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Abstract

We investigate the communication sequences of millions of people through two different channels and analyse the fine
grained temporal structure of correlated event trains induced by single individuals. By focusing on correlations between the
heterogeneous dynamics and the topology of egocentric networks we find that the bursty trains usually evolve for pairs of
individuals rather than for the ego and his/her several neighbours, thus burstiness is a property of the links rather than of
the nodes. We compare the directional balance of calls and short messages within bursty trains to the average on the actual
link and show that for the trains of voice calls the imbalance is significantly enhanced, while for short messages the balance
within the trains increases. These effects can be partly traced back to the technological constraints (for short messages) and
partly to the human behavioural features (voice calls). We define a model that is able to reproduce the empirical results and
may help us to understand better the mechanisms driving technology mediated human communication dynamics.
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Introduction

Egocentric networks consist of a central node (the ego) and its

immediate neighbours. They are broadly used in psychology and

sociology as they are crucial in understanding the interactions

between an individual and his/her proximate social circle [1,2].

Dunbar discovered that the number of social ties of an individual is

anthropologically determined to be around 150 [3–5] and that the

ties can be classified into self-containing intimacy circles [6] based

on the strength of one’s relationships. These differences in the

importance of the ties of an ego are reflected by the dynamics of

social relationships. An individual interacts heavily only with very

few people like close kins or closest friends and communicates less

with most of his/her acquaintances depending on their social

closeness and common tasks [7,8]. This diversity is naturally

present also in the communication dynamics thus data collecting

communication sequences of individuals can even be used to

measure the intensity of relationships [10,11]. Fig. 1.a illustrates

the communication pattern in an egocentric network, where the

overall activity of the ego (green row) and activities on separated

edges with three friends (orange rows) are presented. After

building up the complete social network from egocentric

subgraphs it turns out that strong links with heavy communication

are usually found inside densely connected groups or communities

as those people who are connected through an important

relationship share many common neighbours. At the same time

weak links more likely connect communities [9–11], which makes

them important for processes evolving in social networks [12].

Individual human behaviour shows heterogeneity not only in

topology but also in dynamics. The actions of a person are not

evenly distributed but rather clustered in time (e.g. see Fig. 1.a). It

commonly happens that several events are executed in bursts

within a short time frame and such high activity periods are

separated by long inactive ones. This kind of temporal inhomo-

geneity can be observed in various human activity sequences

ranging from communication to library loans or printing logs [13–

16] and they are typically characterized by the broad distribution

of inter-event times P(tie)*t
{c
ie . In the past few years different

mechanisms were proposed to describe the origin of these

heterogeneities [17–21], and several influences have been

analyzed, including the role of circadian patterns [22].

Even though the inter-event time distribution assigns temporal

inhomogeneities, it does not characterize possible correlations in

the sequences. It was observed that such correlations between

bursty events, indeed, exist as indicated by trains of bursty events

in Fig. 1.b–d, where the incoming and outgoing calling activity of

an individual are shown on each of his/her links for some selected

time periods. By appropriately defining such correlated trains it

turned out that the distribution of the number E of events they

contain shows a P(E)*E{b scaling [23]. This behaviour has been

found in various human communication sequences and even in

earthquake and neuron firing statistics, indicating same kind of

universality behind these correlated heterogeneous dynamics.

These phenomena were interpreted as a result of memory effects

and modelled [23] by simple multi-scale reinforcement processes

similar to that describing face-to-face interactions [24,25].

In spite of some related works [21] the fine grained structure of

correlated trains in communication sequences are still mainly

unexplored. In this paper by using detailed electronic records of

large number of individuals we aim to study this problem and

addressing the following questions: How are the event trains

correlated with the skeleton of the backgrounding social network?
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Are they results of collective behaviour or are they induced by

individuals? Are there any correlations between the directions of

the interactions? This paper is organized as follows. After

introduction we define the basic quantities and show that the

correlated bursty communication pattern can be attributed to links

rather than to nodes. In the subsequent section we compare the

balance of in- and outgoing calls and SMS-s on a link to that of the

trains on the same link. We then present a model study to gain

deeper insight into the governing rules of the observed behaviour.

