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Abstract

Enzymes play a fundamental role in almost all biological processes and identification of catalytic residues is a crucial step for
deciphering the biological functions and understanding the underlying catalytic mechanisms. In this work, we developed a
novel structural feature called MEDscore to identify catalytic residues, which integrated the microenvironment (ME) and
geometrical properties of amino acid residues. Firstly, we converted a residue’s ME into a series of spatially neighboring
residue pairs, whose likelihood of being located in a catalytic ME was deduced from a benchmark enzyme dataset. We then
calculated an ME-based score, termed as MEscore, by summing up the likelihood of all residue pairs. Secondly, we defined a
parameter called Dscore to measure the relative distance of a residue to the center of the protein, provided that catalytic
residues are typically located in the center of the protein structure. Finally, we defined the MEDscore feature based on an
effective nonlinear integration of MEscore and Dscore. When evaluated on a well-prepared benchmark dataset using five-
fold cross-validation tests, MEDscore achieved a robust performance in identifying catalytic residues with an AUC1.0 of
0.889. At a #10% false positive rate control, MEDscore correctly identified approximately 70% of the catalytic residues.
Remarkably, MEDscore achieved a competitive performance compared with the residue conservation score (e.g. CONscore),
the most informative singular feature predominantly employed to identify catalytic residues. To the best of our knowledge,
MEDscore is the first singular structural feature exhibiting such an advantage. More importantly, we found that MEDscore is
complementary with CONscore and a significantly improved performance can be achieved by combining CONscore with
MEDscore in a linear manner. As an implementation of this work, MEDscore has been made freely accessible at http://
protein.cau. edu.cn/mepi/.
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Introduction

Enzymes play a fundamental role in fulfilling diverse biochem-

ical functions and are essentially required for almost all cellular

processes. Although the catalytic mechanisms of certain enzymes

have been well characterized [1], it remains a difficult and

challenging task to rationalize the sequence-structure-function

relationship and unravel the biological functions of the majority of

enzymes. Owing to structural genomics efforts [2,3], a consider-

able number of protein structures have been determined. Solving

the three-dimensional structure of an enzyme can further deepen

our understanding of its catalytic mechanism at the atomic level.

However, it is still a challenging task to establish the linkage

between the given protein structures and their catalytic mecha-

nisms, reflected by the vast number of functionally uncharacter-

ized enzyme structures generated from the structural genomics

projects [4]. As catalytic residues are directly involved in catalytic

processes, their identification is the first crucial step to characterize

the catalytic mechanism and function of an enzyme. Since

experimental determination of catalytic residues from large-scale

proteome data is a costly and daunting task, computational

methods that are capable of identifying catalytic residues from

enzyme sequence and/or structure information play an increas-

ingly important role in complementing the experimental efforts

and supporting the functional annotation. Apart from providing

critical insights into the rules that govern enzymatic catalysis, the

identification of catalytic residues also has important applications

in the areas of drug design [5], protein engineering, metabolic

pathway analysis and synthetic biology [6].
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In the past few decades, intensive efforts have been dedicated to

identifying catalytic residues in proteins and many features or

parameters have been exploited to characterize the properties of

catalytic residues. These features can be generally divided into two

categories: sequence- and structure-based. Amino acid residues

have different propensities to be catalytic residues in nature. For

example, it was previously observed that roughly 65% of catalytic

residues were charged (H, R, K, E, D), 27% were polar (Q, T, S,

N, C, Y, W), and 8% were hydrophobic (G, F, L, M, A, I, P, V)

[7]. Therefore, amino acid residue type is probably the simplest

but one of the most efficiently used sequence features to identify

catalytic residues. In addition, residue conservation, derived from

the multiple sequence alignment (MSA) of a query sequence, has

also proved to be one of the most powerful singular features in

predicting catalytic residues [8–13]. The state-of-the-art residue

conservation algorithms include the Shannon entropy-based

method [14], Jensen-Shannon divergence method [15], Rate4site

algorithm [16] and other methods [17–20]. More recently,

researchers have found that co-evolutionary features could be

commonly derived from the neighboring residues surrounding

functionally important sites [21] and such information could be

utilized to facilitate the identification of catalytic residues [21–23].

Given that enzymes perform their biological functions on the

basis of specific three-dimensional structures, a variety of simple

structural features have been proposed to characterize catalytic

residues. For example, it has been shown that catalytic residues

prefer to be located in the geometric centers of the protein

structures [24]. They also tend to be located in a large cleft on the

protein structure surface [7,25]. Therefore, the distance of the cleft

to the center of protein structure can provide quantitative

information for identifying catalytic residues [26]. In addition, as

most catalytic residues act as either acceptors or donors in the

catalytic process, the hydrogen bonds in protein structures can also

be used to discriminate catalytic from non-catalytic residues

[8,27]. Other important structural and dynamic properties, such

as solvent accessibility [7,27], flexibility of loop regions [7,28] and

B-factors [7,29] have also been used as features or descriptors for

predicting catalytic residues.

Recently, more complicated structure-based features have been

developed to distinguish catalytic from non-catalytic residues. It

has been established in protein engineering that mutations of the

active site residues usually lead to an increased stability. Therefore,

the properties that describe the destabilizing effects of residues

were employed to identify catalytic residues [25,30]. Likewise,

since the electrostatic property is important for an enzyme to

maintain its function, the electrostatic property-based features

derived from the titration curves of residues [31,32] and the

electrostatic energy of residues [33] have proved useful in

predicting catalytic residues. Bryliński et al. observed that the

regions with significant irregular hydrophobicity in enzyme

structures tend to be functionally important and thus developed

a novel feature based on the Fuzzy Oil Drop model to predict

active sites [34]. Sacquin-Mora et al. proposed a force constant-

based feature to quantify the easiness of moving a given residue

relative to the rest in a protein based on the fact that catalytic

residues are generally more rigid than others. They further

employed it as an informative feature to detect catalytic residues

[35]. In summary, most of these structural features are developed

based on physicochemical properties of amino acid residues which

typically require intensive dynamics and/or energy calculations.

