [14], and induces SDC2

expression in human periodontal ligament cells, osteoblasts and rat

liver fibroblasts [15], [16], [17]. Using the same microarray

analysis, we also identified Mitogen-activated protein kinase-

interacting kinase (Mknk2) as a gene induced by IGFBP-3. Two

isoforms of Mknk2 have been identified, Mknk2a and Mknk2b

[18]. We show that IGFBP-3 specifically induced Mknk2a levels

and phosphorylation. Mknk2 acted downstream of IGFBP-3 to

induce SDC2 production ex vivo.

SDC2 is a HSPG expressed in endothelial, mesenchymal and

carcinoma cells. HSPGs sequester proteins within secretory

vesicles, link proteins together within the ECM, and bind proteins

to the cell surface. The Syndecans are a family of four
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transmembrane proteoglycans divided in two subfamilies (Synde-

can 1 and 3 and Syndecan 2 and 4, respectively) based on their

sequence homology [19]. A cytoplasmic domain enables the

Syndecans to associate with cytoskeletal proteins and signaling

molecules [20]. The SDC2 ectodomain promotes focal adhesion

and stress fiber formation in fibroblasts in a distinct pattern from

fibronectin and independent of heparan sulfate requirement [21].

SDC2 also controls laminin and fibronectin matrix assembly into a

fibrillar matrix [22], [23]. SDC2 regulates TGFb induction of

matrix deposition and increases total and surface levels of TGFb
receptors type I and II [24]. SDC2 expression is increased in the

tubulo-interstitium of kidneys from type II diabetic patients, and

its inducible role in fibrosis has been demonstrated in Syndecan 4

deficient mice, where SDC2 is up-regulated in parallel with TGFb
during unilateral nephrectomy-induced glomerulosclerosis [24],

[25]. SDC2 also increases Integrin-alpha2 expression levels and

enhances collagen adhesion, cell migration and invasion in normal

rat intestinal epithelial cells [26]. The importance of SDC2 in

matrix remodeling was emphasized by silencing SDC2, which

resulted in disruption of actin cytoskeleton formation and

fibronectin deposition [27].

In summary, we identified SDC2 as a novel target of IGFBP-3

and TGFb. Both IGFBP-3 and TGFb induce SDC2 expression,

and TGFb induction of SDC2 is mediated by IGFBP-3. SDC2 is

also over-expressed in fibrotic dermal and lung tissues. Our

findings identify a novel pathway involving TGFb, IGFBP-3,

Mknk2 and SDC2 in organ fibrosis.

Results

TGFb1 induction of SDC2 gene expression is mediated by
IGFBP-3

SDC2 was identified by microarray analysis as a gene induced

by TGFb in an IGFBP-3-dependent manner. Briefly, IGFBP-3

was silenced in primary lung fibroblasts using sequence-specific

siRNA, then cells were stimulated with TGFb to assess which

genes require IGFBP-3 for induction by TGFb (data not shown).

To confirm the microarray findings we repeated the experiment

and examined SDC2 mRNA expression. When IGFBP-3 was

silenced using siRNA, TGFb induction of SDC2 gene expression

was abolished, suggesting that TGFb requires IGFBP-3 for the

induction of SDC2 (Figure 1A). Silencing IGFBP-3 did not alter

mRNA levels of SDC1, SDC3 or SDC4 (Figure S1).

We have previously shown that IGFBP-3 secretion is increased

in fibrosis [8]. Since both TGFb and IGFBP-3 are implicated in

the development of fibrosis, and both of these factors induce

expression of SDC2 mRNA (Figure 1A), we assessed SDC2

protein levels in primary lung fibroblasts stimulated with TGFb
and in which IGFBP-3 expression and induction by TGFb were

silenced. TGFb induction of SDC2 protein levels was also

dependent on IGFBP-3 as silencing of IGFBP-3 abolished TGFb
induction of SDC2 (Figure 1B).