After drawing the conclusions we close the paper by the detailed

description of the investigated datasets and used methods.

Results

Dynamics in Egocentric Networks
In [23] it has been demonstrated that the correlations in a

bursty time series showing a power-law inter-event time distribu-

tion P(tie) [14–16] can be detected by looking for bursty event

trains and investigating the distribution P(E) of the number E of

events they include. A train of bursty events consists of consecutive

events all with inter-event times tieƒDt inside the train, separated

from the rest by tiewDt. For any independent P(tie) (including

power law ones) P(E) will decay exponentially while for correlated

signals a power-law behaviour of P(E)

P(E)*E{b ð1Þ

appears and indicate strong correlation of bursty events. In the

present case for voice calls (SMS) both P(tie)i and P(E) are

distributed like a power-law with exponents c^0:7 (c^1:0) and

b~4:2 (b~3:9) (see original solid lines in Fig. 2). This behaviour is

remarkably different from the P(E) in sequences where inter-event

times of the whole data set are randomly shuffled. This procedure

leaves the inter-event time distribution and the number of

communication events between pairs of users unaltered but

destroys all temporal correlations. Correspondingly, the P(E)
distribution decays exponentially (random solid lines on Fig. 2.a

and b).

If we assume burstiness to be a mere consequence of individual

human behaviour, it is natural to concentrate on outgoing voice

calls and SMS’. However, beyond studying only the timings of

events, we can look at how they are distributed in the egocentric

topology. Intuitively one may assume that correlated outgoing calls

or SMS’ of an individual serve the information processing of a

group [27,28], thus these events are directed towards several

neighbours leading to the evolution of larger temporal motifs. The

existence of such behaviour was demonstrated in [29] and also in

Fig. 1.c where beyond the ego two other friends are involved in

some bursty sequences. Supposing this mechanism be relevant

then the burstiness would be the property of a single node or a

group of individuals.

Surprisingly, the generic picture seems to be different. If we

assume that the correlated events in a train are directed toward

several neighbours, trains of events on single edges between two

persons should have an entirely different, less correlated statistics

of bursts. However, this is not the case as the P(E) distributions

which were detected on single edges are scaling similarly and can

be characterized by the same exponent values as in the case, when

calls on any egocentric edges were taken into account. This

suggests that trains of events usually evolve on single links. Such

behaviour was confirmed both for calls and SMS’ (Fig. 2.a and b),

where the P(E) distribution of trains evolving between pair of

individuals (original dashed lines) are only slightly different from

the P(E) distributions of trains which can involve several people

(original solid lines). This picture is also supported by the statistics

of temporal motifs [29], where motifs involving two individuals are

by far the most common ones.

The same conclusion can be drawn by counting the number of

neighbours BN , whom an individual called in a bursty train of E

events. If a user communicates with only one neighbour during the

Figure 1. Call activity in an egocentric network. (a) Overall activity: darker the color larger the number of calls at the given hour. First line
(green) denotes the overall in/out communication of the selected user, while the lines e1,e2 and e3 demonstrate the communication on each active
edges. (b,c,d) In- (red) and outgoing (blue) activity on given edges during selected time periods. The width of the coloured strips reflects the length
of the corresponding calls. The selected periods are between 8AM and 1AM on the 5th, 16th and 29th days.
doi:10.1371/journal.pone.0040612.g001
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Figure 2. Characteristic distributions of call and SMS sequences. (a) Distributions of E length of bursty periods of outgoing events of nodes
towards all the neighbours (solid lines) and to the direction of single neighbours (dashed lines). The measurement was repeated with time windows
Dt~100,300,600 and 3600 seconds using the original event sequence (original) and after the inter-event times were shuffled (random). Inset: Inter-
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period then the ratio BN=E~1=E or, e.g., if each calls are

directed toward different neighbours than BN=E~1. The

distributions of the BN=E ratios for each E together with the

average values are presented in Fig. 3.a and b for calls and SMS,

respectively. For shorter trains the distributions show some

dispersion, however the mean values confirm that usually only

one or two people are called in a bursty train. To estimate what

fraction of trains of the same size involves one, two or more

people, we calculate the cumulative fraction of trains involving BN
number of neighbours. As it is depicted in Fig. 3.c and d, for any E

the majority of the trains of events involve only one neighbour (red

areas) while the fractions with multiple call receivers are

considerably smaller. In addition Fig. 3.e and f indicate that even

though trains consist of events executed with several friends, most

of the calls are performed with only one of them. This can be

concluded as the average of the maximum number of calls

performed with the same neighbour in a train with size E goes with

the train size as Smax(CN)T(E)*E.