This has greatly limited their high-throughput applications.

New features based on improved representations of protein

structures have been proposed in recent years. For example, a

protein structure can be represented as a residue interaction

network where each residue is represented as a node and two

interacting residues are connected by an edge [36]. A network

parameter, i.e. the Closeness centrality (also called Closeness), has

been demonstrated to be an informative feature in detecting

catalytic residues [37–39]. The concept of microenvironment

(ME) has been previously proposed to describe a residue’s local

structural environment [40], extracted from the physical and

chemical properties of the residue and its structurally neighboring

residues at the residue/atom level. The ME-related features have

been widely used to recognize catalytic residues in protein

structures [41–46].

To further improve the prediction performance, some features

have been integrated into different predictors using either

statistical (e.g. logistic regression [30,47] and maximum likelihood

models [48]) or machine learning methods (e.g. support vector

machines [8,43,44,49,50] and neural networks [10,27,51]). In the

past few years, we have witnessed the flourish of such integrative

predictors [52,53]. In summary, statistical methods can yield an

improved performance based on an efficient integration of

individual (which are largely independent) descriptors to simple

and interpretable models. In comparison, although machine

learning methods can usually lead to a more competitive

performance through the use of much larger feature sets, they

have certain disadvantages. For example, they are often criticized

for lacking biological interpretation of the trained ‘black box’

models and thereby difficult for biologists to readily deploy and

understand the predictions of such models.

In this study, we developed a novel structural feature to identify

catalytic residues by integrating the ME and geometrical

properties of residues. Firstly, we converted the ME of a residue

into a series of spatially neighboring residue pairs, whose

propensities to occur in the catalytic ME were deduced from a

pre-built enzyme dataset. Then, we proposed a new feature called

MEscore to characterize the ME of a residue. To the best of our

knowledge, this is the first endeavor to represent the ME of a

residue using a group of residue pairs. We then proposed and

validated another feature called Dscore that quantifies the

centrality of a residue to the whole protein structure. As MEscore

and Dscore are largely complementary to each other, we further

integrated these two features to a novel feature named MEDscore.

Remarkably, MEDscore revealed a competitive performance

compared with the residue conservation score. In this work, we

describe and discuss the construction of MEscore and MEDscore

as well as the overall performance assessment of different features

in detail. Specially, the fundamental mechanism by which

MEscore and MEDscore are informative for catalytic residue

recognition is also discussed.

Results and Discussion

Propensities of residues in the microenvironment (ME)
surrounding the catalytic residues

We systematically analyzed the amino acid compositions of

catalytic residues and their spatially neighboring residues based on

a well-prepared enzyme dataset consisting of 223 catalytic

domains. More details about this enzyme dataset can be found

in the ‘Materials and Methods’ Section. As shown in Figure 1,

catalytic residues tend to be either charged or polar residues,

which is in accordance with previous studies [7]. Interestingly, we

also found that the neighboring residues in the ME surrounding

the catalytic residues exhibit remarkably different propensities:

some residues (C, M, H, S, T, W, Y, F, G) prefer to be located in

the neighborhood of catalytic residues, while others (E, K, R, D,

A, L, P, V, Q) are seldom observed to be around catalytic residues.

A Novel Feature to Predict Catalytic Residues
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When different distance cutoff (Rcutoff) values (ranging from 4.0 to

11.0 Å) were applied to assign the structural neighbors of the

catalytic residues, the corresponding trends of amino acid

compositions in the ME of catalytic residues remain largely

unchanged (Figure 1). Such different residue propensities of ME

indicate that it is possible to develop a feature that represents ME

at the residue level to distinguish catalytic from non-catalytic

residues.

If we consider possible biochemical mechanisms and driving

forces, the propensities of 20 amino acids in the ME of catalytic

residues might reflect the intrinsic requirement for catalytic

reactions. For instance, the enrichment of aromatic residues (i.e.

F, Y, and W) may be attributed to the fact that their side chains

are required to form the cation-p interactions with the charged

catalytic residues and/or charged substrates, which is helpful for

stabilizing the transition state. Similarly, the enrichment of residue

G in the ME of catalytic residues may reduce the steric effects and

facilitate the conformational change of catalytic sites, given that

conformational changes are needed for substrate binding, protons

and/or electrons transport, and product release [54]. We could

envisage that the use of these properties will be very helpful for

deciphering and understanding ME, which will be discussed in the

following sections.

Statistical analysis of MEscore
Based on the observation that catalytic residues have unique

ME features, we further considered converting the ME of a query

residue into a series of spatially neighboring residue pairs and

proposed a scoring function called MEscore to measure the

potential of a query residue being catalytic. To achieve this, we

first constructed a 400-dimensional weight coefficient vector,

WME, to quantify the likelihood of each residue pair in the ME of

catalytic residues, inferred from a pre-built enzyme dataset (the

training dataset). To obtain the MEscore for a query residue, we

summed over the corresponding coefficients of all residue pairs

related to the query residue within a distance threshold. Generally,

the higher the MEscore, the higher the probability for the query

residue to be catalytic. Details regarding the definitions and

calculations of WME and MEscore can be found in the ‘Materials

and Methods’ Section.

The 400-dimensional weight coefficient vector WME, after

being converted into a 20620 matrix, is shown in Figure 2 and

Table S1. Different residue pairs exhibit scaled propensities in the

ME of catalytic residues, thereby providing important insights into

the molecular mechanism of enzymatic catalysis. For instance, the

residue D is frequently observed in the ME of catalytic H and R

(Figure 2 and Table S1). It has been previously shown that the pKa

value of the catalytic residue H would increase when there was a

structurally neighboring residue D in local structures, as residue D

could help the catalytic residue H perform its function as an acid-

base [55]. A similar finding is associated with the catalytic residue

R. In catalytic processes, the residue R usually plays a stabilizing

role [56]. Its spatially neighboring residue D, which has opposite

charge to residue R, helps to stabilize charge concentration [55].