IGFBP-3 can directly induce SDC2 expression
To determine if IGFBP-3 can stimulate SDC2 expression

independently of TGFb, we stimulated primary lung fibroblasts

with recombinant TGFb, IGFBP-3, or both growth factors and

examined SDC2 mRNA levels. In vitro, TGFb and IGFBP-3

induced SDC2 gene expression independently, but their combined

use did not result in an additive or synergistic effect (Figure 2).

IGFBP-3 induces SDC2 gene and protein expression in a
time-dependent manner

Having shown that recombinant IGFBP-3 can independently

induce SDC2 expression, we confirmed our findings and extended

them using adenoviral expression of IGFBP-3 in primary human

fibroblasts. Adenoviral expression of IGFBP-3 increased SDC2

mRNA levels in a time-dependent manner (Figure 3A). In contrast

to induction of SDC2, expression of IGFBP-3 did not increase

expression of SDC1, SDC3, or SDC4 (Figure S2), and in fact a

reduction in SDC4 mRNA was noted at 24 and 48 hrs.

Adenoviral expression of IGFBP-3 also resulted in increased

production of SDC2 protein in culture media conditioned by

primary human fibroblasts (Figure 3B).

SDC2 production is induced in skin engineered to
express IGFBP-3

We have previously demonstrated that IGFBP-3 can induce a

fibrotic phenotype in vitro, in vivo, and ex vivo [8], [12], [13]. To

assess the effects of IGFBP-3 in human tissues, we detected SDC2

proteins in human skin maintained in organ culture and

engineered to express human IGFBP-3 as previously described

[12]. Using immunohistochemistry, we detected an increase in

Figure 1. A) TGFb induction of SDC2 gene expression is IGFBP-
3-dependent. Normal fibroblasts were transfected with siRNA
targeting IGFBP-3 (siBP3), then stimulated with TGFb (10 ng/
ml) for 48 hours. RT-PCR was used for the detection of SDC2 in
100 ng equivalent of template. b-actin was used as control. Experi-
ments were done in triplicate. B) TGFb induction of SDC2 protein is
IGFBP-3-dependent. Primary human lung fibroblasts were transfected
with siRNA targeting IGFBP-3 or IGFBP-5 as a related protein control.
Fibroblasts were stimulated with TGFb (10 ng/ml). Cellular lysates were
analyzed by immunoblotting for SDC2 protein after 72 hrs. Efficiency of
silencing was assessed by detecting IGFBP-3. GAPDH was used as
internal control.
doi:10.1371/journal.pone.0043049.g001

Figure 2. TGFb and IGFBP-3 induce SDC2 gene expression.
Normal lung fibroblasts were stimulated with recombinant TGFb
(10 ng/ml), IGFBP-3 (BP-3; 250 ng/ml) or both (B+T) for 48 hours.
SDC2 mRNA was detected by RT-PCR using 100 ng template. b-actin
was used as control.
doi:10.1371/journal.pone.0043049.g002
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SDC2 expression in the upper dermis of skin injected with IGFBP-

3 expressing adenovirus (Figure 4).

SDC2 is over-expressed in fibrotic tissues
Since IGFBP-3 induces SDC2 expression and IGFBP-3

expression and deposition is increased in IPF [8], we used

immunohistochemistry to detect SDC2 protein in vivo in IPF lung

tissues and those from patients with SSc-associated pulmonary

fibrosis. Compared to normal lung, SDC2 protein was increased in

fibrotic lung tissues of patients with IPF and SSc-associated

pulmonary fibrosis (Figure 5A). To determine if increased SDC2

in lung tissues is organ-specific, we examined skin tissues from

patients with SSc. SDC2 was also increased in the clinically

affected skin of patients with SSc compared with clinically

unaffected skin from the same patients and normal donor skin

(Figure 5B).