In order to see the significance of the observed behaviour we

repeated the measurements on null model sequences where we

shuffled the receivers between calls of an individual and repeated

the method for everyone in the dataset. This way we kept the

original degree of the users and the temporality of events remained

also the same. Consequently in the null model sequences we could

detect the same bursty trains as originally, however, since the

receivers were shuffled the trains did not evolve between the ego

and a single neighbour but were possibly distributed towards the

other neighbours of the actual user. This way we shuffled out the

effect of correlations causing the evolution of bursty trains on

single links. Results for call and SMS null model sequences are

presented in the Supplementary Informations (SI), where we show

that in the random case the fraction of single link bursty trains turn

to be around *20% (which is *80% in the original sequences)

while the fractions of trains evolving between the ego and larger

BN number of friends are increasing accordingly. Hence single

link bursty train evolution is a relevant feature of human

communication behaviour.

Mutual Bursty Behaviour
In the previous section we pointed out similarities in the dynamics

of communication between calls and SMS’. In both cases the

temporal distributions of events are strongly heterogeneous, the

sequences consist of correlated actions which are clustered into long

bursty trains, and which trains are usually evolving on single links

rather then connecting a larger group of people. Now we are at the

position to ask further questions about the dynamics of human

interactions on a dyadic level like: What is the direction of events in

the trains? Is the communication in bursty periods balanced or

dominated by one partner? Are there differences between voice calls

and SMS’ from this point of view? To answer these questions we

take into account the communication events performed on links

initiated by any of the two connected users.

For the entire recording period of the dataset one can calculate

the overall communication balance for each edge e as:

be~
max(NA,NB)

NAzNB

ð2Þ

where NA (NB) assigns the total number of calls from A to B (B to

A). Hence be can vary between 1=2 (completely balanced) and 1

(completely imbalanced, dominated by one of the participants).

Strong difference occurs between voice call and SMS dynamics if

we look at the balance of edges and their correlation with the

length of trains which evolve on them. To do so, we calculate the

weighted average of be over all trains of length E:

bAll(E)~SbeTE trains~

P
e ne(E)beP

e ne(E)
ð3Þ

where ne(E) means the number of trains of length E on edge e. In

Fig. 4.a for SMS (brown squares) bAll is converging to 1/2

indicating that the trains evolve on strongly balanced links and this

effect is enhancing for longer trains. The balanced communication

in SMS sequences has been observed by Wu. et al. [21] and can be

explained by the technologically determined way of communica-

tion exchange, which requires mutuality for SMS. However, this

constrain does not apply for the mobile calls (orange points in

Fig. 4.a) where during a call information can flow in both

directions. Here bAll reflects strongly unbalanced communication

and it increases towards 1 for trains with larger E. It assigns an

opposite trend for calls compared to SMS communication as

longer trains evolve on more unbalanced edges.

The next question we should address is whether the balance or

imbalance within the trains simply reflect the bias due to be of the

actual edge or additional effects play role in there. To study this we

define the balance within a train in a similar way as for an edge:

pe(Em)~
max(nA,nB)

nAznB

: ð4Þ

Here pe(Em) is the balance of the m{th train of length Em on

edge e connecting A and B, nA (nB) denotes the number of events

initiated by A (B) towards B (A) in that train; Em~nAznB.