Moreover, the salt bridges or hydrogen bonds formed between the

catalytic residue R and its spatially neighboring residue D also

facilitate the stabilization. In contrast to the amino acid

compositions of catalytic residues and their spatially neighboring

residues, WME clearly quantifies the preference of a residue pair in

the ME of catalytic residues (Figure 2). This implies that the

transformation of ME into the combination of residue-residue

pairs should be more informative in distinguishing catalytic from

non-catalytic residues.

Figure 1. Propensities of 20 amino acids in their roles as catalytic residues and their spatially neighboring residues. The catalytic
propensity of any residue is defined as its frequency been a catalytic residue minus its corresponding background frequency. Likewise, the propensity
of any residue as catalytic residues’ neighbor is defined as its frequency in the MEs of catalytic residues minus the corresponding background
frequency. A positive bar means that the residue is enriched, while a negative bar means that the residue is depleted. The distance cutoff (Rcutoff)
values, ranging from 4 to 11 Å at an interval of 1Å, were used to calculate the structural neighbors of catalytic residues. All the residues in the enzyme
dataset were used to calculate the background frequency.
doi:10.1371/journal.pone.0041370.g001

A Novel Feature to Predict Catalytic Residues
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Since the calculation of MEscore requires a training dataset, we

applied five-fold cross validation tests to evaluate the performance

of MEscores for all the catalytic residues in the enzyme dataset.

Briefly, the enzyme dataset was divided into five subsets with

roughly equal numbers of protein domains. At each cross-

validation step, four subsets were merged into a training dataset

to infer WME and the MEscores of the residues in the remaining

subset (i.e. test dataset) were calculated using the establishedWME

from the training dataset. After completing the five-fold cross

validation tests, we obtained the distribution of MEscores for

catalytic and non-catalytic residues based on the whole enzyme

dataset (Figure 3). The average MEscore for all residues is 0.172.

As shown in Figure 3A, a significant portion of catalytic residues

(.85%) have MEscore values larger than the average for all

residues. In contrast, approximately 35% of the non-catalytic

residues have MEscores larger than the average value (Figure 3B).

Meanwhile, the average MEscore for the catalytic residues is

0.511, which is in sharp contrast to 0.169 for the non-catalytic

residues. Therefore, the MEscores for catalytic residues are

significantly higher than non-catalytic residues (Wilcoxon rank-

sum test, p-value = 8.07e-197), suggesting that MEscore can serve

as a useful feature to discriminate catalytic from non-catalytic

residues. Although the five subsets were compiled randomly, they

share a reasonably similar distribution of MEscore (Figure S1).

This indicates that the MEscore feature is generally robust and

should achieve stable performance in each subset.

Performance of MEscore
The performance of MEscore in predicting catalytic residues

was evaluated using the receiver operating characteristic (ROC)

curves that plot the true positive rate as a function of the false

positive rate for all the possible thresholds. Additionally, the

prediction performance of MEscore was also quantified by the

AUC value (AUC1.0) that represents the corresponding area

under the complete ROC curve. In our study, MEscore achieved

an AUC1.0 value of 0.846 (Figure 4A). For real-world applica-

tions, the ROC curve at a low false positive rate control is more

practical. Therefore, the ROC curve at a 10% false positive rate

control was plotted and the corresponding AUC value (AUC0.1)

was 0.041 (Figure 4B). As listed in Table S2, MEscore does

provide a similar performance across five different subsets in the 5-

fold cross-validation tests. Note that the above ROC analysis was

based on the subset level. That is to say, we generated a ROC

curve for each subset and reported the average ROC curve over

the generated five ROC curves. We also conducted the ROC

analysis on per enzyme basis. Briefly, we generated a ROC curve

for each enzyme domain and the resulting ROC curve was

averaged over all the 223 domains in the enzyme dataset (Figure

S2). Since MEscores were normalized for each enzyme domain,

the ROC curves generated in these two different ways are very

close (cf. Figure 4 and Figure S2).

To avoid the overestimation of the performance of MEscore, a

stringent sequence filter criterion (i.e. the sequence identity

between any two sequences should be less than 30%) was applied

to compile the enzyme dataset. Considering that a larger dataset

may represent more completeness of the known catalytic residues’

Figure 2. The weight coefficients of spatially neighboring residue pairs in the MEs of catalytic residues. The x-axis denotes different
catalytic amino acids and the y-axis represents the corresponding neighboring residue types occurring in the MEs of catalytic residues. A weight
coefficient close to maximum value is color-coded in blue, and it varies continuously to white color as equal to 0.0. Note that the weight coefficients
were derived from the whole enzyme dataset (i.e. the 223 enzymes used in this work).
doi:10.1371/journal.pone.0041370.g002
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ME information, we also used a looser sequence filter criterion (i.e.

50% sequence identity cutoff) to obtain an enlarged enzyme

dataset containing 765 domains and reassessed the performance of

MEscore. Interestingly, there was only a slight increase of the

overall performance based on this extended dataset (Figure S3),

suggesting that the non-redundant enzyme dataset based on 30%

sequence identity has already included sufficient information to

deduce MEscore.

Compared to the exposed residues, the buried residues generally

have a larger number of neighbors (i.e. having more information

about ME). To investigate the performance of MEscore for

residues in different structural locations, we classified residues into

the buried and the exposed according to their relative solvent

accessibility (RSA) values calculated by NACCESS [57]. Then,

the ROC curves for the buried and the exposed residues were

respectively plotted. As shown in Figure S4, the buried catalytic

residues could be more accurately identified compared to the

exposed ones. We further investigated the performance of

MEscore in different structural folds. As shown in Figure S5, the

performance of MEscore varies in different folds.

We further benchmarked MEscore against a simple residue

type-based predictor, which was implemented via statistical

analysis of the catalytic likelihood (CL) of each residue type. As

shown in Figure 4, the performance of MEscore is significantly

better than that of CL at varying false positive rate controls. For

example, MEscore achieved an increase of 6.3% in terms of

AUC1.0 and an increase of 64% in terms of AUC0.1, respectively,

compared to CL’s performance (AUC1.0 = 0.791 and

AUC0.1 = 0.025). The quantitative performance comparison

between MEscore and CL indicates that MEscore does capture

more valuable information beyond the residue type in predicting

catalytic residues.