Silencing SDC2 does not prevent TGFb induction of
fibrotic genes

Since SDC2 is increased in fibrotic organs, we examined the

effect of silencing SDC2 in primary human fibroblasts on the levels

of TGFb-inducible genes. SDC2 silencing did not significantly

alter TGFb induction of collagen, fibronectin, aSMA, or CTGF in

primary fibroblasts from two donors and in MRC-5 cells

(Figures S3A–S3C). This may be due, in part, to the long half-

Figure 3. IGFBP-3 induces SDC2 expression in a time-depen-
dent manner. Primary fibroblasts were infected with Ad-IGFBP3 (Ad3)
or control Ad (Cad) at an MOI of 50 for 24 h, 48 h, 72 h and 96 h
respectively. A) SDC2 and IGFBP-3 gene expression was examined by
RT-PCR. b-actin was used as control. B) SDC2 protein levels were
detected by immunoblotting. GAPDH was used as control.
doi:10.1371/journal.pone.0043049.g003

Figure 4. SDC2 is over-expressed in IGFBP-3 expressing human skin. Human skin explants were infected with either control adenovirus
(cAd; A and C) or adenovirus encoding IGFBP-3 (Ad-3; B and D) and maintained in culture for 7 d and sections of paraffin embedded tissue were
analyzed for the expression of SDC2 by immunohistochemistry. B and D are histological images showing the expression of SCD2 in dermal fibroblasts
following infection with Ad-IGFBP-3. A and B, magnification = 100x. C and D, magnification = 400x.
doi:10.1371/journal.pone.0043049.g004
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life of HSPGs compared to the relatively short duration of in vitro

silencing experiments.

IGFBP-3 activates Mknk2
IGFBP-3 activates p44/42 MAPK signaling cascade [28]. One

of the genes identified by microarray analysis to be induced by

IGFBP-3 was Mknk2 (data not shown), a downstream target of

p44/42 MAPK [18]. To confirm the microarray data, we

examined mRNA and protein levels of Mknk2 following IGFBP-

3 expression. IGFBP-3 caused a dose-dependent increase in

Mknk2a expression (Figure 6A) and an increase in Mnk

phosphorylation (Figure 6B). To confirm the phosphorylation of

Mknk2a, we generated a construct expressing human Mknk2a and

confirmed the activation of Mknk2a by IGFBP-3 in primary

human fibroblasts. Mknk2 was phosphorylated in fibroblasts

expressing human Mknk2a and stimulated with recombinant

IGFBP-3 (Figure 6C). Thus, IGFBP-3 increases levels and

activation of Mknk2a in human fibroblasts.

Mknk2a induces SDC2 production
To assess the effect of Mknk2a on SDC2 production in human

tissues, SDC2 was detected in human skin engineered to express

Mknk2a. Mknk2a induced expression of SDC2 as detected by

immunohistochemistry (Figure 7). Induction of SDC2 was specific

as a parallel increase in fibronectin levels was not observed

(Figure 7). In contrast, we have previously shown that IGFBP-3

induces expression of fibronectin in human skin [12]. This suggests

that Mknk2a likely mediates IGFBP-3 induction of SDC2 but not

fibronectin.

Discussion

IGFBP-3 and TGFb have been implicated in the development

of fibrosis in SSc and IPF, as well as other fibrosing conditions. We

and others have shown that TGFb increases IGFBP-3 secretion in

vitro [3], [4], [5], [6], [7], [8]. We now demonstrate that IGFBP-3

independently induces SDC2 and regulates TGFb induction of

SDC2 in primary human fibroblasts. Thus IGFBP-3 serves as a

downstream modulator of TGFb action. Our data also show that

SDC2 levels are increased in vivo in fibrotic lung and skin.

It is well documented that IGFBP-3 activates the MAPK

signaling cascade. A component of the cascade, p44/42 MAPK is

reported to phosphorylate and thus activate the Mnk family of

kinases that includes Mnk1 and Mknk2a and 2b [18]. We show

that IGFBP-3 induces Mknk2a expression and results in the

activation of this kinase. Mknk2a in turn induces SDC2

production in human skin engineered to express the kinase.