Averaging over trains of the same size p(E)~Spe(Em)TE trains gives

an estimate for the average communication balance in trains of

size E (note that in this case different pe(Em) values can evolve

even for trains on the same edge e). This has to be compared to the

case, when a train is composed from events selected in an

independent manner from a set with balance be. The latter can be

calculated as

pindep
e (Em~E)~

1

E

XE

i~0

D
E

2
{iDz

E

2

� �
bi

e(1{be)E{i E

i

� �
, ð5Þ

where the first factor after the summation weighting the binomial

distribution taking into account that the imbalance can evolve in

both directions, i.e., parallel or antiparallel to the imbalance of the

edge. As pindep
e (Em~E) depends only on be and E, the average can

be taken similarly to p(E) as pindep(E)~Spindep
e (Em)TE trains to get

the estimate for the independent case.

Fig. 4.b shows p(E) and pindep(E) for both voice calls and SMS

messages. The first apparent feature is that for large values of E the

bAll(E) of Fig. 4.a and pindep(E) become very similar, correspond-

ing to the fact that for long trains pindep(E) approaches the bias of

the actual edge. However, the interesting effect is the difference

between p(E) and the corresponding. It shows that trains of calls

(red points) are much more unbalanced than one would expect

from independent processes (yellow circles) considering the bias of

event time distributions between consecutive outgoing events of the same user towards all neighbours (solid line) and between outgoing events on
a single link (dashed line). (b) The same measurements repeated for outgoing short messages with Dt~60,120,300 and 600 seconds.
doi:10.1371/journal.pone.0040612.g002
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the edge. At the same time for SMS the contrary is true as trains

(blue squares) are much more balanced than one would derive

from random processes (green squares) applying the be values of

the corresponding edges. This demonstrates real correlation

between events of the same train and suggests different correlated

mechanisms behind call and SMS dynamics. One may suspect

Figure 3. Measures of single link bursty trains. (a, b) The distribution and average values of the ratio BN=E (BN being the number of
neighbours, whom an individual called in a bursty train) for each E train size. Trains were detected with Dt~600 (Dt~300) for calls (SMS). The
pointed and solid lines denote the limiting case 1 and 1=E, while dashed line belongs to 2=E. (c, d) Cumulative fraction of the number of bursty
neighbours (BN) for trains with size E for calls and SMS. (e, f) Average of the maximum number of events directed to the same user within a bursty
period in case of calls and SMS.
doi:10.1371/journal.pone.0040612.g003
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that the strengthening of the imbalance for voice calls may be a

consequence of call trials picked up by the answering machine. To

exclude this we repeated the calculations after removing events

with duration shorter than d§ as depicted in Fig. 4.c. The

calculated pdiff (E)~p(E){pindep(E) in Fig. 4.d shows that the

saturation value is slightly decreasing as we remove longer calls,

however, the differences remain significant and saturating to 0:1
with d§w4 seconds. This duration time also serves as a time scale

after which the answering machine calls do not play any significant

role. For further details about the effect of short calls see SI.

Model
In this section we introduce a model, which is able to reproduce

the empirical observations, namely the enhanced imbalance of the

bursty trains for voice calls and the opposite behaviour for the

SMS message compared to independent processes. Our aim is to

identify the different mechanisms controlling the dynamics of

communication through these channels, integrate them into a

single model which we can test against the empirical results.

The emergence of correlated bursty trains in communication

sequences were interpreted earlier by memory processes [23]. The

evolution of trains with size scaling as Eq.1 were explained as the

result of reinforcement dynamics where the probability q(n) to

perform one more event in a train after n events have been

executed, depends on n as:

q(n)~
n

nz1

� �n

where n~bz1: ð6Þ

Assuming this dynamics and by fitting b to empirical data, we

are able to generate model trains with realistic size scaling.

However, the question remains how we can introduce the

mechanisms responsible for the enhancement of bursty trains.

Let us first concentrate on voice calls. One correlation we

observed (see Fig. 4.a lower panel) is that longer trains tend to be

more unbalanced, meaning that they are more dominated by one

of the callers. We also disclosed the possibility (in Fig. 4.b and SI)

that this behaviour is an artifact due to answering-machine calls

where the caller repetitively recalls the friend to pass an important

information. Keeping in mind that mobile calls enable bidirec-

tional information change, we assume that the observed unbal-

anced communication in call trains reflects the difference in

motivation between the communicating partners. If there is a task

to solve, which is more important for one party, it gives motivation

for him/her to repeated calls until the issue gets settled.