Performance comparison between MEscore and Dscore
Since catalytic residues tend to be located in the center of

protein structures, the distance of a residue to the geometrical

center of protein has been previously shown to be a powerful

structural feature for identifying catalytic residues [24]. In this

work, we calculated Dscore for each residue in order to

characterize this structural feature and revisited its performance

in identifying the catalytic residues based on the benchmark

Figure 3. The distribution of MEscores. Panel A and Panel B represent the distributions of MEscore in catalytic and non-catalytic residues,
respectively. The pink triangle in x-axis represents the average MEscore of all residues in the enzyme dataset, while the red (Panel A) and blue triangle
(Panel B) denote the average MEscores of catalytic residues and non-catalytic residues, respectively.
doi:10.1371/journal.pone.0041370.g003

A Novel Feature to Predict Catalytic Residues

PLoS ONE | www.plosone.org 5 July 2012 | Volume 7 | Issue 7 | e41370



enzyme dataset. In the context of residue interaction networks, the

Closeness measure compared favorably with other features in

predicting catalytic residues [27,37–39,43,47]. Ben-Shimon and

Eisenstein found that there was a strong correlation between

Dscore and Closeness based on four known enzyme structures

[24]. Here, we confirm the presence of this high correlation in the

current enzyme dataset [Figure 5; Pearson’s correlation coefficient

(PCC) = 0.946]. Therefore, Dscore and Closeness do contain

similar protein structural information, despite the fact that they are

extracted based on different protein structure representations.

Since Closeness also describes a residue’s geometrical distance to

the center of protein structure, it is less likely that a minor

conformation change of protein structure will considerably affect

the performance of Closeness [39]. Considering that catalytic

residues prefer to be located in the center of protein structures, it is

more favorable for catalytic residues to cooperate with other

neighboring residues during the course of catalysis [54] and have

more evolutionary constraints [58]. More importantly, this may be

a universal phenomenon for functional residues; for example,

other functional important residues also tend to be located in the

center of protein structures. Therefore, Closeness has been also

used as a feature for predicting single amino acid polymorphisms

(SAP) [59] and other functional sites in protein structures [37,60].

Apparently, MEscore captures different structural information

in comparison to Dscore and Closeness; it is necessary to

benchmark their performance on the same enzyme dataset. As

depicted in Figure 4, at the Rcutoff of 9 Å, the AUC1.0 value of

MEscore is 0.846 in comparison to 0.810 for Closeness and 0.792

for Dscore. The performance of MEscore is significantly better

than Closeness (DeLong’s test [61,62], p-value = 0.000152) and

Dscore (DeLong’s test, p-value = 2.023e-07). In terms of AUC0.1

(i.e. the area under #10% false positive rate control), MEscore

achieved an AUC0.1 of 0.041, which is also significantly better

than that of Dscore (AUC0.1 = 0.023; Bootstrap test [62], p-

value = 1.200e-20) and Closeness (AUC0.1 = 0.028; Bootstrap test,

p-value = 2.148e-11).

In order to analyze the overlapping predictions by MEscore,

Dscore and Closeness, we drew a Venn diagram based on their

prediction results at the #10% false positive rate (Figure 6A). The

Venn diagram further confirms that Dscore provided a similar

prediction capacity as Closeness. For instance, 221 catalytic

residues were consistently predicted by both Dscore and Closeness,

accounting for 86.7% of the Dscore and 74.7% of Closeness

predictions, respectively. The high number of overlapping

predictions indicates again that these two features describe similar

structural properties of the protein. On the other hand, only

48.2% and 57.0% of the catalytic residues predicted by MEscore

were consistently predicted by Dscore and Closeness, respectively

(Figure 6A). Moreover, there is a weak correlation between

MEscore and the other two features (PCC = 0.112 for Dscore and

PCC = 0.133 for Closeness, respectively). These results suggest

that MEscore is strongly complementary to Dscore and Closeness

and an integration of MEscore with Dscore or Closeness may

result in an even more powerful structural feature. Considering

that the mathematical implementation of Dscore is much easier

than that of Closeness, only the integration of MEscore and

Dscore was carried out in this work.

Integrating MEscore and Dscore into a novel structural
feature

We developed a novel nonlinear integrative structural feature by

combining MEscore and Dscore, termed as MEDscore. MED-

score is a modified MEscore with the positional information (i.e.

Dscore) taken into account. More details are given in the

‘Materials and Methods’ Section. As illustrated in Figure 4A,

MEDscore achieved an AUC1.0 value of 0.889, which is a

significantly improved performance than the individual MEscore

(DeLong’s test, p-value = 3.236e-34) or Dscore (DeLong’s test, p-

value = 1.219e-34). At the false positive rate control of 10%, the

AUC0.1 value of MEDscore is 0.049, which is 113.0% and 19.5%

higher than Dscore (Bootstrap test, p-value = 3.385e-60) and

MEscore (Bootstrap test, p-value = 5.099e-19), respectively.

Figure 4. The ROC curves of different features/predictors. Panel A gives the ROC curves at each possible control of false positive rate, while
panel B only plots ROC curves at a false positive rate #10%.
doi:10.1371/journal.pone.0041370.g004
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As an alternative integration, we also combined MEscore and

Dscore in a linear way to form a feature called MEDscore_LC,

which is defined as a weighted sum of MEscore and Dscore.