Mknk2a exerts some of its effects in mammalian cells via

phosphorylation of eukaryotic initiation factor 4E, thus modulat-

ing protein translation [29], [30], [31]. Although the exact

mechanism by which Mknk2a modulates SDC2 levels remains to

be determined, our findings suggest that IGFBP-3 triggers MAPK

Figure 5. A) SDC2 is highly expressed in fibrotic lung. Immunohistochemistry was used to detect SDC2 in lung tissues normal donors, patients
with IPF, and patients with SSc-associated pulmonary fibrosis. Images are representative of data obtained with lung tissues from 6 normal donors, 9
patients with IPF, and 6 patients with SSc. Rabbit IgG was used as an antibody control. Magnification = 400x. B) SDC2 is over-expressed in SSc affected
skin. Immunohistochemistry was used to detect SDC2 in normal donor skin, clinically unaffected and affected skin from a patient with SSc. Images are
representative of data from skin of 4 patients with SSc and two controls. Magnification = 200x (left panel), 400x (right panel).
doi:10.1371/journal.pone.0043049.g005
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activation of Mknk2a, which then mediates its stimulatory effects

on SDC2 production.

The syndecans, including SDC2, mediate several cellular

processes including cell signaling and cytoskeletal organization.

SDC2 promotes cell proliferation and migration. SDC2 also

mediates cell-matrix interactions. SDC2 is over-expressed in

fibrotic glomerulosclerosed kidneys of Syndecan-4 null mice and

fibroblasts from the tubulointerstitium of kidneys from type II

diabetic patients [23], [24]. We identified that SDC2 is over-

expressed in fibrotic skin of patients with SSc as well as fibrotic

lung of SSc and IPF patients. Our findings and those of others

suggest that SDC2 is increased in fibrosis irrespective of the organ

or fibrotic trigger involved.

SDC2 is induced by TGFb, but in vitro silencing SDC2 does not

abrogate TGFb induction of fibrotic genes such as collagen,

fibronectin and CTGF. This is not surprising since the kinetics of

TGFb induction of SDC2 parallel those of other fibrotic genes and

since HSPG’s are known to have a prolonged half-life. However,

we can envision other roles for SDC2 in fibrosis, based on its

function in tumorigenesis and metastasis. SDC2 serves as a

docking receptor for matrix metalloproteinase (MMP)-7 in cancer

cells [32], an enzyme implicated in the pathogenesis of fibrosis

[33], [34]. SDC2 also suppresses MMP-2 activation, and

subsequently metastasis, of lung carcinoma cells [35]. In fibrosis,

a reduction in MMP-2 activity would result in decreased matrix

degradation and increased accumulation of extracellular matrix

proteins.

An additional potential role for SDC2 in fibrosis emerges from

its role in extracellular matrix assembly [22]. We show that SDC2

expression is induced by IGFBP-3 and TGFb. Since both TGFb
and IGFBP-3 induce fibronectin production, and SDC2 is

required for fibronectin matrix assembly, SDC2 may contribute

to fibrosis by enhancing ECM assembly and deposition. Modu-

lation of TGFb action is another mechanism by which SDC2

could potentially act, since it was reported to potentiate TGFb
mediated matrix deposition by increasing the amounts of types I

and II TGF receptors [24]. SDC2 also interacts with growth

factors such as members of the TGFb superfamily and sequesters

them to present them to their receptor(s) and even functions as a

co-receptor for various factors [36]. Furthermore, SDC2 has been

shown to regulate cell migration by enhancing adhesion and

proliferation of cancer cells and fibroblasts [37], [38]. Enhanced

migration and proliferation of fibroblasts is another mechanism

implicated in the pathogenesis of organ fibrosis.

Although SDC-1 and -4 have been implicated in fibrosis [39],

[40], [41], [42], [43] and have been suggested as targets for the

treatment of lung diseases [44], we did not detect an increase of

SDC-1, 3, or 4 in primary human fibroblasts in response to TGFb
or IGFBP-3. We demonstrate increased SDC2 levels in human

fibrotic diseases as well as regulation of SDC2 by IGFBP-3.