Figure 4. Directed balance measures in call and SMS sequences. (a) Average be edge balance values calculated for trains with the same size
for calls (orange circles) and SMS (brown squares). (b) Average p(E) train balance values for trains of the same size in case of calls (red circles) and SMS
(blue squares). A similar average was calculated for corresponding independent event trains (yellow circles for calls and green squares for SMS). (c)
Average p(E) and pindep(E) measured in call sequences where events with duration smaller than d§ were removed. (d) The difference of the empirical
and independent values in call sequences where events with duration smaller than d§ were removed.
doi:10.1371/journal.pone.0040612.g004
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This mechanisms can be incorporated into the reinforcement

process of bursty trains in the following way (see Fig. 5.a). We

simulate bursty trains, which evolve on a link between a pair of

individuals A and B. To initiate a train with a probability equal to

be we randomly select A or B who then perform one event towards

the other agent and at the same time we set the actual train size to

n~1. The decision about the next event is carried out in two steps.

First we decide with the probability in Eq.6 whether to perform

one more event in the train or initiate a new train otherwise. If the

train should be continued a new decision is made about the

direction of the call. The probabilities that it is initiated by A or B

are given as:

qs(nDs1)~
n

nz1
or qs(nD:s1)~1{

n

nz1
ð7Þ

where s[fA,Bg. Here qs(nDs1) denotes the probability that the nth
event of the actual train is performed by the same user who initiated

the train at n~1, while qs(nD:s1) gives the probability that the

other player makes the call. Consequently, the longer a train

evolves, the larger is the probability that the agent, who initiated the

actual train will make a call to the other agent. Eq.6 and Eq.7

capture the coupled reasons for the evolution of long unbalanced

trains. They reflect the reinforced motivation of an individual

induced by the effort what he/she already invested in the actual

series of calls to successfully solve a task with the other partner.

In case of SMS the mechanism for developing strong balance in

bursty trains is different. There, in single events information can

pass only one way and consecutive events in a train usually have

reversed direction. Trains are possibly conversations between

partners and the technology constrain is responsible for the

strongly balanced communication. To simulate this behaviour

again we generate trains as in the previous case by using Eq.6,

however, to select the direction of the actual event we define a

different mechanism. Here we assume that the direction of an

event depends only on the direction of the previous one as they

tend to be reversed. Accordingly, conditional probabilities can be

used to decide the direction of the actual event as:

qs(nD:sn{1)~
n

nz1
, qs(nDsn{1)~1{

n

nz1
ð8Þ

where s[fA,Bg and qs(nD:sn{1) denotes the probability to

choose the opposite direction for the nth event compared to the

one in the n{1th step. Accordingly qs(nDsn{1) denotes the

probability of choosing the same direction as for the previous

event. In this way the longer a train evolves, the larger is the

probability to revert the direction of consecutive events and

consequently the more the train becomes balanced.

The evolution of enhanced balance/inbalance in trains can be

checked in the best way on edges where the overall communica-

tion is completely balanced and the balance/unbalance of trains is

induced only by actual behavioural differences. In this way by

setting be~1=2 the results obtained from the model process can be

compared to averages calculated for real trains that evolve on

edges with the same be values. We selected edges with overall

balance values between 0:5ƒbev0:55 and calculate the corre-

sponding P(E) and p(E) functions for this limited number of

115,277,534 calls and 69,288,504 SMS. As it is shown in Fig. 5.b,

the size of call trains (red circles) detected with Dt~600s and SMS

trains (blue squares) with Dt~300s are distributed broadly and

were characterized by an exponent b~4:6 and b~3:5 accord-

ingly. Also the p(E) balance values calculated for the limited event

sets in Fig. 5.c show similar behaviour to what was observed earlier

in Fig. 4.b for averages calculated for all edges. This figure

demonstrates that even if the overall communication between

people is balanced yet the strong communication unbalance for

voice calls and an enhanced balance for SMS trains evolves. This

is even more conspicuous when we compare these curves to the

values obtained for independent processes (green triangles in

Fig. 5.c) using Eq.5 with be~1=2.