MEDscore_LC also achieved a significantly better performance

than MEscore and Dscore (Figure 4). For instance, the AUC1.0

value of MEDscore_LC is 0.882, slightly lower than that of

MEDscore (DeLong’s test, p-value = 0.014). At a false positive rate

control of 10%, MEDscore_LC also revealed a slightly lower

performance in comparison to MEDscore (Figure 4B). The

improved performance of MEDscore and MEDscore_LC further

confirms that MEscore and Dscore are complementary with each

other. The integrative strategies of MEDscore and MEDscore_LC

Figure 5. The relationship between Dscore and Closeness. The red points denote catalytic residues, while the blue points represent the non-
catalytic residues. The correlation coefficient between Dscore and Closeness is 0.946 as derived by regression equation (i.e. the green line).
doi:10.1371/journal.pone.0041370.g005

Figure 6. Venn diagrams showing the numbers of catalytic residues identified at a false positive rate #10%. Panel A shows the
overlapping predictions by three different features (Dscore, Closeness and MEscore), and panel B summarizes the prediction results by MEDscore and
CONscore.
doi:10.1371/journal.pone.0041370.g006
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present several common advantages. For instance, both strategies

are simple and easy to implement, and the two new features have

clear and interpretable physicochemical meanings. Nevertheless,

the integrative strategy of MEDscore is superior to the linear

combination used by MEDscore_LC in terms of the prediction

performance and whether or not there is a requirement for

parameter optimization. Moreover, the construction of MEDscore

has offered a novel and important way to integrate more relevant

features to improve the prediction performance of catalytic

residues as well as other functionally important residues.

Performance comparison between MEDscore and
FEATURE

As a well-established protein functional site predictor, FEA-

TURE extracts a set of features from the structural ME of a query

residue and conducts the prediction through a Bayesian classifier

[63]. A key idea that MEDscore and FEATURE share is the

concept of ME representation. It is of great interest here to

benchmark MEDscore against FEATURE. As can be seen from

Figure 4A, MEDscore outperformed FEATURE slightly

(AUC1.0 = 0.889 vs. 0.874). At the false positive rates of less than

10%, MEDscore was significantly better than FEATURE

(AUC0.1 = 0.049 vs. 0.041; DeLong’s test, p-value = 2.518e-7)

(Figure 4B). Note that another measure MEscore also showed a

better performance than FEATURE at the false positive rate

control of 5% (0.0146 vs. 0.0135, Figure 4B), yet the AUC1.0 of

MEscore was lower than that of FEATURE. However, different to

FEATURE that employs high dimensional feature vectors and a

machine learning-based algorithm to conduct the prediction, our

proposed MEDscore has a clearly defined physicochemical

meaning.

Performance comparison between MEDscore and the
residue conservation score CONscore

As a widely used feature, the residue conservation score has

proved to be the most effective singular feature in catalytic residue

prediction [8–12]. In this section, we benchmarked MEDscore

against one of the most advanced residue conservation measures,

i.e. CONscore. The CONscore was extracted from the Con-

surf_DB database [64], which used the Rate4Site algorithm [16]

to measure the conservation score for each residue in the protein.

As shown in Figure 4, MEDscore showed a comparable

performance with CONscore (AUC1.0 = 0.890; DeLong’s test,

p-value = 0.400). However, the performance of MEDscore was

slightly lower than that of CONscore at the false positive rate

control of #10% (AUC0.1 = 0.049 vs. 0.053; Bootstrap test, p-

value = 0.018).

In addition we further benchmarked MEDscore against two

common conservation scoring methods (i.e. the Shannon entropy

[14] and Shannon entropy with residue properties [65]).As shown

in Figure S6, the performance of MEDscore is better than these

two conservation scores, indicating that MEDscore is competitive

with different residue conservation measures.

Since MEDscore and CONscore target and capture different

properties in proteins, their inter-correlation should be generally

low. Indeed, for all the catalytic residues in the dataset, the PCC

between MEDscore and CONscore was only 0.192, suggesting

that there may be a large complementarity between the two

features. Furthermore, we also generated the Venn diagram based

on their prediction results at the #10% false positive rate control

(Figure 6B). The Venn diagram further suggests that CONscore

and MEDscore are complementary with each other to some

extent. 53.4% of the catalytic residues that were not identified by

CONscore, were correctly predicted by MEDscore. On the other

hand, 58.3% of the catalytic residues that were not identified by

MEDscore, could be correctly predicted by CONscore (Figure 6B).

Therefore, the integration of these two features may lead to a more

accurate and comprehensive predictor of catalytic residues.

To examine the feasibility and advantage of combining

MEDscore and CONscore, we further integrated CONscore and

MEDscore to form a new feature termed as CMEDscore using the

weighted sum of CONscore and MEDscore. As shown in

Figure 4A, CMEDscore achieved the highest AUC1.0 value of

0.920, outperforming MEDscore and CONscore with an increase

in AUC1.0 of 3.48% (DeLong’s test, p-value = 6.627e-25) and

3.37% (DeLong’s test, p-value = 2.202e-06), respectively. At the

false positive rate control of 10%, CMEDscore correctly recog-

nized 81.1% of the catalytic residues and its corresponding

AUC0.1 was 0.064. This is also remarkably higher than MED-

score (Bootstrap test, p-value = 2.681e-37) and CONscore (Boot-

strap test, p-value = 1.132e-15). Taken together, these results

demonstrate that MEDscore has a competitive performance and

an excellent complementarity to CONscore.

Case studies
We performed two case studies to illustrate the prediction

performance of all the features we have developed. In the first case

study, we predicted the catalytic residues of a tryptophan

biosynthesis related enzyme. Tryptophan is an important substrate

for protein biosynthesis in microorganisms and plants [66]. The

first step in synthesizing tryptophan is the biosynthesis of

anthranilate from chorismate, catalyzed by anthranilate synthase

(AnthS, PDB entry: 1QDL [67]). The small domain of AnthS

(TrpG, SCOP family index: c.23.16.1) is a glutamine amido-

transferase (EC 4.1.3.27) that hydrolyzes glutamine and transfers

the ammonia group to a substrate to form a new carbon-nitrogen

group [66,68]. The function of TrpG is carried out through a

catalytic triad of the active site (C84, H175 and E177) [67]. In

Figure 7A, the cartoon representation of TrpG and the prediction

performance at a false positive rate control of 3% are illustrated.