Further experimentation is warranted to determine whether

regulating SDC2 can interfere with matrix assembly in fibrosis.

Materials and Methods

Materials, Antibodies and Reagents
Dulbecco’s modified Eagle’s medium (DMEM) was purchased

from Cellgro-Mediatech, Inc (Herndon, VA), fetal bovine serum

Figure 6. IGFBP-3 induces Mknk2a expression and activation. Primary normal skin fibroblasts were infected with Ad-IGFBP3 (Ad3) or control
Ad (C) at an MOI of 50 for 24 h, 48 h and 72 h or 48 h, 72 h and 96 h. A) Mknk2a gene expression was examined by RT-PCR. B) IGFBP-3 activates
Mnk. Primary human lung fibroblasts were treated with 250 ng/ml recombinant human IGFBP-3 for 5–30 minutes. Phosphorylation of Mnk was
assessed by immunoblotting. C) IGFBP-3 activates Mknk2a. MRC-5 cells were transfected with p-Adlox expressing human Mknk2a. Cells were
stimulated with rhIGFBP-3 (250 ng/ml). Lysates were examined for Mknk2 activation at 10, 30 and 60 minutes. Total Mknk2 and GAPDH were used as
loading controls.
doi:10.1371/journal.pone.0043049.g006
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(FBS) from Sigma-Aldrich (St. Louis, MO), penicillin, streptomy-

cin, and anti-mycotic agents from Invitrogen Life Technologies

(Carlsbad, CA). The Aminoethyl Carbazole Substrate kit was from

Zymed (San Francisco, CA). The ABC kit was from Vector labs,

Inc. (Burlingame, CA). TRIzol, oligo (dT)12_15 primer, Super-

script II reverse transcriptase, Protein A, and Protein G agarose

were from Invitrogen Life Technologies. Antibodies were

purchased as follows: Anti-human GAPDH, anti-fibronectin,

and anti-human IGFBP-3 antibodies were purchased from Santa

Cruz, Inc. (Santa Cruz Biotechnology, Inc., CA). Anti-human

Syndecan-2 was purchased from Zymed. Anti-human Mknk2 was

purchased from Sigma (St Louis, MO), Anti-phospho-mnk1 was

purchased from Cell Signaling (Beverly, MA). Anti-CTGF and a-

SMA antibodies were purchased from Abcam (Cambridge, MA),

and Anti-collagen 1A1 was from Abnova (Taipei, Taiwan).

Species-specific horseradish peroxidase-conjugated secondary an-

tibodies were purchased from Santa Cruz, Inc. and GE

Healthcare (UK). Recombinant human (rh) IGFBP-3 was

purchased from Gropep Ltd (Adelaide, Australia) and rh-TGFB1

from R&D Systems (Minneapolis, MN).

Cell Culture and Treatment
All tissues were obtained under a protocol approved by the

Institutional Review Board of the University of Pittsburgh and

with the written consent of donors or donor families (for normal

lung donors). Primary human fibroblasts were obtained from

healthy control donors and patients with systemic sclerosis and

idiopathic pulmonary fibrosis. Lung fibroblasts were obtained

from lung explants of patients undergoing lung transplantation at

the University of Pittsburgh Medical Center. MRC-5 cells were

obtained from American Type Culture Collection (Manassas, VA).