Using the above parameters we executed model processes for

calls and SMS with the same number of events and corresponding n
exponents deduced from b according to Eq.6. The P(E)
distributions calculated for the evolving model trains are fitting

well to the corresponding empirical functions as it is depicted in

Fig. 5.b for model call trains (black circles) and for model SMS

sequences (yellow squares). It should be emphasized that there is no

further fitting parameter in the model, nevertheless, the average

p(E) balance values calculated for trains in the model processes are

in very good agreement with the empirical observations in Fig. 5.c.

This indicates that the assumed mechanisms are capturing rather

accurately the salient features of the dynamics of directed human

communication through phone calls and SMS. The only discrep-

ancy is for the p(E) values of short SMS trains, where the empirical

data show an even-odd effect, which is not present in the model,

indicating that for such communications an additional mechanism

may be present enhancing the tendency towards the balance.

Discussion

In this paper we have studied mobile phone call and SMS

communication sequences of millions of individuals and found the

signature of internal correlations, which evolve between events and

are responsible for long correlated event trains. By considering

egocentric networks we realized that these bursty trains are likely

to evolve between pairs of individuals rather than characterizing

the communication of an individual in a larger group. Moreover,

after a careful analysis we have found that the communication in

such trains is much more balanced (unbalanced) for SMS (voice

calls) than expected from trains of independent events with the

same balance value be of the edge, where the train was formed.

We have concluded that the backgrounding mechanisms for the

evolution of bursty trains can be interpreted as memory processes

and implemented by reinforcement model dynamics. We have

shown that events in trains are determined by different

backgrounding motivations for calls and SMS; clearly in the latter

case they are strongly mediated by technological constrains. We

integrated these mechanisms into a model to simulate call and

SMS train sequences. The model is capable in reproducing the

observed statistics of events in trains of bursts and create

correlations to enhance balance (imbalance) for SMS (voice call)

cascades. We believe that this work gives insight into the

communication dynamics of individuals, dyads, and egocentric

networks at the level of single events. It points out similarities and

differences of communication through different channels and

contributes to our understanding of human behaviour.

Materials and Methods

In the present study we investigate the dynamics of human

communication by analysing sequences of mobile-phone calls

(MPC) and short messages (SMS) induced by a large set of

individuals. The datasets were recorded by a single operator with

20% market share in an undisclosed European country (ethic

statement was issued by the Northeastern University Institutional

Review Board). They contain 633,986,311 time stamped MPC

(209,316,760 SMS) events recorded during 182 days with 1 second

resolution between 6,243,322 (4,819,993) individuals who are

Correlated Dynamics in Egocentric Networks
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connected via 16,783,865 (10,339,274) edges. In order to take into

account only true social interactions and avoid commercial

communication, we used only actions which were executed on

links between users, who are at least once mutually connected each

other during the recorded period. Note that due to the partial

coverage we cannot know the complete egocentric network of each

individual. This may play an effect on our results, however if this

impact would be significant it would be already visible from the

results of the limited dataset.

To characterize temporal behaviour of an individual, we commonly

used inter-event times defined as tie~tiz1{(tizdi) where ti and

tiz1 denote the starting time of two consecutive outgoing call events,

while di is the corresponding duration. Naturally, in case of outgoing

SMS the same definition holds but with di~0.

To filter the artificial effect of technology those consecutive

short messages, which were sent to the same neighbour with inter-

event times smaller than 10 seconds were replaced with a single

event as they were possibly parts of the same multipart SMS [26].

Other technology and topology related constraints like answering

machines for voice calls or degree heterogeneities in the network

could be the possible sources for the emerging single link bursty

train behaviour. To answer these questions we completed

additional analysis with results discussed in the SI.

Supporting Information

Text S1 Properties of single link bursty behaviour.

(PDF)

Acknowledgments
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corresponding model processes (red and yellow symbols). Balance values of independent trains are also shown (green triangles) calculated by Eq.5
with be~1=2.
doi:10.1371/journal.pone.0040612.g005
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and tie strength in mobile communication networks. Proc. Nat. Acad. Sci. USA 104:

73327336.
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