At such a low false positive rate control, Dscore failed to recognize

any catalytic residue and MEscore correctly identified only one

catalytic residue (H175). Remarkably, MEDscore correctly iden-

tified all three catalytic residues, suggesting the robustness of this

nonlinear combination between MEscore and Dscore. In fact,

MEDscore in this case also performed better than CONscore. We

also found that CMEDscore achieved an even better performance,

with all three catalytic residues ranked as the top hits according to

the CMEDscore values.

The second case study concerns the catalytic residue prediction

of diaminopimelate (DAP) epimerase (EC 5.1.1.7), a typical

member of pyridoxal phosphate (PLP)-independent amino acid

racemase involved in lysine biosynthesis [69]. The structure of

DAP epimerase was characterized from Haemophilus influenzae

(PDB entry: 1BWZ), consisting of two homology domains [70]. In

the C-terminal domain (residues 118–262, SCOP family index:

d.21.1.1), three catalytic residues (H159, E208 and C217) directly

contribute to the catalytic process. Figure 7B presents the

performance of different features at the false positive rate control

of 3%. At this rigorous control, the performance of both of

MEDscore and CONscore was weak. MEDscore only correctly

detected one of the three catalytic residues while CONscore

identified none. In comparison, CMEDscore was able to correctly

predict all three catalytic residues. These results indicate that there

indeed exists a complementarity between CONscore and MED-

score.
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It is noteworthy that both of the two query proteins (TrpG and

DAP epimerase) share less than 40% sequence identity with any

other domains in the enzyme dataset used in this work. The

findings from the above case studies provide supportive evidence

that MEDscore and its integration with CONscore (i.e. CMED-

score) can favourably identify a large portion of catalytic residues

from the given protein structure with better accuracy. This

suggests that these new features can be efficiently employed for

practical applications.

Conclusion
A number of structural features have been developed to identify

catalytic residues from enzyme structures. However, the perfor-

mance of most features is not comparable to the most powerful

sequence-based feature, namely, the residue conservation score. In

this work we develop a novel promising structural feature termed

as MEDscore for the identification of catalytic residues. The

superior performance of MEDscore can be ascribed to its

capability of capturing the intrinsic ME and geometrical location

properties of the residues. In particular, it allows the ME of a

residue to be converted into a series of spatially neighboring

residue pairs such that the likelihood of belonging to the catalytic

ME could be deduced from a pre-existing enzyme dataset. To the

best of our knowledge, this research represents the first endeavor

to characterize ME of a residue based on this strategy. From the

practical perspective, we find that the proposed MEDscore

performs better in catalytic residue prediction when being

integrated with other features, such as CONscore. Moreover, it

should be noted that MEDscore may be the first structural feature

that shows a competitive performance compared to the residue

conservation score. We anticipate that this novel structural feature

can be applied to reliably identify catalytic residues, facilitate the

functional annotation of structural genomics targets and improve

our understanding of the complex sequence-structure-function

relationships of enzymes.

Materials and Methods

Benchmark enzyme dataset
The benchmark enzyme dataset used in this study was extracted

from the Catalytic Site Atlas (CSA) database (version 2.2.12) [71].

Total of 7,124 entries with catalytic residues annotated directly in

the literature were extracted. These entries were mapped onto the

SCOP database (version 1.75) [72] and the corresponding PDB

files were downloaded from the ASTRAL database (http://astral.

berkeley.edu/pdbstyle-1.75.html) [73]. These enzymes were

further filtered based on the following criteria: a) the sequence

identity between any two sequences should be less than 30%; b)

the sequence length of any enzyme should be larger than 100; c)

the PDB structures with 10 consecutive missing residues were

excluded; d) only the PDB structures belonging to four SCOP

structural classes (i.e. all-a, all-b, a+b and a/b) were included; e) if

an enzyme had two or more NMR structure models in our dataset,

only the first model was retained; and f) some enzymes were

discarded because that the number of homologous sequences of

the enzymes was insufficient to permit an accurate calculation of

residue conservation scores. Based on the above criteria, 223

enzyme catalytic domains were retained in our final dataset,

covering six top levels of the EC classifications. These 223 enzymes

cover 112 folds, 139 superfamilies and 185 families in terms of the

SCOP classification. In this non-redundant benchmark enzyme

dataset, 630 residues are defined as catalytic residues according to

the CSA annotation, while the remaining 60,658 residues are

regarded as non-catalytic residues. The details about the enzyme

dataset are listed in Supporting Information Text S1.

Definition and Calculation of MEscore
The definition of ME in the context of residue interaction

networks. Given that a protein structure can be represented as

a residue interaction network, residues are viewed as nodes and an

edge can be established if the distance between the two residues is

less than a distance cutoff (Rcutoff). The residue interaction network

can be represented as an adjacency matrix D as follows

Figure 7. Two case studies illustrating the prediction performance of different features at a false positive rate control of 3%. Panel A
shows the predicted catalytic residues of TrpG (the small domain of anthranilate synthase; PDB entry: 1QDL), and panel B gives the predictions of
diaminopimelate (DAP) epimerase (PDB entry: 1BWZ). Top parts: Protein structures are represented by cartoon ribbons and the corresponding
catalytic residues are highlighted by ball-and-stick-models, as seen in the insets. Lower parts: The blue triangles represent the sequence positions of
the catalytic residues. With respect to the prediction results of each feature, the sequence positions of the predicted catalytic residues are marked
using colored bars, with a higher score corresponding to a more saturated color. The black bars denote catalytic residues which a corresponding
feature failed to predict.
doi:10.1371/journal.pone.0041370.g007
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Dij~
1 rijƒRcutoff i=j

0 otherwise

�
ð1Þ

where rij is the spatial distance between residue i and j. In this

work, rij is defined as the shortest distance between any pairs of the

heavy atoms (C, N, O, S) in residue i and j.