Cells were grown in Dulbecco’s modified Eagle’s medium

(DMEM) supplemented with 10% fetal bovine serum (FBS),

100 U/ml penicillin, 10 mg/ml streptomycin and 2.5 mg/ml

amphotericin B, and maintained at 37uC in 5% CO2 humidified

incubator. Primary fibroblasts were used in passages 2 to 7. For

RNA silencing, primary fibroblasts in early passage were plated at

1.56105 in 6-well culture plates. Fibroblasts were transfected with

100 pmol sequence-specific or scrambled control siRNA (Life

Technologies (Grand Island, NY) using Lipofectamine 2000

(Invitrogen Life Technologies, Inc.). Cells were harvested for

RNA or protein extraction after 48 hrs. For treatment with

recombinant proteins, cells were serum starved 24 h in serum free

media, then rh-IGFBP-3 (250 ng/ml) or rhTGFb (10 ng/ml) were

added for 24–72 hours. For adenoviral gene expression, infections

were carried out in PBS with Control (cAd), IGFBP3 (Ad-IGFBP3)

or Mknk2a expressing adenovirus at a multiplicity of infection

(MOI) of 50. Briefly, fibroblasts were incubated with adenovirus

for 1 h at room temperature and then in growth medium for 16 to

96 hours. Culture supernatants, extracellular matrix and cellular

lysates were harvested at the indicated times for each experiment.

RNA Extraction and Reverse Transcription-PCR (RT-PCR)
Total RNA from cultured cells was extracted using Trizol

reagent (Life Technologies, Inc.) according to the manufacturer

instructions. Two mg of total RNA were used as template for

reverse transcription using random primers. The cDNA obtained

was amplified using the following primers: b-actin forward primer

59-atgtttgagaccttcaacac-39 and reverse primer 59-cacgtcacacttcatgatgg-39;

GAPDH forward primer 59- cgaccactttgtcaagctca -39 and reverse

primer 59- aggggtctacatggcaactg -39; SDC1 forward primer 59-

gggactcagccttcagacag -39 and reverse primer 59 ggaaagacgaaggca-

cagag -39; SDC2 forward primer 59- tcgagagcagagctgacatc-39 and

reverse primer 59- gcgttctccaaggtcatagc-39; SDC3 forward primer 59-

gactcctttcccgatgatga -39 and reverse primers 59- gtcagtgggagagg-

cagaag -39; SDC4 forward primer 59- cattaaaccccttccccagt -39 and

reverse primer 59- agcctgaagaaagcaaacca -39; IGFBP-3 forward

primer 59-ctgactctgctggtgctgct-39 and reverse primer 59-tacgg-

cagggaccatattct-39; Mknk2 forward primer: 59- caagaagaggggcaa-

gaaga-39 and reverse primer: 59- agtccccgttgagtttgatg-39;. PCR

reactions were carried in a PTC-200 Peltier Thermal Cycler.

Initial denaturation was at 95uC for 4 min and then 35 cycles of

denaturation at 95uC for 45 seconds, annealing at 57uC for

30 seconds and extension at 68uC for 60 seconds. The PCR

products were separated by electrophoresis on 1% agarose gels

and visualized with ethidium bromide staining.

Immunoblotting
Cells were washed twice with 1x PBS, scraped in 2X- sodium

dodecyl sulfate (SDS) sample buffer, boiled, and equal protein

amounts were resolved on 10% sodium dodecyl sulfate polyacryl-

amide (SDS-PAGE) gels. Proteins were transferred to nitrocellu-

lose membranes (Whatman, Germany) and non-specific binding

was blocked with 5% nonfat dry milk in TBS-Tween 20 for at least

1 h. Membranes were incubated with primary antibodies over-

night at 4uC and horseradish peroxidase-conjugated secondary

antibodies for 1 h at room temperature. Signals were detected

with enhanced chemiluminescence (Perkin Elmer Life Sciences,

Inc., Boston, MA) and autoradiography on X-ray film (Kodak).