In the context of residue interaction networks, the direct

neighboring residues constitute the ME of a given residue. In other

words, the ME of a residue can be defined using its direct

interacting neighbors in the residue interaction network. Here, a

400-dimensional residue pair frequency vector called FME is used

to represent the ME information of a residue, which is defined as

FME~ NME
AA , NME

AC , :::, NME
AmAn

, . . . , NME
YW , NME

YY

� �
400

ð2Þ

Note that the residue pair representation in FME is orientation-

dependent. More specifically, the residue pair AmAn has the

orientation from the query residue Am to its spatially neighboring

residue An. It should be noted that the residue pairs between any

two neighboring residues of Am are not taken into account. The

value of each feature, such as NME
AmAn

, denotes the number of the

corresponding residue pair involved in the ME, which can be

readily extracted from the pre-computed adjacency matrix D of

the protein structure. Although FME of a residue is defined as a

400-dimensional vector, it is highly sparse in nature and only

contains 20 parameters with potential non-zero values.

The residue pair weight coefficient vector. Our hypoth-

esis is that spatially neighboring residue pairs of the catalytic

residues should have a specific frequency distribution and such

specificity can be determined and used to identify catalytic residues

in a given protein structure. To explore the frequency distribution,

we introduce a residue pair weight coefficient vector for each

residue in a protein structure, which is expressed as

WMEi
~ W ME

AA , W ME
AC , . . . , W ME

AmAn
, . . . , W ME

YW , W ME
YY

� �
400
ð3Þ

Here W ME
AmAn

is calculated as

W ME
AmAn

~NME

AmAn
=(NME

Am
|NME

An
) ð4Þ

where NAm and NAn are the numbers of residues Am and An in

the ME of the query residue, respectively. Note that the query

residue itself is also included when counting NAm .

The overall WME vector for catalytic residues is measured by

averaging all the weighted vectors of the related catalytic residues:

WME~

PCNAA

n~1

W ME
AA

lnCNA

,

PCNAC

n~1

W ME
AC

lnCNA

, . . . ,

PCNAmAn

n~1

W ME
AmAn

lnCNAm

,

0
BBB@

. . . ,

PCNYW

n~1

W ME
YW

lnCNY

,

PCNYY

n~1

W ME
YY

lnCNY

1
CCCA

400

ð5Þ

where CNAmAn is the total number of residue pairs of AmAn in all

the MEs of catalytic residues, while CNAm represents the total

number of catalytic residues of type Am.

MEscore
MEscore is proposed to measure the likelihood of a query

residue being catalytic, which is derived using the following

equation:

MEscore~FME|WT
ME ð6Þ

Here WT
ME is the transposed matrix of WME. The MEscores of all

residues in a protein structure are further normalized using the

following equation:

norm score~
score{min(score)

max(score){min(score)
ð7Þ

In this study, six different Rcutoff values (from 3 to 13 Å at an

interval of 2Å) were examined in order to obtain the optimal one.

As a result, MEscore almost achieved the maximal performance

when Rcutoff was set as 9 Å (Figure S7). Therefore, the optimal

value of Rcutoff was set as 9.0 Å.

Definition and calculation of Dscore
Since catalytic residues tend to be located in the center of

protein structures, we further develop a feature termed as Dscore

to characterize this property. Briefly, each residue in a protein

structure is represented by its Ca atom and the atomic coordinates

of the geometrical center of this protein are calculated as follows:

cx,cy,cz

� �
~(

PN
i~1

xi

N
,

PN
i~1

yi

N
,

PN
i~1

zi

N
) ð8Þ

where cx, cy and cz are the coordinates of the center of the protein

structure; xi, yi and zi are the trajectory of the Ca atom in residue i;

while N is the total number of residues in the protein. The distance

between a residue i and the center of the structure (i.e. Dscorei) is

then calculated as

Dscorei~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(cx{xi)

2z(cy{yi)
2z(cz{zi)

2
q

ð9Þ

The Dscore values of each protein are normalized using the above

Eq. (7). After normalization, its values in a protein vary in the

range from 0 to 1. To transform Dscore from a dissimilarity to

similarity measure, each Dscore is subtracted by 1. Thus, a residue

near the center of the protein structure presumably has a relatively

high Dscore.

Definition and calculation of MEDscore and
MEDscore_LC

Dscore is a global feature that describes the positional

information of a residue in protein, while MEscore is a local

feature that describes the local environment surrounding the

residue of interest. As these two types of features capture different

and complementary information of the catalytic residue, we

integrate them to constitute a novel feature in a nonlinear manner.

The rationale behind this nonlinear integration is to construct a

refined MEscore, termed as MEDscore, where the positional

information (Dscore) of each residue involved in the ME

representation is also considered. To achieve this, FME is firstly

modified to FMED:

(7)
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FMED~ NMED
AA , NMED

AC , :::, NMED
AmAn

, . . . , NMED
YW , NMED

YY

� �
400
ð10Þ

where NMED
AmAn

is calculated as

NMED
AmAn

~
XAll AmAn pairs

DscoreAm|DscoreAn ð11Þ

where DscoreAm and DscoreAn are the Dscore of the query

residue Am and its neighboring residue An, respectively. Note that

the definition of AmAn is the same as described in FME. For each

occurring residue pair AmAn, the two corresponding Dscore values

are multiplied to obtain a coefficient. NMED
AmAn

corresponds to the

summation of the corresponding coefficients for all the observed

AmAn. Then, the residue pair weight coefficient vector for each

residue in a protein structure is modified to

WMEDi
~ W MED

AA , W MED
AC , :::, W MED

AmAn
, :::, W MED

YW , W MED
YY

� �
400
ð12Þ

Here W MED
AmAn

is calculated as

W MED
AmAn

~NMED

AmAn
=(NMED

Am
|NMED

An
) ð13Þ

where NMED

Am
stands for the summation of the Dscores for all the

occurring Am in the ME and NMED

An
represents the summation of

the Dscores for all the occurring An in the ME, respectively.

Similar to Eq.(4), the query residue itself is also considered when

counting NMED

Am
.