Ex vivo human skin assays
Human skin was obtained from corrective plastic surgery. All

tissues were obtained according to the guidelines of the University

of Pittsburgh and under a protocol approved by the Institutional

Figure 7. SDC2 levels increase in human skin engineered to
express Mknk2a. Human skin was injected with cAd or Ad-Mknk2a
and maintained in organ culture for one week. SDC2 and fibronectin
were detected by immunohistochemistry. A control antibody was used
in the lower panels. Magnification = 200x.
doi:10.1371/journal.pone.0043049.g007
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Review Board of the University of Pittsburgh. As previously

described [12], subcutaneous fat tissue was removed uniformly

and skin tissue was cut into 1.5 cm61.5 cm sections. The

following were injected intradermally in a total volume of

100 ml: Control adenovirus (Cad), adenovirus expressing human

IGFBP-3 (Ad3), or adenovirus expressing human Mknk2a. The

preparation of the adenoviral constructs was previously described

[8]. Skin tissues were harvested one week post-adenoviral

administration, fixed in 10% formalin, and embedded in paraffin.

Immunohistochemistry
Six mm sections of paraffin-embedded skin and lung tissues were

de-paraffinized and antigens retrieved using 10 mM sodium

citrate, pH 6.0. Endogenous peroxidase was quenched using 3%

Hydrogen peroxide. Sections were blocked with 5% serum and

incubated with anti-Syndecan-2, anti-fibronectin antibody, or

control antibody (Lab Vision Thermo Scientific, Kalamazoo, MI),

followed by secondary antibody. Bound secondary antibody was

detected using the AEC Red kit. A light hematoxylin counter stain

was used to identify nuclei. Images were taken on a Nikon Eclipse

800 microscope (Nikon Instruments, Inc, Huntley, IL) using

identical camera settings.

Plasmid and Adenovirus constructs
The full-length cDNA encoding Mknk2a was obtained by

reverse transcription-polymerase chain reaction (RT-PCR) using

total RNA extracted from primary human lung fibroblasts with the

following primers: Forward Primer: 59- cggacagaagATGGTGCAGa-

39 and Reverse Primer:59- AGGGTCAggcgtggtctc-39 (capital letters

indicate the coding frame). The cDNA was ligated into the p-

GEMTeasy vector (Promega). The reading frame was confirmed

by sequence analysis using SP6 and T7 primers. The Mknk2a

cDNA was subcloned into the shuttle vector pAdlox and used for

the preparation of replication deficient serotype 5 adenovirus

expressing Mknk2a in the Vector core facility of the University of

Pittsburgh as previously described [8].

Fibroblast Transfection
MRC-5 fibroblasts were cultured in DMEM supplemented with

10%FBS. Cells were transfected with 1mg DNA (pAdlox-Mknk2a)

using Lipofectamine 2000 (Invitrogen Life Technologies, Inc.)

following the manufacturer’s suggestions.

Supporting Information

Figure S1 Silencing IGFBP-3 does not modulate levels of
SDC1, SDC3, or SDC4. Normal fibroblasts were transfected

with siRNA targeting IGFBP-3 (siBP3), then stimulated with

TGFb (10 ng/ml) for 48 hours. RT-PCR was used for the

detection of SDC1, 3, and 4. b-actin was detected as a loading

control.

(TIFF)

Figure S2 IGFBP-3 does not induce SDC1, 3, or 4
expression. Primary fibroblasts were infected with Ad-IGFBP3

(Ad3) or control Ad (Cad) at an MOI of 50 for 24 h, 48 h, 72 h

and 96 h respectively. SDC1, 3, and 4 gene expression was

examined by RT-PCR. b-actin was detected as a loading control.

(TIFF)

Figure S3 Silencing SDC2 does not alter TGFb induction
of fibrotic genes. Primary fibroblasts were transfected with

control siRNA or SDC2-specific siRNA. After 16 hours, cells were

serum starved and treated with vehicle or TGFb for 48 hrs. Levels

of SDC2 mRNA were detected by RT-PCR (A) and protein levels

of SDC2, Collagen, Fibronectin, CTGF, and aSMA were detected

by immunoblotting (B). The experiments were repeated in

primary human fibroblasts from two different control donors,

NL1 and NL2, and MRC-5. GAPDH was detected as a loading

control for both mRNA and protein.

(TIFF)
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