The overall weighted vector (WMED) for catalytic residues is

measured by averaging all the weighted vectors of the related

catalytic residues:

WMED~

PCNAA

n~1

W MED
AA

lnCNA

,

PCNAC

n~1

W MED
AC

lnCNA

, � � � ,

PCNAmAn

n~1

W MED
AmAn

lnCNAm

,

0
BBB@

� � � ,

PCNYW

n~1

W MED
YW

lnCNY

,

PCNYY

n~1

W MED
YY

lnCNY

1
CCCA

400

ð14Þ

In the above equation, CNAmAn and CNAm have the same

meanings as in Eq. (5).

Finally, a nonlinear combination between MEscore and Dscore

is obtained using the following equation:

MEDscore~FMED|WT

MED
ð15Þ

To ensure that the MEDscores of all residues in a protein structure

range from 0 to 1, the original MEDscores are further normalized

by Eq. (7).

As an alternative combination, we linearly combine MEscore

and Dscore into another feature called MEDscore LC, which is

defined as

MEDscore LC~a|MEscorez(1{a)|Dscore ð16Þ

To determine the optimal value of a, we benchmarked the

performance of MEDscore_LC using different a values, ranging

from 0.0 to 1.0 at an interval of 0.05. The optimal a corresponded

to the maximal AUC1.0. In this work, the optimal value of a was

assigned to 0.55.

Other existing features and predictors
Catalytic likelihood of each residue (CL). The CL value

of each residue can be inferred from the benchmark enzyme

dataset, defined as

CLAm~
CNAm=CN

TNAm=TN
ð17Þ

where CNAm denotes the number of residue Am as catalytic, CN is

the total number of catalytic residues, TNAm is the number of

residue Am, and TN is the total number of residues, respectively.

For a given residue, the corresponding value of CL can be used to

predict whether a residue is catalytic or not.

Closeness. Derived from residue interaction networks,

Closeness has been previously shown to be a powerful feature in

predicting catalytic residues [27,37,39,43,47]. In this study,

Closeness of a given residue i in the residue interaction network

of a protein is calculated as

Closenessi~
N{1P
i=j SDij

ð18Þ

where N is the number of residues in the protein structure and SDij

is the shortest path between residues i and j. To construct the

residue interaction network, the value of Rcutoff was set as 9.0 Å.

Note that the Closeness values also need to be further normalized

using Eq. (7).

FEATURE. FEATURE employs a Bayesian classifier to

predict protein functional sites [63]. The input feature vector of

FEATURE is constructed from the ME surrounding the query

residue, including atom properties, residue properties, partial

charge, solvent accessibility etc. We downloaded the stand-alone

version of FEATURE (version 3.0) from https://simtk.org/home/

feature, and evaluated its performance based on the benchmark

enzyme dataset in this study. For performance comparison, as

reported in [46], the ratio of catalytic to non-catalytic residues in

the training stage was set as 1:6.

Residue conservation score. The residue conservation

scores of the enzymes were directly obtained from the ConSurf-

DB database [64], which consists of pre-calculated conservation

scores for each protein structure. In order to detect functionally

important residues in protein structures, ConSurf-DB employs the

Rate4Site algorithm [16] to compute the conservation score of

each residue based on the generated MSA. The criteria to

generate the MSA are detailed in [64]. The number of sequences

in the MSAs of the 223 enzyme domains ranges from 8 to 199 and

the average number is 124. Approximately 90% of the enzymes

have more than 50 aligned sequences in their respective MSAs,

while only two enzymes have less than 10 aligned sequences in the

corresponding MSAs. In addition to the use of an empirical

Bayesian inference, Rate4Site also takes into account the

phylogenic relations within proteins. Likewise, the pre-calculated

conservation score (CONscore) of each residue is further

normalized using Eq. (7).
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Linear combination of CONscore and MEDscore
Similar to the construction of MEDscore LC, we further

integrate CONscore and MEDscore into a new feature, defined as

CMEDscore:

CMEDscore~b|CONscorez(1{b)|MEDscore ð19Þ

Similar to the determination of the optimal a in Eq. (16), the value

of b was optimized to attain the maximal AUC1.0 of CMEDscore.

In the current enzyme dataset, the optimal value of b was set as

0.70.

Performance assessment of different features or
predictors

In this work, we used five-fold cross validation tests to evaluate

the performance of the six features/predictors, i.e. MEscore,

MEDscore, MEDscore_LC, CL, FEATURE and CMEDscore. In

particular, the benchmark enzyme dataset was randomly divided

into five subsets and each subset contained roughly equal number

of protein domains (the SCOP entries of these five subsets are

available in Text S1). In each cross-validation evaluation step, four

subsets were merged into a training dataset to infer the residue pair

weight vectors (WME and WMED) and the remaining were utilized

as a test dataset to assess the performance of each feature. The

final performance of this feature was averaged over all of the five

subsets. We also randomly repeated the subset partition three

times and similar results were obtained for each feature/predictor.

Since Dscore, Closeness and CONscore do not require a training

phase, the performance of these three features was evaluated

directly on the whole dataset rather than the five-fold cross

validation tests.

We used the ROC curve and two corresponding parameters

(AUC1.0 and AUC0.1) to assess the overall performance of each

feature. In this work, the ROC curve was prepared on per subset

basis. Briefly, we generated a ROC curve in each subset and the

overall ROC curve on the whole dataset was averaged over the

generated five ROC curves. Note that the ROC curve can also be

generated on per enzyme basis. That is to say, we can plot a ROC

curve in each enzyme domain and obtain the average ROC curve

on the 223 enzyme domains. Since normalization at the domain

level was conducted for each feature, the ROC curves based on

the above two strategies should generate close results. For

comparison, the ROC curves on per enzyme basis are also shown

in Figure S2.

Analysis and Visualization
All computational and analytic scripts were written in Perl/R

languages. The implemented R packages included ROCR [74]

and pROC [62] for ROC analysis and visualization, as well as

igraph [75] for network parameter calculation. All the figures were

prepared using either R (http://www.r-project.org/) or PyMol

(http://www.pymol.org/).
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